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Abstract. We study asymptotics of reducible representations of the symmetric groups Sq

for large q. We decompose such a representation as a sum of irreducible components (or,
alternatively, Young diagrams) and we ask what is the character of a randomly chosen com-
ponent (or, what is the shape of a randomly chosen Young diagram). Our main result is
that for a large class of representations the fluctuations of characters (and fluctuations of the
shape of theYoung diagrams) are asymptotically Gaussian; in this way we generalize Kerov’s
central limit theorem. The considered class consists of representations for which the char-
acters almost factorize and this class includes, for example, the left-regular representation
(Plancherel measure), irreducible representations and tensor representations. This class is
also closed under induction, restriction, outer product and tensor product of representations.
Our main tool in the proof is the method of genus expansion, well known from the random
matrix theory.

1. Introduction

1.1. Representations of large symmetric groups

Irreducible representations of the symmetric groups Sq are indexed by Young
diagrams and nearly all questions about them, such as values of the characters
or decomposition into irreducible components of a restriction, induction, tensor
product or outer product of representations can be answered by combinatorial algo-
rithms such as Murnaghan-Nakayama formula or the Littlewood-Richardson rule.
Unfortunately, these exact combinatorial tools become very complicated and cum-
bersome when the size of the symmetric group Sq tends to infinity. For example, a
restriction of an irreducible representation consists typically of a very large number
of Young diagrams and listing them all does not give much insight into their struc-
ture. In order to deal with such questions in the asymptotic region when q → ∞
we should be more modest and ask questions of a more statistical flavor: what is
the typical shape of a Young diagram contributing to a given representation? what
are the fluctuations of the Young diagrams around the most probable shape?

In this article we are interested in the situation when—speaking informally—
a typical Young diagram contributing to the considered representation of Sq has
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at most O(
√

q) rows and columns. The first results in this direction concerned
the left-regular representation (or equivalently, Plancherel measure on Young dia-
grams): Vershik and Kerov [VK77] and Logan and Shepp [LS77] found the shape
of a typical Young diagram which contributes to the left-regular representation and
later Kerov [Ker93b] announced that fluctuations of Young diagrams contributing
to the left-regular representation around their limit shape are Gaussian (for the
complete proof together with a detailed history of the result we refer to the article
by Ivanov and Olshanski [IO02]). A non-commutative version of this result was
given by Hora [Hor02, Hor03]. Biane [Bia98, Bia01, Bia03] considered a more
general case, namely representations with approximate factorization of characters
and proved that the shape of the typical Young diagram contributing to such rep-
resentations can be described by the means of Voiculescu’s free probability theory
[VDN92].

In this article we present a condition on factorization of characters which is
strong enough to ensure Gaussian fluctuations ofYoung diagrams and of characters
and which is weak enough to be very common among naturally arising represen-
tations. In this way we prove a generalization of Kerov’s central limit theorem for
a very wide class of representations.

1.2. Genus expansion, random matrices and free probability

Free probability of Voiculescu [VDN92] is a non-commutative probability theory
which turned out to be very successful in describing random matrices. The combi-
natorial structure behind this theory is the lattice of non-crossing partitions [Kre72]
and the corresponding notion of free cumulants [Spe97]. It was Biane [Bia98]
who realized that the same structure describes the leading terms in the asymp-
totic description of representations of symmetric groups. In this way some notions
concerning random matrices were matched (via free probability theory) to some
notions concerning representations of symmetric groups.

However, the connection between the random matrix theory and the repre-
sentations of symmetric groups is much deeper than just the connection to free
probability and non-crossing partitions. Example of such a direct connection was
given by Okounkov [Oko00] who showed that the joint distribution of the largest
eigenvalues of a GUE random matrix coincides (after appropriate scaling) with the
joint distribution of the longest rows of a Young diagram distributed according to
the Plancherel measure. For proving such results it is not enough to consider the
first-order approximation given by non-crossing partitions and one has to use exact
formulas. Such formulas for the moments of large classes of random matrices were
known for a long time and they can be viewed as series indexed by two-dimen-
sional surfaces [Zvo97] and Okounkov [Oko00] found their counterpart for random
Young diagrams distributed according to the Plancherel measure. The asymptotic
behavior of a term in this expansion depends only on the topology of the surface
and for this reason such formulas are called genus expansions. It became clear that
the origin of the similarities between the random matrix theory and the theory of
the representations of the symmetric groups is the common structure of the genus
expansion.
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In our recent work [Śni04] we pointed out that the genus expansion method can
be applied not only to the Plancherel measure but to a wide class of representations.
This method is also the main tool in the proofs in this article.

