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Abstract In this paper, we study the large deviation behavior of sums SZn of i.i.d.
random variables Xi , where Zn is the nth generation of a supercritical Galton–
Watson process. We assume the finiteness of the moments E X2

1 and E Z1logZ1 . The
underlying interplay of large deviation probabilities of partial sums of the Xi and of
lower deviation probabilities of Z is clarified. Here, we heavily use lower deviation
probability results on Z we recently published in [7].
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1 Introduction and results

1.1 Motivation

Let Z = (Zn)n≥0 denote a Galton–Watson process with offspring law {pk; k ≥ 0}.
We will assume that Z is supercritical: m := ∑∞

k=1 kpk ∈ (1,∞). As a rule we start
with Z0 = 1.

A basic task in statistical inference of Galton–Watson processes is the estimation
of the offspring mean m. Let us recall at this place the well-known Lotka–Nagaev
estimator Zn+1/Zn of m due to Nagaev [10]. If ς := (VarZ1)

1/2 ∈ (0,∞), then for
every x ∈ R,

lim
n↑∞ P

(
mn/2

(
Zn+1

Zn
− m

)
< x; Zn > 0

)
=

∞∫

0

�
(

xu1/2

ς

)
w(u) du, (1)

where w denotes the continuous density function of the a.s. limit variable W :=
limn↑∞ m−n Zn restricted to {W > 0}, and � is the standard normal distribution
function,

�(y) := 1√
2π

y∫

−∞
e−z2/2 dz, y ∈ R. (2)

The study of the ratio Zn+1/Zn has attracted the attention of several researchers
in recent years, since it can also be used for estimating important parameters such as
the amplification rate and the initial size in a quantitative polymerase chain reaction
experiment; see Jacob and Peccoud [8,9].

Fix k ≥ 0. Aimed to a finer description of the Galton–Watson model, let Zn(k)

denote the number of particles in the nth generation having exactly k children. Then,
on the event {Zn > 0}, results for the estimator p̃k(n) := Zn(k)/Zn of pk , which
hold analogously to (1), had been provided by Pakes [15, Theorems 5 and 6].

The mentioned results from [10] and [15] can be seen from a unified point of view
as follows. Independently of Z , let X = (Xn)n≥1 denote a family of i.i.d. (real-
valued) random variables with mean zero and variance in (0,∞). Let n ≥ 0. Put
Sn := X1 + · · · + Xn . On the event {Zn > 0}, the random variable

Rn := SZn /Zn (3)
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LD for sums on a GW process 447

is well-defined. For convenience, we agree that an event involving Rn is always
tacitly assumed to be included in {Zn > 0}. For instance, P(Rn < x) means
P (Rn < x; Zn > 0) more carefully written. If now X1 coincides in law with Z1 −m,

then, for n fixed, Rn coincides in law with Zn+1/Zn − m on the event {Zn > 0}.
On the other hand, if X1 takes on the value 1 − pk with probability pk (for k fixed)
and −pk otherwise, then for n fixed, we have Rn = p̃k(n) − pk in law on the event
{Zn > 0}.

Sums such as SZn arise also in models of polymerase chain reactions with mutations,
see Piau [17].

From now on, as a rule we work with the more general meaning of Rn, based
on (X, Z), as introduced in (3). Clearly, we have the following strong law of large
numbers:

Rn → 0 a.s. as n ↑ ∞. (4)

Moreover, using methods from [10] and [15], one can easily verify the following
“normal deviation probabilities” for Rn :

lim
n↑∞ P

(
mn/2 Rn < x

)
=

∞∫

0

�
(

xu1/2

σ

)
w(u) du, x ∈ R, (5)

where σ := (EX2
1)1/2 from now on. Let εn > 0 and consider P(Rn ≥ εn). In

the case εnmn/2 → ∞, statement (5) implies the following simple large deviation
probabilities for Rn :

lim
n↑∞ P(Rn ≥ εn) = 0. (6)

But the main task of large deviation theory is to determine the rate of such convergence.
Clearly, one of the reasons to be interested in large deviation probabilities comes from
statistical applications. On the one hand, these probabilities describe the quality (error
probabilities) of many tests. On the other hand, a question concerning the Bahadur
efficiency of estimators leads also to a large deviation problem.

For the particular model X1
L= Z1 − m mentioned above, the special case εn ≡ ε

is more or less studied in the literature. In fact, Athreya [3] proved that if p0 = 0,

p1 > 0, and EZ2α+δ
1 < ∞ for some δ > 0, where α ∈ (0,∞) denotes the so-called

Schröder constant [see (8) below], then

lim
n↑∞ mαn P

(|Rn| ≥ ε
)

exists finitely. (7)

On the other hand, using asymptotic properties of harmonic moments of Zn , Ney and
Vidyashankar [12] found the rate of P

(|Rn| ≥ ε
)

under the weaker assumption that
P(Z1 ≥ j) ∼ aj1−η as j ↑ ∞, for some η > 2 and a > 0. The same authors proved
in [13] a version of a large deviation principle for Rn conditioned on Zn ≥ vn with
numbers vn → ∞; see also Rouault [18].
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The purpose of the present paper is to study the rate of convergence of (large
deviation) probabilities of Rn ≥ εn in the more interesting case εn → 0 as n ↑ ∞
(working with our more general setting of Rn). For this we heavily relay on results on
lower deviation probabilities of Z , we recently established in [7]. In the next section
we briefly recall what we need from that paper.

Note that large deviation probabilities in the case εn → 0 are needed, for instance,
for testing two close hypotheses, i.e. when the distance between the hypotheses tends
to zero as the size of the sample gets larger and larger.

1.2 Lower deviation probabilities for Z

We start with recalling the following basic notation, reflecting a crucial dichotomy for
supercritical Galton–Watson processes.

Definition 1 (Schröder and Böttcher case). For our supercritical offspring distribution
we distinguish between the Schröder and the Böttcher case, in dependence on whether
p0 + p1 > 0 or = 0, respectively.

Write f for the generating function of our supercritical offspring law: f (s) =∑
j≥0 p j s j , 0 ≤ s ≤ 1. Let q denote the extinction probability of Z ,

set γ := f ′(q), and define α by γ = m−α. (8)

Note that γ ∈ [0, 1) and α ∈ (0,∞]. Obviously, we are in the Schröder case if and
only if γ > 0, if and only if α < ∞. In the latter case, α is said to be the Schröder
constant. We also need the following notion.