1.3. Higher-order free probability

As we mentioned above, the first order approximation is not sufficient to calculate
the fluctuations of characters and of Young diagrams and therefore such fluctua-
tions cannot be described in the framework of the (usual) free probability theory.
On the other hand, in a series of articles [MS04, MŚS04, CMŚS05] it was demon-
strated that by considering some more complicated versions of non-commutative
probability spaces it is possible to describe fluctuations of random matrices in the
framework of, so called, higher order free probability. In this theory the
non-crossing partitions are replaced by a more general object, namely annular
non-crossing partitions. Results presented in this article suggest that it should be
possible to describe in this framework also the fluctuations of Young diagrams and
we will deal with this problem in a forthcoming article.

1.4. Factorization of characters

Biane [Bia01] proved (under some mild technical assumptions) that the Young
diagrams contributing to some finite-dimensional reducible representation of the
symmetric group Sq will concentrate around some limit shape if and only if the
normalized character of the representation

χ(π) := Tr ρ(π)

Tr ρ(e)

approximately factorizes, i.e. informally speaking

χ(σ1 · · · σn) ≈ χ(σ1) · · · χ(σn) (1)

for all permutations σ1, . . . , σn with disjoint supports (to be more precise: we con-
sider a sequence of representations (ρq) where ρq is a representation of Sq and the
approximate equality (1) should hold in the limit q → ∞). The result of Biane can
be viewed as an analogue of the law of large numbers while the results presented
in this article are an analogue of the central limit theorem; one can ask therefore
which condition should replace (1) in order to prove such stronger results.

We will not be very far from the truth when we say that for the results of Biane
[Bia01] it is enough to assume some version of (1) for n = 2. If we treat permuta-
tions σ1, σ2 as random variables and the normalized character χ as an expectation
E then this condition can be equivalently written as a condition for the covariance:

Cov(σ1, σ2) = E(σ1σ2) − E(σ1)E(σ2) ≈ 0.

Covariance is a special case of a more general probabilistic notion of a cumulant
(we will recall the necessary definitions in Section 2.3) therefore it is quite natural to
expect that the correct condition for the factorization of characters should involve
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all cumulants and indeed in this article we prove that the following condition is
sufficient for our purposes (Theorem and Definition 1): for any cycles σ1, . . . , σn

with disjoint supports we assume that

kn(σ1, . . . , σn) = O
(
q− |σ1|+···+|σn|+2(n−1)

2
)
, (2)

where |π | denotes the minimal number of factors needed to write the permutation
π as a product of transpositions.

It should be stressed that the decay of the cumulants in the condition (2) carries
a strong resemblance to the decay of the cumulants of the entries of many interest-
ing classes of random matrices [Col03] and, as we mentioned in Section 1.3, it is
not an accident.

1.5. Fluctuations of Young diagrams

Every finite-dimensional representation ρq of the symmetric group Sq defines a
canonical probability measure on the Young diagrams contributing to ρq given
as follows: probability of a Young diagram λ should be proportional to the total
dimension of all irreducible components of type [λ]. Our goal is to consider some
interesting function f on the set of the Young diagrams with q boxes and to study
the distribution of the random variable f (λ). In principle, the information about
the characters such as (2) should be sufficient to compute the distribution of the
random variables f (λ) for reasonable functions f , however this relation is not very
direct. An analogue of this situation can be found in the random matrix theory,
where the knowledge of the joint distribution of the entries of a random matrix
should be enough to find the joint distribution of the eigenvalues, however the
actual calculation might be quite involved.

In this article we will show that the joint distribution of the random variables of
the form f (λ) converges to a Gaussian one if f is the value of the corresponding
irreducible character on a prescribed permutation or some functional describing the
shape of λ.