Definition 2 (Type (d, µ)). We say the offspring distribution is of type (d, µ), if d ≥ 1
is the greatest common divisor of the set { j − 
 : j �= 
, p j p
 > 0}, and µ ≥ 0 is
the minimal j for which p j > 0.

In the present paper, (d, µ) always refers to the type of our offspring law. Recall
that µ ≥ 2 in the Böttcher case. Here the Böttcher constant β ∈ (0, 1) is defined by
µ = mβ .

We also always assume that the moment EZ1 log Z1 is finite. Under this moment
condition, the lower deviation results of [7, Corollary 5 and Theorem 6] can be specified
to the following two propositions.

Proposition 3 (Schröder case). In the Schröder case, for kn ≤ mn satisfying kn →
∞ as n ↑ ∞, we have

sup
k∈[kn ,mn ] with k≡µ (mod d)

∣
∣
∣
∣

mn

d w (k/mn)
P(Zn = k) − 1

∣
∣
∣
∣ −→

n↑∞ 0 (9)

and

sup
k∈[kn ,mn ]

∣
∣
∣
∣

P(0 < Zn ≤ k)

P (0 < W < k/mn)
− 1

∣
∣
∣
∣ −→

n↑∞ 0. (10)
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LD for sums on a GW process 449

Proposition 4 (Böttcher case). Suppose the Böttcher case. Then there exist positive
constants B1 and B2 such that for all kn ≥ µn with kn = o(mn) as n ↑ ∞,

− B1 ≤ lim inf
n↑∞ (kn/mn)β/(1−β) log P(Zn ≤ kn) (11a)

≤ lim sup
n↑∞

(kn/mn)β/(1−β) log P(Zn ≤ kn) ≤ −B2 . (11b)

Inequalities (11) remain true if P(Zn ≤ kn) is replaced by mn P(Zn = kn), provided
that additionally kn ≡ µn (mod d).

In order to explain the influence of lower deviation probabilities of Zn on Rn =
SZn /Zn , look at the decomposition,

P(Rn ≥ εn) =
∞∑

k=1

P(Zn = k) P(Sk ≥ εnk). (12)

Thus, in order to find the asymptotics of P(Rn ≥ εn), we need to determine the range
of values of k, which give the main contribution in decomposition (12). As we will
see, this depends on parameters of the offspring law (as α, for instance) and, on the
other hand, on the tail behavior of X1 . Here we mention several possibilities of the
interplay. If k is of order mn (the regime of normal deviations for Zn) and ε2

nmn → ∞,
then εnk has to be in the domain of large deviations of Sk . On the other hand, if k is of
order ε−2

n (regime of normal deviations for Sk), then k has to be in the domain of lower
deviations for Zn . And finally, if k/mn → 0 and ε2

nk → ∞, then simultaneously we
need lower deviations for Zn and large deviations for Sk .

1.3 Large deviations in the Schröder case

In the remainder of the paper we consider

εn > 0 with εn → 0 and ε2
nmn → ∞ as n ↑ ∞. (13)

Recall that we always assume EZ1 log Z1 < ∞ and EX2
1 < ∞. As usual, we set

X+
1 := X1 ∨ 0. We say that X+

1 has a tail of index θ, if for some constant a > 0,

P(X1 ≥ x) ∼ a x−θ as x ↑ ∞. (14)

(Here the involved constant is always denoted by a.) Define

 := 1 + α − θ

2α − θ
. (15)

Here is the main result of our paper.

Theorem 5 (Schröder case). Suppose the Schröder case (i.e. 0 < α < ∞).
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450 K. Fleischmann, V. Wachtel

(a) If

E(X+
1 )1+α < ∞, (16)

or if X+
1 has a tail of index θ ∈ (2, 1 + α) (with 1 < α < ∞) as well as

εnmn → 0 as n ↑ ∞, then

0 < V∗ �α ≤ lim inf
n↑∞ ε2α

n mαn P(Rn ≥ εn) (17a)

≤ lim sup
n↑∞

ε2α
n mαn P(Rn ≥ εn) ≤ V ∗�α < ∞, (17b)

where

V∗ := lim inf
u↓0

u1−αw(u), V ∗ := lim sup
u↓0

u1−αw(u) (18)

and

�α := 2α−1 �(α + 1/2)

α
√

π
σ 2α. (19)

(b) If X+
1 has a tail of index θ ∈ (2, 1 + α) and εnmn → ∞, then

lim
n↑∞ εθ

n m(θ−1)n P(Rn ≥ εn) = a Iθ , (20)

where

Iθ := 1

�(θ − 1)

∞∫

0

ϕ(v) vθ−2 dv. (21)

(c) If X+
1 has a tail of index θ ∈ (2, 1 + α) and εnmn → some τ−1 ∈ (0,∞),

then

τ 2αV∗�α + τ θa Iθ ≤ lim inf
n↑∞ mα(θ−2)n/(2α−θ) P(Rn ≥ εn)

≤ lim sup
n↑∞

mα(θ−2)n/(2α−θ) P(Rn ≥ εn)

≤ τ 2αV ∗�α + τ θa Iθ . (22)

Of course, here �(·) refers to the Gamma function.

Remark 6 (Case α ≤ 1). Because of our general assumption 0 < EX2
1 < ∞,

condition (16) can be dropped in the case α ≤ 1. For these values of the Schröder
constant, part (a) describes all possible large deviation probabilities, i.e. for any choice
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of εn and X1 satisfying our general assumptions. On the other hand, for α > 1 the
rates of large deviations may depend on the tail of X+

1 and on the speed of εn .

Remark 7 (Critical value of θ ). If 1 < α < ∞, Theorem 5 leaves open the case that
X+

1 has a tail of index θ = α + 1. Our methods allow to prove that part (a) holds, if
εnn1/(α−1) → 0. On the other hand, if εnn1/(α−1) → ∞, then

lim
n↑∞ n−1 ε1+α

n mαn P(Rn ≥ εn) = a Jα (23)

where

Jα := 1

�(α)

m∫

1

S
(
ϕ(v)

)
vα−1 dv. (24)

Finally, if εnn1/(α−1) → τ−1 ∈ (0,∞) holds, then a similar statement as in (c) is
true.