1.6. Overview of this article

In Section 2 we present briefly all necessary notions needed to state the main result
and its applications. In Section 3 we present the main result: Theorem and Definition
1 where four equivalent conditions are given which ensure Gaussian fluctuations
of the characters and of the shape of the Young diagrams. We also show that the
considered class of representations has many interesting examples and that it is
closed under some natural operations such as induction, restriction, outer product
and tensor product of representation. Section 4 contains the proof of the main result.
Finally, in Section 5 we prove some technical results used in the proof of the main
theorem.



Gaussian fluctuations of Young diagrams 267

2. Preliminaries

2.1. Normalized conjugacy class indicators

Let integer numbers k1, . . . , km ≥ 1 be given. We define the normalized conjugacy
class indicator to be a central element in the group algebra C(Sq) given by [KO94,
Bia03, Śni04]

�k1,...,km =
∑

a

(a1,1, a1,2, . . . , a1,k1) · · · (am,1, am,2, . . . , am,km), (3)

where the sum runs over all one–to–one functions

a :
{{r, s} : 1 ≤ r ≤ m, 1 ≤ s ≤ kr

} → {1, . . . , q}

and (a1,1, a1,2, . . . , a1,k1) · · · (am,1, am,2, . . . , am,km) denotes the product of dis-
joint cycles. Of course, if q < k1 + · · · + km then the above sum runs over the
empty set and �k1,...,km = 0.

In other words, we consider a Young diagram with the rows of the lengths
k1, . . . , km and all ways of filling it with the elements of the set {1, . . . , q} in such a
way that no element appears more than once. Each such a filling can be interpreted
as a permutation when we treat the rows of the Young tableau as disjoint cycles.

It follows that �k1,...,km is a linear combination of permutations which in the
cycle decomposition have cycles of length k1, . . . , km (and, additionally, q − (k1 +
· · · + km) fix-points). Each such a permutation appears in �k1,...,km with some
positive integer multiplicity depending on the symmetry of the tuple k1, . . . , km.

2.2. Disjoint product

Usually by a product of normalized conjugacy classes �k1,...,km we understand
their product as elements of the group algebra C(Sq). However, sometimes it is
convenient to consider their disjoint product defined by

�k1,...,km • �l1,...,ln = �k1,...,km,l1,...,ln . (4)

Remark 1. The readers familiar with the notion of partial permutations of Ivanov
and Kerov [IK99] will see that (4) is compatible with the following definition of
the product α1 • α2, when α1, α2 are partial permutations:

α1 • α2 =
{

α1α2 if supports of α1 and α2 are disjoint,

0 otherwise.
(5)

Further discussion can be found in Section 4.3.
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2.3. Classical cumulants

The notion of cumulants (or semi-invariants) was introduced to describe the
convolution of measures in the classical probability theory. For more details about
cumulants in the classical and non-commutative probability theory we refer to
overview articles [Hal00, Mat99, Leh04a].

If X1, . . . , Xn are random variables we define their (classical) cumulant to be
an appropriate coefficient of the formal expansion of the logarithm of the multidi-
mensional Fourier transform:

k(X1, . . . , Xn) = ∂n

∂t1 · · · ∂tn

∣
∣
∣
∣
t1=···=tn=0

log Eet1X1+···+tnXn .

Cumulant is linear with respect to each of its arguments. If random variables
X1, . . . , Xn can be split into two groups such that the random variables from the
first class are independent with the random variables from the second class then
their cumulant vanishes: k(X1, . . . , Xn) = 0.

The first two cumulants

k(X) = EX,

k(X1, X2) = E(X1X2) − E(X1)E(X2) = Cov(X1, X2)

coincide with the mean value and the covariance.

2.4. Elements of the group algebra as random variables

Let us fix some finite-dimensional representation ρq of the symmetric group Sq .
We can treat any commuting family of elements of the group algebra C(Sq) as a
family of random variables equipped with the mean value given by the normalized
character:

EX := χρq (X) = Tr ρq(X)

Tr ρq(1)
. (6)

It should be stressed that in the general case we treat elements of C(Sq) as random
variables only on a purely formal level; in particular we do not treat them as func-
tions on some Kolmogorov probability space.

Usually by the product of such random variables we understand the natural
product in the group algebra C(Sq) and we denote the resulting cumulants (called
natural cumulants) by k(X1, . . . , Xn). However, sometimes it is more convenient
to take as the product of random variables the disjoint product •; we denote the
resulting cumulants (called disjoint cumulants) by k•(X1, . . . , Xn).

2.5. Canonical probability measure on Young diagrams associated to a
representation

There is a special case when it is possible to give a truly probabilistic interpretation
to (6): it is when for the family of random variables we take the center of C(Sq) and
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the multiplication is the natural product in the group algebra C(Sq). The center of
C(Sq) is isomorphic (via Fourier transform) to the algebra of functions on Young
diagrams and the expected value (6) corresponds under this isomorphism to the
probability measure on Young diagrams with q boxes such that the probability of
λ is proportional to the total dimension of the irreducible components of type [λ]
in ρq .

2.6. Generalized Young diagrams

Let λ be a Young diagram. We assign to it a piecewise affine function ωλ : R → R

with slopes ±1, such that ωλ(x) = |x| for large |x| as it can be seen on the example
from Figure 2. By comparing Figure 1 and Figure 2 one can easily see that the graph
of ωλ can be obtained from the graphical representation of the Young diagram by
an appropriate mirror image, rotation and scaling by the factor

√
2. We call ωλ the

generalized Young diagram associated with the Young diagram λ [Ker93a, Ker98,
Ker99].

The class of generalized Young diagrams consists of all functions ω : R → R

which are Lipschitz with constant 1 and such that ω(x) = |x| for large |x| and

Fig. 1. Young diagram associated with a partition 8 = 4 + 3 + 1

0−1−2−3 1 2 3

Fig. 2. Generalized Young diagram associated with a partition 8 = 4 + 3 + 1
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of course not every generalized Young diagram can be obtained by the above con-
struction from some Young diagram λ.

The setup of generalized Young diagrams is very useful in the study of the
asymptotic properties since it allows us to define easily various notions of conver-
gence of the Young diagram shapes.

2.7. Functionals of the shape of Young diagrams

The main result of this article is that the fluctuations of the shape of some random
Young diagrams converge (after some rescaling) to a Gaussian distribution. Since
the space of (generalized)Young diagrams is infinite-dimensional therefore we need
to be very cautious when dealing with such statements. In fact, we will consider a
family of functionals on Young diagrams and we show that the joint distribution of
each finite set of these functionals converges to the Gaussian distribution.

The functionals mentioned above are given as follows: for a Young diagram λ

and the corresponding generalized Young diagram ω we denote σ(x) = ω(x)−|x|
2

[Bia98, IO02] and consider the family of maps

p̃n(λ) =
∫

R

xnσ ′′(x)dx. (7)

Since σ ′′ makes sense as a distribution and σ is compactly supported hence the
collection

(
p̃n(λ)

)
n

determines the Young diagram λ uniquely.

2.8. Transition measure of a Young diagram

To any generalizedYoung diagram ω we can assign the unique probability measure
µω on R, called transition measure of ω, the Cauchy transform of which

Gµω(z) =
∫

R

1

z − x
dµω(x) (8)

is given by

log Gµω(z) = −1

2

∫

R

log(z − x)ω′′(x)dx = −1

2

∫

R

1

z − x
ω′(x)dx (9)

for every z /∈ R. For a Young diagram λ we will write µλ as a short hand of µωλ
.

This definition may look artificial but it turns out [Ker93a, OV96, Bia98, Oko00]
that it is equivalent to natural representation-theoretic definitions which arise by
studying the irreducible representation ρq together with the inclusion Sq ⊂ Sq+1.

For p > 0 and aYoung diagram λ we consider the rescaled (generalized)Young
diagram ωpλ given by ωpλ : x 
→ pωλ

(
x
p

)
. Informally speaking, the symbol pλ

corresponds to the shape of the Young diagram λ geometrically scaled by factor p

(in particular, if λ has q boxes then pλ has p2q boxes). It is easy to see that (9)
implies that the corresponding transition measure µpλ is a dilation of µλ:

µpλ = Dpµλ. (10)
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This nice behavior of the transition measure with respect to rescaling of Young
diagrams makes it a perfect tool for the study of the asymptotics of symmetric
groups Sq as q → ∞.