Under the assumptions in part (a) (of Theorem 5), the sum at the right hand side of
(12) is determined by those values of k which are of order ε−2

n . As we already men-
tioned, this corresponds to lower deviations of Z and normal deviations of Sk . Large
deviations as in part (b) have a different structure: the main contribution comes from
k of order mn, which corresponds to normal deviations of Zn and large deviations of
Sk . In part (c) we have a combination of regimes appearing in (a) and (b): the values
of k of orders ε−2

n and mn contribute at the same level.
In the proof of Theorem 5 (in Sect. 3.1), we shall split the sum in decomposition

(12) according to the structure of large deviations as just described:

part (a): k ∈ (0, δ/ε2
n], k ∈ (δ/ε2

n, A/ε2
n], k ∈ (A/ε2

n, ∞);
part (b): k ∈ (0, δmn], k ∈ (δmn, ∞);
part (c): k ∈ (0, δ/ε2

n], k ∈ (δ/ε2
n, A/ε2

n], k ∈ (A/ε2
n, δmn], k ∈ (δmn, ∞);

where δ ∈ (0, 1) and A ≥ 1 are constants. The interplay between Zn and Sk in each
of these cases will be considered in Sect. 2.2.

Next we recall some known facts on the asymptotic behavior of supercritical
Galton–Watson processes in the Schröder case. With q and γ introduced in the begin-
ning of Sect. 1.2 and with fn denoting the iterates of f, the following limit exists:

lim
n↑∞

fn(s) − q

γ n
=: S(s) =:

∞∑

j=0

ν j s
j , 0 ≤ s < 1. (25)

Hence,

lim
n↑∞ γ −n P(Zn = k) = νk , k ≥ 1. (26)
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452 K. Fleischmann, V. Wachtel

The Schröder constant α < ∞ describes the behavior of the density function w(u) as
u ↓ 0. In fact, according to Biggins and Bingham [5], there is a continuous, positive
multiplicatively periodic function V such that

u1−αw(u) = V (u) + o(1) as u ↓ 0. (27)

The function V in (27) can be replaced by a (positive) constant V0 if and only if

S
(
ϕ(h)

) = V0h−α, h ≥ 0, (28)

where ϕ denotes the Laplace transform of the limit random variable W (cf. Asmussen
and Hering [1, p. 96]. In this case, V ∗ = V∗ = V0 in Theorem 5, that is, we get the
following conclusion.

Corollary 8 (Schröder under an additional regularity of Z). Suppose that (28) holds.
Then, under the assumptions of Theorem 5(a),

lim
n↑∞ ε2α

n mαn P(Rn ≥ εn) = V0 �α (29)

[with �α from (19)]. Moreover, under the assumptions of Theorem 5(c),

lim
n↑∞ mα(θ−2)n/(2α−θ) P(Rn ≥ εn) = τ 2αV0 �α + τ θa Iθ (30)

[with Iθ from (21)].

1.4 Large deviations in the Böttcher case

As well-known, in the Böttcher case the following limit

lim
n↑∞ ( fn(s))(µ

−n) =: B(s), 0 ≤ s ≤ 1, (31)

exists, is positive and continuous [with µ ≥ 2 from Definition 2]. From this it follows
that in general fn(s) does not converge as n ↑ ∞. But taking logarithms, we have

lim
n↑∞ µ−n log fn(s) = log B(s). (32)

On the other hand, our result on lower deviations in the Böttcher case (Proposition 4) is
also only for log-scaled probabilities. These two facts explain the use of a logarithmic
scaling in our following theorem.
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Theorem 9 (Böttcher under light tails concerning X1). Assume the Böttcher case and
that Eeh|X1| is finite for some h > 0. Then

µ log B
(
ϕ(1/2σ 2)

)
≤ lim inf

n↑∞ ε−2β
n m−βn log P(Rn ≥ εn) (33a)

≤ lim sup
n↑∞

ε−2β
n m−βn log P(Rn ≥εn) ≤ µ−1 log B

(
ϕ(1/2σ 2)

)
.

(33b)

If, additionally, εn = m−λn/2 for integers λn → ∞ with λn = o(n) as n ↑ ∞, then

lim
n↑∞ ε−2β

n m−βn log P(Rn ≥ εn) = log B
(
ϕ(1/2σ 2)

)
. (34)

According to this theorem, the main contribution to P(Rn ≥ εn) comes from lower
deviations of Zn and large deviations of Sn . In order to explain this heuristically, we
note that by Proposition 4 there exist (positive and finite) constants c1 ≥ c2 such that

exp
[
−c1 (k/mn)−β/(1−β)

]
≤ mn P(Zn = k) ≤ exp

[
−c2 (k/mn)−β/(1−β)

]
. (35)

On the other hand (for details see the proof of Theorem 9 in Sect. 3.2 below),

exp[−c3 ε2
nk] ≤ P(Sk ≥ εnk) ≤ exp[−c4 ε2

nk] (36)

for some c3 ≥ c4 . Then, roughly speaking,

P(Rn ≥ εn) ∼ m−n
∞∑

k=µn

exp
[
−a (k/mn)−β/(1−β) − b ε2

nk
]

(37)

with a, b > 0. Obviously, the value of this sum is determined, in a sense, by the
maximal summand. It can now easily be seen, that the function

g(u) := a (u/mn)−β/(1−β) + b ε2
nu, u > 0, (38)

achieves its minimum at u∗ := c ε
−2(1−β)
n mnβ [with c we always denote a constant

which might change its value from place to place], and consequently,

g(u∗) = c ε2β
n mnβ. (39)

This is in line with the normalizing sequence in Theorem 9 (except a constant factor).
Evidently, the values k of order ε

−2(1−β)
n mnβ correspond to lower deviations of Zn

and large deviations of Sk .

If we put formally α = ∞ in the conditions in Theorem 5 (b) (passing to the Böttcher
case), then (20) should hold under the condition εnmn/2 → ∞, since  → 1/2 as
α ↑ ∞. But we prove it only under a slightly stronger condition on εn :
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Theorem 10 (Böttcher under heavier tails concerning X+
1 ). Suppose the Böttcher case

and that X+
1 has a tail of index θ > 2. If εnmn/2n−1/2β → ∞, then (20) is true.

There is the same “philosophy” behind Theorem 10 as it is behind Theorem 5(b).
The main influence of normal deviations of Zn explains also the independence of (20)
of the parameters α and β. Note also that in the special case εn ≡ ε, Theorem 5(b)
was proved in [12].