2.9. Free cumulants of the transition measure

Cauchy transform of a compactly supported probability measure is given at the
neighborhood of infinity by a power series

Gµ(z) = 1

z
+
∑

n≥1

Mnz
−n−1,

where Mn = ∫
R

xndµ are the moments of the measure µ. It follows that on some
neighborhood of infinity Gµ has a right inverse Kµ with respect to the composition
of power series given by

Kµ(z) = 1

z
+
∑

n≥1

Rnz
n−1

convergent on some neighborhood of 0. The coefficients Ri = Ri(µ) are called
free cumulants of measure µ. Free cumulants appeared implicitly in Voiculescu’s
R–transform [Voi86] and their combinatorial meaning was given by Speicher
[Spe97].

Free cumulants are homogenous in the sense that if X is a random variable and
c is some number then

Ri(cX) = ciRi(X)

and for this reason they are very useful in the study of asymptotic questions.
Each free cumulant Rn is a polynomial in the moments M1, M2, . . . , Mn of

the measure and each moment Mn can be expressed as a polynomial in the free
cumulants R1, . . . , Rn; in other words the sequence of moments M1, M2, . . . and
the sequence of free cumulants R1, R2, . . . contain the same information about the
probability measure. The functionals of Young diagrams considered in (7) have a
nice geometric interpretation but they are not very convenient in actual calcula-
tions. For this reason we will prefer to describe the shape of a Young diagram by
considering a family of functionals

λ 
→ Rn(µ
λ) (11)

given by the free cumulants of the transition measure. Equation (9) shows that func-
tionals p̃k from the family (7) can be expressed as polynomials in the functionals
from the family (11) and vice versa.

Please note that the first two cumulants of a transition measure do not carry any
interesting information since

R1(µ
λ) = M1(µ

λ) = 0,

R2(µ
λ) = M2(µ

λ) = q,

where q denotes the number of the boxes of the Young diagram λ.
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Above we treated the free cumulant Ri as a function on Young diagrams, but it
also can be viewed (via Fourier transform) as a central element in C(Sq).

3. Representations with character factorization property

3.1. Factorization of characters and Gaussian fluctuations

The following theorem is the main result of this article. In order not to scare the
Reader we postpone its proof to Section 4.

Theorem and Definition 1. For each q ≥ 1 let ρq be a representation of Sq . We
say that the sequence (ρq) has the character factorization property if it fulfills one
(hence all) of the following equivalent conditions:

– for any cycles σ1, . . . , σn with disjoint supports

k(σ1, . . . , σn)q
|σ1|+···+|σn|+2(n−1)

2 = O(1); (12)

– for any integers l1, . . . , ln ≥ 1

k•(�l1 , . . . , �ln)q
− l1+···+ln−n+2

2 = O(1); (13)

– for any integers l1, . . . , ln ≥ 1

k(�l1 , . . . , �ln)q
− l1+···+ln−n+2

2 = O(1); (14)

– for any integers l1, . . . , ln ≥ 2

k(Rl1 , . . . , Rln)q
− l1+···+ln−2(n−1)

2 = O(1). (15)

Remark 2. In Corollary 19 we will prove that if conditions (13) and (14) hold
true then they also hold true in a more general situation when conjugacy classes
(�li ) with only one non-trivial cycle are replaced by general conjugacy classes
�li,1,...,li,m(i)

. Similarly one can show that if condition (12) holds true then it also
holds true in a general situation when we do not assume that (σi) are cycles.

To show that a given sequence of representations has the character factoriza-
tion property usually it is the most convenient to verify condition (12) or condition
(13). Then conditions (14) and (15) are important corollaries (for applications see
Corollary 4 below).

Expressions appearing in conditions (12)–(15) are closely related to each other
and knowledge of one of them allows us to compute the others (in fact this is how
Theorem and Definition 1 will be proved). For general n these formulas are quite
involved, however in the following we will need only such formulas for n ∈ {1, 2}
and these are provided by the following theorem.
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Theorem 3. Let (ρq) has the character factorization property. If the limit of one of
the expressions (12)–(15) exists for n ∈ {1, 2} then the limits of all of the expressions
(12)–(15) exist for n ∈ {1, 2}.