We stress the fact, that our results in the Böttcher case are weaker than those in
the Schröder case. In fact, in the case of light tails of X+

1 , we found only log-scaled
asymptotics for large deviation probabilities. Moreover, in the case of regularly varying
tails, we have additional restrictions on εn . Finally, there is a gap between the tail
conditions in Theorems 9 and 10.

Remark 11 (Possible generalizations). Many conditions in our results are too restric-
tive, but allow us to make proofs slightly shorter and clearer. Here we mention some
(almost evident) generalizations of our theorems.

(a) It is possible to prove versions of Theorem 5 for X1 from the domain of attraction
of a stable law of any index.

(b) Theorems 5 and 10 can be generalized to the case P(X1 ≥ x) = L(x)x−θ with
some L slowly varying at infinity.

(c) We conjecture that condition EZ1 log Z1 < ∞ can be dropped in all of our theo-
rems. In fact, we need it only for inequality (42) below, taken from Theorem II.4.2
of Athreya and Ney [2]. But it should be possible to prove this bound for all
supercritical Galton–Watson processes.

(d) In [13], P (Zn ≥ εn ; Zn ≥ vn) is considered with vn → ∞ and εn ≡ ε. Our
methods allow to deal with the case vn = o(mn) and εn → 0.

Remark 12 (On critical Galton–Watson processes). For the moment, suppose that
the Galton–Watson process Z is critical, that is, m = 1. Furthermore, assume that
ς2 := VarZ1 ∈ (0,∞). Then, analogously to (5),

lim
n↑∞ P

(
n1/2 Rn < x

∣
∣ Zn > 0

)
= 2

ς2

∞∫

0

�
(

xu1/2

σ

)
e−2u/ς2

du. (40)

For the proof of this convergence in the two special cases of X1 as mentioned in
Sect. 1.1, see [10] and [15], respectively. From (40) we find that for critical processes
the domain of large deviations is defined by the relation ε2

nn → ∞ as n ↑ ∞. The
special case εn ≡ ε was treated by Athreya and Vidyashankar [4]. If now εn → 0 and
ε2

nn → ∞, then

lim
n↑∞ ε2

nn P
(
Rn ≥ εn

∣
∣ Zn > 0

) = σ 2

ς2 . (41)

Actually, (41) is similar to the statement of Theorem 5(a) in the case α = 1 and if
mn is replaced by the order n of E{Zn | Zn > 0}. Also, the proof of (41) is close to
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LD for sums on a GW process 455

the proof of Theorem 5(a) in the case α = 1. There are only two differences. First,
instead of (42) below, we have to use P

(
Zn = k

∣
∣ Zn > 0

) ≤ c n−1, which is derived
in Nagaev and Vakhtel [14]. Second, we have to apply the local limit theorem for
critical Galton–Watson processes instead of Proposition 3. For the proof of this local
limit theorem under a second moment assumption, see [14].

2 Auxiliary results

In this section we prepare for the proofs of our theorems.

2.1 Separate considerations

As a first step, we state two bounds for local probabilities of our supercritical Galton–
Watson process Z (satisfying EZ1 log Z1 < ∞).

Lemma 13 (Local probabilities of Z). There is a constant c such that

P
(
Zn = k

∣
∣ Z0 = 


) ≤ c



k
, k, 
, n ≥ 1. (42)

Moreover, in the Schröder case, again for some constant c,

P
(
Zn = k

∣
∣ Z0 = 1

) ≤ c
kα−1

mαn
, k, n ≥ 1. (43)

Proof For aperiodic (d = 1) offspring laws, inequality (42) follows from the proof of
Theorem II.4.2 in [2]. Indeed, from the last formula on p. 81 there, the inequality

2π k P
(
Zn = k

∣
∣ Z0 = 


) ≤ 


πmn∫

−πmn

m−n
∣
∣
∣ f ′

n(eiu/mn
)

∣
∣
∣ du (44)

follows, and the boundedness of this integral is shown in the end of that proof. The
remaining case d > 1 can be dealt with in a similar way.

In proving (43) it is sufficient to assume that k ≤ mn , otherwise (43) follows
from (42). Under the present condition EZ1 log Z1 < ∞, formula (151) in [7] with
N = 
0 := 1 + [1/α] and j = n − ak where ak := min{ j ≥ 1 : m j ≥ k} gives

∞∑


=
0

P(Zn−ak = 
) P
(
Zak = k

∣
∣ Z0 = 


) ≤ c

mak
fn−ak (e

−δ), (45)

since mak ≥ k. It follows from (25) that the right hand side is bounded by c m−ak γ n−ak .
Since

k ≤ mak ≤ mk and γ = m−α, (46)
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we get the bound

∞∑


=
0

P(Zn−ak = 
) P
(
Zak = k

∣
∣ Z0 = 


) ≤ c
kα−1

mαn
. (47)

If 
0 = 1, then the proof of (43) is complete, since the left hand side in (47) equals
P(Zn = k). Assume now that 
0 ≥ 2. From (42) it follows that


0−1∑


=1

P(Zn−ak = 
) P
(
Zak = k

∣
∣ Z0 = 


) ≤ c

0

k


0−1∑


=1

P(Zn−ak = 
). (48)

By (26), limn↑∞ γ −n P(Zn = 
) = ν
 < ∞, for every fixed 
. Hence,


0−1∑


=1

P(Zn−ak = 
) ≤ c γ n−ak (49)

for all n ≥ 1. Using again (46), we get


0−1∑


=1

P(Zn−ak = 
) P
(
Zak = k

∣
∣ Z0 = 


) ≤ c
kα−1

mαn
. (50)

This completes the proof. ��
For easy citation purposes, we expose as a lemma the following two versions of

the so-called Fuk–Nagaev inequality for tail probabilities of sums of i.i.d. variables,
which is easily derived from Nagaev [11]. Recall that we assumed that X1 is centered
and has a positive finite variance σ 2.

Lemma 14 (Fuk–Nagaev inequality). For k ≥ 1, εn > 0, n ≥ 1, r > 1, and
t ≥ 2,

P(Sk ≥ εnk) ≤ k P
(

X1 ≥ r−1εnk
)

+ (e rσ 2)r ε−2r
n k−r , (51)

and

P(Sk ≥ εnk) ≤ k P
(

X1 ≥ r−1εnk
)

+ exp

[

− 2

(t + 2)2 et σ 2 ε2
nk

]

+
(

(t + 2) r t−1 E
{

Xt
1; 0 ≤ X1 ≤ εnk

}

t εt
n kt−1

)tr/(t+2)

. (52)

Proof By (1.56) and (1.23) in [11], for all u, v > 0,

P(Sk ≥ u) ≤ k P(X1 ≥ v) + eu/v

(
σ 2k

uv

)u/v

(53)
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and

P(Sk ≥ u) ≤ k P(X1 ≥ v) + exp

[

− 2u2

(t + 2)2 et σ 2

]

+
(

(t + 2) k E
{

Xt
1; 0 ≤ X1 ≤ v

}

t u vt−1

)tu/(t+2)v

. (54)

Putting here u = εnk and v = u/r, we get (51) and (52), finishing the proof. ��

Remark 15 (On the case εn ≡ ε). Here we prove a one-sided version of statement
(7) concerning our general Rn , assuming the Schröder case and that E(X+

1 )1+α < ∞.

Take any ε > 0 and set gn(k) := mαn P(Zn = k) P(Sk ≥ εk). From estimate (43) we
get, for all n, k ≥ 1, the inequality gn(k) ≤ c g̃(k), where g̃(k) := kα−1 P(Sk ≥ εk).

Next we show that g̃(k) is summable in k. Letting εn = ε and r = α + 1 in (51), we
see that for all k ≥ 1,

g̃(k) ≤ kα P (X1 ≥ εk/(1 + α)) + c ε−2−2αk−2. (55)

But the summability of kα P(X1 ≥ ck) with some (hence all) positive c is equivalent
to the finiteness of E(X+

1 )1+α , and we get the claimed summability of g̃(k).
On the other hand, it follows from (26) that for every fixed k,

lim
n↑∞ gn(k) = νk P(Sk ≥ εk). (56)

Therefore, by dominated convergence,

lim
n↑∞

∞∑

k=1

gn(k) =
∞∑

k=1

νk P(Sk ≥ εk). (57)

Recalling the definition of gn(k) and using (12), we obtain

lim
n↑∞ mαn P(Rn ≥ ε) =

∞∑

k=1

νk P(Sk ≥ εk), (58)

yielding the wanted one-sided version.

2.2 Interplay between the two competing forces

In the next five lemmas we prove estimates for different parts of the sum at the right
hand side of decomposition (12), which are the crucial steps in the proof of Theorem 5.
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Lemma 16 (A tail estimate). Assume X+
1 has a tail of index θ > 2. Then

∑

k ≥mn

P(Zn = k) P(Sk ≥ εnk)

≤ c
(
ε−θ

n m−(θ−1)n + (ε2
nmn)−1 exp

[
−c ε2

n mn
])

, εn > 0, n ≥ 1. (59)

Proof Letting t = θ + 1 and r = (t + 2)/t in (52), and using that X+
1 has a tail of

index θ > 2, we get the bound

P(Sk ≥ εnk)≤c

⎛

⎝ε−θ
n k−(θ−1) +

E
{

X θ+1
1 ; X1 ∈ [0, εnk]

}

εθ+1
n kθ

⎞

⎠ + exp[−c ε2
nk]. (60)

Clearly, under (14),

E
{

X θ+1
1 ; X1 ∈ [0, x]

}
∼ a θx as x ↑ ∞. (61)

Thus,

E
{

X θ+1
1 ; X1 ∈ [0, x]

}
≤ c x, x ≥ 1. (62)

On the other hand, if x ≤ 1,

E
{

X θ+1
1 ; X1 ∈ [0, x]

}
≤ xθ+1 P(X1 ∈ [0, x]) ≤ x . (63)

Therefore,

E
{

X θ+1
1 ; X1 ∈ [0, x]

}
≤ c x, x ≥ 0. (64)

Applying this to the expectation in (60), we get

P(Sk ≥ εnk) ≤ c ε−θ
n k−(θ−1) + exp[−c ε2

n k]. (65)

Moreover, combining this bound with (42) gives

∑

k ≥mn

P(Zn = k) P(Sk ≥ εnk) ≤ c ε−θ
n

∑

k ≥mn

k−θ +
∑

k ≥mn

k−1 exp[−c ε2
nk]. (66)

Obviously,

∑

k ≥mn

k−θ ≤ c m−(θ−1)n . (67)
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On the other hand,

∑

k ≥mn

k−1 exp[−c ε2
nk] ≤ m−n

∑

k ≥mn

exp[−c ε2
nk]

≤ c (ε2
nmn)−1 exp

[
−c ε2

n mn
]
. (68)

Substituting (67) and (68) into (66) finishes the proof. ��
Lemma 17 (Another tail estimate). Assume that X+

1 has a tail of index θ ∈ (2, 1+α).

If εn ≥ m−�n for some � ∈ (0, 1/2), then

lim sup
n↑∞

∣
∣
∣εθ

n m(θ−1)n
∑

k>δmn

P(Zn = k) P(Sk ≥ εnk) − a Iθ
∣
∣
∣ ≤ c δ1+α−θ . (69)

Proof It is known (see for example Borovkov [6]), that if P(X1 ≥ x) is regularly
varying as x ↑ ∞ with index θ > 2, then for every sequence ak → ∞,

lim
k↑∞ sup

x : x ≥ ak (k log k)1/2

∣
∣
∣
∣

P(Sk ≥ x)

k P(X1 ≥ x)
− 1

∣
∣
∣
∣ = 0. (70)

Note that if δ > 0, k ≥ δmn, and εn ≥ m−�n, then εn ≥ δ�k−�. Hence,

εnk

(k log k)1/2 ≥ δ� k1/2−�

(log k)1/2 . (71)

Since 0 < � < 1/2, the right hand side goes to infinity as k ↑ ∞, and we will take
it as ak . Thus, applying (70) gives, as n ↑ ∞,

∑

k>δmn

P(Zn = k) P(Sk ≥ εnk) = (
1 + o(1)

) ∑

k>δmn

k P(Zn = k) P(X1 ≥ εnk)

= (
1 + o(1)

)
a ε−θ

n

∑

k>δmn

k−(θ−1) P(Zn = k), (72)

where in the second step we used that X+
1 has a tail of index θ ∈ (2, 1 + α). By (43)

we have

∑

1 ≤ k ≤ δmn

k−(θ−1) P(Zn = k) ≤ c m−αn
∑

1 ≤ k ≤ δmn

kα−θ ≤ c m−(θ−1)n δ1+α−θ .