These limits fulfill

cl+1 := lim
q→∞ E(σ )q

l−1
2 = lim

q→∞ E(�l)q
− l+1

2 = lim
q→∞ E(Rl+1)q

− l+1
2 , (16)

where σ is a cycle of length l and

lim
q→∞ Cov(Rl1+1, Rl2+1)q

− l1+l2
2

= lim
q→∞ Cov(�l1 , �l2)q

− l1+l2
2

= lim
q→∞ Cov•(�l1 , �l2)q

− l1+l2
2

+
∑

r≥1

∑

a1,...,ar≥1
a1+···+ar=l1

∑

b1,...,br≥1
b1+···+br=l2

l1l2

r
ca1+b1 · · · car+br

= lim
q→∞ Cov(σ1, σ2)q

l1+l2
2 − l1l2cl1+1cl2+1

+
∑

r≥1

∑

a1,...,ar≥1
a1+···+ar=l1

∑

b1,...,br≥1
b1+···+br=l2

l1l2

r
ca1+b1 · · · car+br (17)

where σ1, σ2 are disjoint cycles of length l1, l2, respectively, and where the numbers
ci were defined in (16).

Proof of this theorem is also postponed to Section 4; we will prove it together with
Theorem 1. Identity (16) was proved by Biane [Bia98, Bia01] and we skip its proof;
for Readers acquainted with the results of Section 4 and Section 5 it will be a simple
exercise.

Corollary 4. Let (ρq) be as in Theorem 3 and let λ be a random Young diagram
distributed according to the canonical probability measure associated to ρq .

1. (Gaussian fluctuations of free cumulants) Then the joint distribution of the
centered random variables

ri = q− i−2
2 (Ri − ERi)

converges to a Gaussian distribution in the weak topology of probability mea-
sures, where Ri denotes the free cumulant of the transition measure µλ.

2. (Gaussian fluctuations of characters) Let σi denote a cycle of length i. Then
the joint distribution of the centered random variables

q
|σi |+1

2
(
χλ(σi) − Eχλ(σi)

)
(18)

converges to a Gaussian distribution in the weak topology of probability mea-
sures.
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3. (Gaussian fluctuations of the shape of the Young diagrams) Then the joint
distribution of the centered random variables

q− i−2
2 (p̃i − Ep̃i)

converges to a Gaussian distribution in the weak topology of probability mea-
sures, where p̃i = p̃i(λ) is the functional of the shape of the Young diagram
defined in (7).

Proof. We will prove now point (1). Condition (15) implies that if n �= 2 then

lim
q→∞ k(ri1 , . . . , rin) = 0

and therefore the family (ri) converges in moments to a Gaussian distribution. Since
Gaussian measures are uniquely determined by their moments it follows that the
convergence holds true also in the weak topology of probability measures.

To prove point 2 we observe that asymptotically, as q → ∞ random variables
(18) have the same behavior as random variables

λ 
→ q
−|σi |+1

2
(
q |σi |χλ(σi) − Eq |σi |χλ(σi)

)
, (19)

where

qk = q(q − 1) · · · (q − k + 1) (20)

denotes the falling power. Function on Young diagrams (19) corresponds (via Fou-
rier transform) to the central function in C(Sq)

q
−|σi |+1

2
(
�i − E�i

)
.

It follows that we may use (14) in the same way as in the above proof of point 1.
Ivanov and Olshanski [IO02] proved that point 1 implies point 3; their proof

is a careful analysis of the fact that p̃i can be expressed as a polynomial in free
cumulants. �


3.2. Examples

All examples presented in this section not only have the character factorization
property but additionally are as in Theorem 3.

Example 5 (Left-regular representation). It is easy to check that if ρq is the left-
regular representation of Sq then for any permutations σ1, . . . , σn with disjoint
supports

k(σ1, . . . , σn)q
|σ1|+···+|σn|+2(n−1)

2 =
{

1 if n = 1 and σ1 = e,

0 otherwise.
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It follows from condition (12) that the left-regular representation has the character
factorization property and that the mean and the covariance of the free cumulants
are given by

lim
q→∞ E(Rl+1)q

− l+1
2 =

{
1 if l = 1,

0 if l ≥ 2,
(21)

and

lim
q→∞ Cov(Rl1+1, Rl2+1)q

− l1+l2
2 =






l1 if l1 = l2 ≥ 2,

0 if l1 = l2 = 1,

0 if l1 �= l2.