By Theorem 1 of [12], for θ −1 < α, we have E
{

Z−(θ−1)
n ; Zn > 0

}
∼ Iθ m−(θ−1)n

as n ↑ ∞, with Iθ defined in (21). Hence, for all sufficiently large n,

∣
∣
∣
∣
∣

∑

k>δmn

k−(θ−1) P(Zn = k) − Iθ m−(θ−1)n

∣
∣
∣
∣
∣

≤ c m−(θ−1)n δ1+α−θ . (73)
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Combining (72) and (73), the proof is finished. ��

Recall our general assumption (13).

Lemma 18 (A further tail estimate). Suppose the Schröder case and let X+
1 satisfy

moment condition (16). Then

lim sup
n↑∞

ε2α
n mαn

∑

k ≥A/ε2
n

P(Zn = k) P(Sk ≥ εnk) ≤ c

A
, A ≥ 1. (74)

Proof Combining (43) and (51) with r = α + 1 gives

mαn
∑

k ≥A/ε2
n

P(Zn = k) P(Sk ≥ εnk)

≤ c

⎛

⎝
∑

k ≥A/ε2
n

kα P
(

X1 ≥ (α + 1)−1εnk
)

+ ε−2(α+1)
n

∑

k ≥A/ε2
n

k−2

⎞

⎠ . (75)

Note that

ε−2(α+1)
n

( ∑

k ≥A/ε2
n

k−2
)

≤ c

A
ε−2α

n , n > 0, εn > 0, A ≥ 1. (76)

On the other hand, to bound the first sum at the right hand side in (75), note first that

k∫

k−1

uα P(X1 ≥ (α + 1)−1εnu) du ≥ (k − 1)α P
(

X1 ≥ (α + 1)−1εnk
)
, k ≥ 1.

This inequality can be continued by using k − 1 ≥ k/2 for k ≥ 2. Summing up gives
for ε2

n ≤ 1/2,

∑

k ≥Aε2
n

kα P
(

X1 ≥ (α + 1)−1εnk
)

≤ c

∞∫

A/ε2
n−1

uα P
(

X1 ≥ (α + 1)−1εnu
)

du

≤ c ε−α−1
n

∞∫

(A−ε2
n)/(α+1)εn

vαP(X1 ≥ v) dv. (77)

Recall that we assumed the moment condition (16) and that εn → 0. Then the
integral in (77) converges to zero as n ↑ ∞, uniformly in A ≥ 1. In particular, under
α ≥ 1, (77) is of order o(ε−2α

n ), uniformly in A ≥ 1. On the other hand, if α < 1
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and since EX2
1 < ∞,

∞∫

(A−ε2
n)/(α+1)εn

vα P(X1 ≥ v) dv ≤ c
ε1−α

n

(A − ε2
n)1−α

∞∫

(A−ε2
n)/(α+1)εn

v P(X1 ≥ v) dv

= o(ε1−α
n ) = o(ε−2α

n ) (78)

as n ↑ ∞, uniformly in A ≥ 1. Thus, for each α < ∞ we have

sup
A≥1

∑

k ≥A/ε2
n

kα P
(

X1 ≥ (α + 1)−1εnk
)

= o(ε−2α
n ) as n ↑ ∞. (79)

In particular,

lim sup
n↑∞

ε2α
n

∑

k ≥A/ε2
n

kα P
(

X1 ≥ (α + 1)−1εnk
)

≤ c

A
, A ≥ 1. (80)

Combining (75), (76), and (80) gives the claim in the lemma. ��
Lemma 19 (Initial part). In the Schröder case,

∑

1 ≤ k ≤ δ/ε2
n

P(Zn = k) P(Sk ≥ εnk) ≤ c δαε−2α
n m−αn, (81)

δ > 0, εn > 0, n ≥ 1.

Proof It follows from (43) that

∑

1 ≤ k ≤ δ/ε2
n

P(Zn = k) P(Sk ≥ εnk) ≤
∑

1 ≤ k ≤ δ/ε2
n

P(Zn = k)

≤ c

mαn

∑

1 ≤ k ≤ δ/ε2
n

kα−1 ≤ c δαε−2α
n m−αn, (82)

finishing the proof. ��
Lemma 20 (A central part and another initial part estimate). Suppose 1 < α < ∞
and that X+

1 has a tail of index θ ∈ (2, 1 + α). Then

∑

A/ε2
n ≤ k ≤ δmn

P(Zn = k) P(Sk ≥ εnk)

≤ c
(
δ1+α−θ ε−θ

n m−(θ−1)n + A−1 ε−2α
n m−αn

)
, (83)

123



462 K. Fleischmann, V. Wachtel

A ≥ 1, δ > 0, εn > 0, n ≥ 1, and

∑

1 ≤ k ≤ δmn

P(Zn = k) P(Sk ≥ εnk)

≤ c
(
δ1+α−θ ε−θ

n m−(θ−1)n + ε−2α
n m−αn

)
, δ > 0, εn > 0, n ≥ 1. (84)

Proof Combining (43) and (51) with r = α + 1 gives

∑

A/ε2
n ≤ k ≤ δmn

P(Zn = k) P(Sk ≥ εnk)

≤ c m−αn

⎛

⎝
∑

A/ε2
n ≤ k ≤ δmn

kα P
(

X1 ≥ (α+1)−1εnk
)
+ε−2(α+1)

n

∑

A/ε2
n ≤ k ≤ δmn

k−2

⎞

⎠ .

(85)

From (76),

ε−2(α+1)
n

∑

A/ε2
n ≤ k ≤ δmn

k−2 ≤ c

A
ε−2α

n . (86)

On the other hand, since X+
1 has a tail of index θ ∈ (2, 1 + α),

∑

A/ε2
n ≤ k ≤ δmn

kα P
(

X1 ≥ (α + 1)−1εnk
)

≤ c ε−θ
n

∑

1 ≤ k ≤ δmn

kα−θ

≤ c ε−θ
n δ1+α−θ m(1+α−θ)n . (87)

Combine (85)–(87) to get (83).
Putting A = 1 in (83) and δ = 1 in (81), we obtain (84), finishing the proof. ��

Recall that (µ, d) refers to the type of the offspring law, α ∈ (0,∞) to the Schröder
constant, and that X1 is assumed to have a finite variance σ 2. For 0 < δ < 1 < A <

∞, consider

�n(δ, A) :=
∑

δ/ε2
n ≤ k ≤ A/ε2

n

P(Zn = k) P(Sk ≥ εnk). (88)
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Lemma 21 (Another central part estimate). Suppose to be in the Schröder case. Then
for all 0 < δ < 1 < A < ∞,

V∗
A∫

δ

uα−1 �(
√

u/σ) du ≤ lim inf
n↑∞ ε2α

n mαn �n(δ, A) ≤ lim sup
n↑∞

ε2α
n mαn �n(δ, A)

≤ V ∗
A∫

δ

uα−1 �(
√

u/σ) du (89)

with V∗ and V ∗ defined in (18), and where �(x) := 1 − �(x).

Proof In view of (9) in Proposition 3 with kn = δ/ε2
n ,

�n(δ, A) = (
1 + o(1)

)
d

∑

k∈H(δ,A)

m−n w
( k

mn

)
P(Sk ≥ εnk) as n ↑ ∞ (90)

with H(δ, A) := {
k ∈ [δ/ε2

n, A/ε2
n] : k ≡ µ (mod d)

}
. Clearly,

V∗(n)
∑

k∈H(δ,A)

kα−1

mαn
P(Sk ≥ εnk) ≤

∑

k∈H(δ,A)

m−n w
( k

mn

)
P(Sk ≥ εnk)

≤ V ∗(n)
∑

k∈H(δ,A)

kα−1

mαn
P(Sk ≥ εnk), (91)

where we set

V∗(n) := inf
u≤A/ε2

nmn
u1−αw(u), V ∗(n) := sup

u≤A/ε2
nmn

u1−αw(u). (92)

By the central limit theorem,

sup
k∈H(δ,A)

∣
∣
∣
∣P(Sk ≥ εnk) − �

(√
ε2

nk/σ

)∣
∣
∣
∣ → 0 as n ↑ ∞. (93)

Hence, as n ↑ ∞,

∑

k∈H(δ,A)

kα−1 P(Sk ≥ εnk) = (
1 + o(1)

) ∑

k∈H(δ,A)

kα−1 �

(√
ε2

nk/σ

)

= ε−2α
n

(
1 + o(1)

) ∑

k∈H(δ,A)

(ε2
nk)α−1 �

(√
ε2

nk/σ

)

ε2
n

= d−1ε−2α
n

(
1 + o(1)

)
A∫

δ

uα−1 �(
√

u/σ) du. (94)
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Substituting (94) into (91) and noting that we have V∗(n) → V∗ and V ∗(n) → V ∗ as
n ↑ ∞ by our velocity assumption (13) on εn , we obtain (89). ��

Finally, we compute the limit, as δ ↓ 0 and A ↑ ∞, of the integral from (89).

Lemma 22 (A moment formula for the Gaussian law). For 0 < α < ∞,

∞∫

0

uα−1 �(
√

u/σ) du = 2α−1 �(α + 1/2)

α
√

π
σ 2α = �α . (95)

Proof Substituting v = √
u/σ, we have

∞∫

0

uα−1 �(
√

u/σ) du = 2σ 2α

∞∫

0

v2α−1 �(v) dv

= 2σ 2α

∞∫

0

dv v2α−1

∞∫

v

dt
1√
2π

e−t2/2

= 2
σ 2α

√
2π

∞∫

0

dt e−t2/2

t∫

0

dv v2α−1

= σ 2α

α
√

2π

∞∫

0

t2α e−t2/2 dt. (96)

Substituting now v = t2/2, the chain of equalities can be continued with

= 2α−1σ 2α

α
√

π

∞∫

0

vα−1/2 e−v dv = 2α−1 �(α + 1/2)

α
√

π
σ 2α, (97)

which equals �α from (19). The proof is finished. ��

3 Proof of the theorems

3.1 Schröder case: proof of Theorem 5

After all of the preparations in the previous section, the proof of Theorem 5 can easily
be completed.

(a) We start by showing that

lim sup
n↑∞

ε2α
n mαn

∑

k ≥A/ε2
n

P(Zn = k) P(Sk ≥ εnk) ≤ c

A
, A ≥ 1. (98)
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In the case E(X+
1 )1+α < ∞, this bound is already obtained in Lemma 18. Thus,

we have to show (98) in the case if X+
1 has a tail of index θ and εn = o(m−n).

Combining (83) with δ = 1 and Lemma 16, we get

∑

k ≥A/ε2
n

P(Zn = k) P(Sk ≥ εnk)

≤ c
(

A−1ε−2α
n m−αn + ε−θ

n m−(θ−1)n + (ε2
nmn)−1 exp[−cε2

nmn]
)
. (99)

Noting that

ε−θ
n m−(θ−1)n + (ε2

nmn)−1 exp[−cε2
nmn] = o(ε−2α

n m−αn) (100)

under our assumptions ε2
nmn → ∞ and εn = o(m−n), the proof of (98) is

finished.
Combining Lemmas 19, 21, and (98), and using that δ and A are arbitrary, we
see that

V∗
∞∫

0

uα−1 �(
√

u/σ) du ≤ lim inf
n↑∞ ε2α

n mαn
∞∑

k=1

P(Zn = k) P(Sk ≥ εnk)

≤ lim sup
n↑∞

ε2α
n mαn

∞∑

k=1

P(Zn = k) P(Sk ≥ εnk)

≤ V ∗
∞∫

0

uα−1 �(
√

u/σ) du. (101)

With Lemma 22 the proof of part (a) is completed.

(b) If εnmn → ∞, then, obviously, ε−2α
n m−αn = o(ε−θ

n m−(θ−1)n). Therefore, by
estimate (84),

lim sup
n↑∞

εθ
n m(θ−1)n

∑

1 ≤ k ≤ δmn

P(Zn = k) P(Sk ≥ εnk) ≤ c δ1+α−θ . (102)

Part (b) follows from Lemma 17 and (102) by letting δ ↓ 0.

(c) Finally, under εn ∼ τ−1m−n, part (c) follows from (81), (89), (95), (83), and
Lemma 17.