(22)

By applying Corollary 4 we recover Kerov central limit theorem for the Plancherel
measure [Ker93b, IO02].

Example 6 (Tensor representations). For some integer dq ≥ 1 let ρq be the repre-
sentation of Sq acting on (Cdq )⊗q by permutation of factors. This representation
appears naturally within Schur-Weyl duality. It is easy to check that for permutations
σ1, . . . , σn with disjoint supports

k(σ1, . . . , σn)q
|σ1|+···+|σn|+2(n−1)

2 =





(√
q

dq

)|σ1|
if n = 1,

0 otherwise,

hence if the limit p := limq→∞
√

q

dq
exists then (condition (12)) the sequence (ρq)

has the character factorization property and the mean and the covariance of the free
cumulants are given by

lim
q→∞ E(Rl+1)q

− l+1
2 = pl−1,

and

lim
q→∞ Cov(Rl1+1, Rl2+1)q

− l1+l2
2 =

∑

r≥2

(
l1

r

)(
l2

r

)
r pl1+l2−2r

for all integers l, l1, l2 ≥ 1. Note that for p = 0 we recover the fluctuations of the
Plancherel measure.

Some asymptotic results for this representation were proved by Biane [Bia01].

Example 7 (Irreducible representations). Let c > 0 be a constant and let (λq)

be a sequence of Young diagrams. We assume that λq has q boxes and it has at
most c

√
q rows and columns. Suppose that the shapes of rescaled Young diagrams

q− 1
2 λq converge to some limit. The convergence of the shapes of Young diagrams

implies convergence of the free cumulants and it follows (condition (15)) that the
sequence (ρλq ) of the corresponding irreducible representations has the characters
factorization property.

In this example the cumulants (14) and (15) vanish for n ≥ 2 since the Young
diagrams are non-random and the corresponding limits for n = 1 are determined
by the limit of the shape of the Young diagrams.
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The above three examples are the building blocks from which one can construct
some more complex representations with the help of the operations on representa-
tions presented below.

Theorem 8 (Restriction of representations). Suppose that the sequence of repre-
sentations (ρq) has the character factorization property. Let a sequence of integers
(rq) be given, such that rq ≥ q and the limit p = limq→∞ q

rq
exists.

Let ρ′
q denote the restriction of the representation ρrq to the subgroup Sq ⊆ Srq .

Then the sequence (ρ′
q) has the factorization property of characters. The fluctua-

tions of the free cumulants are determined by

c′
l+1 := lim

q→∞ E(R′
l+1)q

− l+1
2 = p

l−1
2 lim

q→∞ E(Rl+1)q
− l+1

2 = p
l−1

2 cl+1, (23)

lim
q→∞ Cov(R′

l1+1, R
′
l2+1)q

− l1+l2
2

= p
l1+l2

2

[
lim

q→∞ Cov(Rl1+1, Rl2+1)q
− l1+l2

2 − l1l2cl1+1cl2+1

(
p−1 − 1

)

+
∑

r≥1

∑

a1,...,ar≥1
a1+···+ar=l1

∑

b1,...,br≥1
b1+···+br=l2

l1l2

r
ca1+b1 · · · car+br

(
p−r − 1

) ]
(24)

for all l, l1, l2 ≥ 1, where the quantities R′
i , c

′
i concern the representations (ρ′

q)

while Ri, ci concern the representations (ρq).
In particular, for p = 0 we recover the fluctuations of the Plancherel measure.

Proof. Notice that for any permutations σ1, . . . , σn the value of the cumulant
k(σ1, . . . , σn) is the same for the representation ρ′

q of Sq and for the represen-
tation ρrq of Srq . It follows that

lim
q→∞ kρ′

q
(σ1, . . . , σn)q

|σ1|+···+|σn|+2(n−1)

2

= p
|σ1|+···+|σn|+2(n−1)

2 lim
q→∞ kρrq

(σ1, . . . , σn)(rq)
|σ1|+···+|σn|+2(n−1)

2 .