The proof is finished altogether. ��
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3.2 Böttcher under light tails concerning X1 : proof of Theorem 9

It follows from the assumed finiteness of an exponential moment of X1, see e.g.
Lemma III.5 in Petrov [16], that for every δ ∈ (0, 1) there exists hδ > 0 such that

Eeh X1 ≤ eσ 2(1+δ)h2/2, |h| ≤ hδ . (103)

Thus, we may use the well-known Bernstein inequality, see Theorem III.15 in [16].
This gives, for all k ≥ 1 and εn ≤ hδ ,

P(Sk ≥ εnk) ≤ exp

[

−(1 − δ)
ε2

nk

2σ 2

]

. (104)

Therefore,

P(Rn ≥ εn) ≤ fn

(

exp

[

−(1 − δ)
ε2

n

2σ 2

])

if εn ≤ hδ . (105)

We may also assume that εn ≤ 1/m. Set rn := max{k ≥ 1 : mk ≤ ε−2
n }. Then,

m−rn−1 < ε2
n ≤ m−rn . (106)

The left hand inequality together with the monotonicity of fn gives

fn

(

exp

[

−(1 − δ)
ε2

n

2σ 2

])

≤ fn

(

exp

[

−(1 − δ)
m−rn−1

2σ 2

])

. (107)

Bounds (105), (107), and the right hand inequality in (106) imply

ε−2β
n m−nβ log P(Rn ≥ εn) ≤ µ−n+rn log fn

(

exp

[

−(1 − δ)
m−rn−1

2σ 2

])

, (108)

where we used µ = mβ. Since rn → ∞, by the Kesten–Stigum theorem for super-
critical Galton–Watson processes,

lim
n↑∞ frn+1

(

exp

[

−(1 − δ)
m−rn−1

2σ 2

])

= ϕ
(
(1 − δ)/2σ 2

)
. (109)

On the other hand, from the assumption ε2
nmn → ∞ and the right hand inequality in

(106) it follows that n − rn → ∞. Therefore, by (31) we have for s ∈ [0, 1],

lim
n↑∞ µ−n+rn+1 log fn−rn−1(s) = log B(s). (110)
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By the continuity of B, combining (109) and (110) we obtain

lim
n↑∞ µ−n+rn+1 log fn

(

exp

[

−(1 − δ)
m−rn−1

2σ 2

])

= log B
(
ϕ

(
(1 − δ)/2σ 2

))
.

(111)

Now (33b) follows from (108) and (111) letting δ ↓ 0.
In order to prove (33a) we will exploit the following version of Kolmogorov’s

inequality: for 0 < δ < 1 fixed, there exists a constant D ∈ (0,∞) such that

P(Sk ≥ εnk) ≥ exp

[

−(1 + δ)
ε2

nk

2σ 2

]

, k > D/ε2
n , n ≥ 1. (112)

See Statulevicius [19]. Using (112) we obtain

P(Rn ≥ εn) ≥
∑

k>D/ε2
n

P(Zn = k) exp

[

−(1 + δ)
ε2

nk

2σ 2

]

≥ fn

(

exp

[

−(1 + δ)
ε2

n

2σ 2

])

− P(Zn ≤ D/ε2
n). (113)

Clearly, if D/ε2
n < µn, then P(Zn ≤ D/ε2

n) = 0, and we pass directly to statement
(117) below. Otherwise, it follows from Proposition 4 that

P(Zn ≤ D/ε2
n) ≤ exp

[
−c D−β/(1−β) (ε2

nmn)β/(1−β)
]
. (114)

From (113), (114), and the left hand inequality in (106), we have

P(Rn ≥ εn) ≥ fn

(

exp

[

−(1 + δ)
m−rn

2σ 2

])

− exp
[
−c (ε2

nmn)β/(1−β)
]
. (115)

Analogously to (111),

lim
n↑∞ µ−n+rn log fn

(

exp

[

−(1 + δ)
m−rn

2σ 2

])

= log B
(
ϕ

(
(1 + δ)/2σ 2

))
. (116)

By the left hand inequality of (106), µn−rn ≤ mβ(ε2
nmn)β . Therefore, from the limit

statement (116) we see that the second term at the right hand side of estimate (115) is
negligible compared with the first term there, i.e.

P(Rn ≥ εn) ≥ fn

(

exp

[

−(1 + δ)
m−rn

2σ 2

])
(
1 + o(1)

)
. (117)
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Thus, using the left hand inequality in (106), we get the bound

ε−2β
n m−nβ log P(Rn ≥ εn) ≥ µ−n+rn+1 log fn

(

exp

[

−(1 + δ)
m−rn

2σ 2

])

+ o(1).

(118)

Since δ is arbitrary, combining (118) and (116) completes the proof of (33a).
In the derivation of (117) from (113) we learned that the second term at the right

hand side of (113) is small compared with the first term there. Thus, from (113) together
with (105) we get

fn

(

exp

[

−(1 + δ)
ε2

n

2σ 2

])
(
1 + o(1)

) ≤ P(Rn ≥ εn)

≤ fn

(

exp

[

−(1 − δ)
ε2

n

2σ 2

])

. (119)

Hence, if ε2
n = m−λn then (34) follows from these inequalities and (116) replacing

there rn by λn , and finally letting δ ↓ 0. Altogether, the proof of Theorem 9 is
complete. ��

3.3 Böttcher under heavier tails concerning X+
1 : proof of Theorem 10

With B2 from Proposition 4, and θ > 2 the tail index of X+
1 , define kn := mn/

log(1−β)/β m2nθ/B2 . Then by Proposition 4, for all sufficiently large n,

P(Zn ≤ kn) ≤ exp
[
−(B2/2)(kn/mn)−β/(1−β)

]
= m−θn . (120)

Hence, for these n,

∑

k≤kn

P(Zn = k) P(Sk ≥ εnk) ≤ P(Zn ≤ kn) ≤ m−θn (121)

and

∑

k≤kn

k−(θ−1) P(Zn = k) ≤ P(Zn ≤ kn) ≤ m−θn . (122)

It is easy to verify that

εnkn

(kn log kn)1/2 = (
c + o(1)

)
εnmn/2n−1/2β as n ↑ ∞. (123)
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By our assumption in the theorem, the right hand side converges to infinity. Then, we
can use (70) with ak := εn(k/ log k)1/2 to obtain

∑

k>kn

P(Zn = k) P(Sk ≥ εnk) = (
1 + o(1)

) ∑

k>kn

k P(Zn = k) P(X1 ≥ εnk)

=(
1 + o(1)

)
a ε−θ

n

∑

k>kn

k−(θ−1)P(Zn = k) as n ↑ ∞.

(124)

Theorem 1 of [12] and (122) yield

∑

k>kn

k−(θ−1) P(Zn = k) = Iθ m−(θ−1)n (
1 + o(1)

)
as n ↑ ∞. (125)

Substituting this into (124) and combining with (121) completes the proof. ��
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