Since the original representations (ρq) fulfill condition (12) hence restricted repre-
sentations (ρ′

q) fulfill (12) as well. Equations (23) and (24) follow as special cases
for n = 1, 2. �

Remark 9. Please notice that the above theorem concerns restrictions of the form

ρrq


�Srq

Sq
while it is even more interesting to ask about the asymptotics of the restric-

tions of the form ρ′′
q = ρrq

�Srq

Sq×Srq−q
. A typical question is the following one: let

[λ(1)] × [λ(2)] be a random irreducible component of ρ′′
q ; is it true that the joint

distribution of the free cumulants
(
Ri(λ

(r))
)
r∈{1,2};i≥2 converges after appropriate

rescaling to a family of Gaussian variables? The answer for this question is positive
and the Reader may easily prove it using the methods presented in Section 4.
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For some interesting results concerning restrictions of irreducible representa-
tions corresponding to rectangular Young diagrams we refer to the work of Pittel
and Romik [PR04].

Theorem 10 (Outer product of representations). Suppose that for i ∈ {1, 2}
the sequence of representations (ρ

(i)
q ) has the character factorization property. Let

sequences of positive integers r
(i)
q be given, such that r

(1)
q + r

(2)
q = q and the limits

p(i) := limq→∞ r(i)

q
exist.

Let ρ′
q = ρ

(1)

r
(1)
q

◦ ρ
(2)

r
(2)
q

denote the outer product of representations. Then the

sequence (ρ′
q) has the factorization property of characters with

c′
l+1 := lim

q→∞ E(R′
l+1)q

− l+1
2 =

(
p(1)

) l+1
2

c
(1)
l+1 +

(
p(2)

) l+1
2

c
(2)
l+1, (25)

and with an explicit (but involved) covariance of free cumulants. The appropriate
disjoint covariance is given by

lim
q→∞ Cov•

ρ′
q
(�l1 , �l2)q

− l1+l2
2

= (p(1))
l1+l2

2 lim
q→∞ Cov•

ρ
(1)
q

(�l1 , �l2)q
− l1+l2

2

+(p(2))
l1+l2

2 lim
q→∞ Cov•

ρ
(2)
q

(�l1 , �l2)q
− l1+l2

2 .

Proof. By definition,

ρ′
q = (

ρ
(1)

r
(1)
q

× ρ
(2)

r
(2)
q

)�Sq

S
r
(1)
q

×S
r
(2)
q

and we can use the Frobenius reciprocity between the induction and restriction of
representations. It follows that the corresponding normalized characters fulfill for
all l1, . . . , ln ≥ 1

χρ′(�l1 • · · · • �ln) = (
χρ(1) ⊗ χρ(2)

)

(
(�l1 ⊗ 1 + 1 ⊗ �l1) • · · · • (�ln ⊗ 1 + 1 ⊗ �ln)

)
.

We can treat the left-hand side as a mixed moment E(�l1 • · · · •�ln) in the algebra
of conjugacy classes equipped with the disjoint product; analogous interpretation
is possible also for the right-hand side. Since equality holds for all l1, . . . , ln ≥ 2
it follows that the joint distributions of the family of random variables (�i)i≥2
coincides with the joint distribution of random variables (�i ⊗ 1 + 1 ⊗ �i)i≥2; in
particular their cumulants are equal:

k•
ρ′(�l1 , . . . , �ln) = k•

ρ(1)⊗ρ(2) (�l1 ⊗ 1 + 1 ⊗ �l1 , . . . , �ln ⊗ 1 + 1 ⊗ �ln)

= k•
ρ(1) (�l1 , . . . , �ln) + k•

ρ(2) (�l1 , . . . , �ln). (26)

In the last equality we used that the cumulant is linear with respect to each of the
arguments and that the mixed cumulant of independent random variables vanishes.
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It follows that

lim
q→∞ k•

ρ′
q
(�l1 , . . . , �ln)q

− l1+···+ln−n+2
2

= (p(1))
l1+···+ln−n+2

2 lim
q→∞ k•

ρ
(1)

r
(1)
q

(�l1 , . . . , �ln)(r
(1)
q )−

l1+···+ln−n+2
2

+(p(2))
l1+···+ln−n+2

2 lim
q→∞ k•

ρ
(2)

r
(2)
q

(�l1 , . . . , �ln)(r
(1)
q )−

l1+···+ln−n+2
2 .

It follows that if the representations ρ(i) fulfill condition (13) then representations
ρ′

q fulfill (13) as well. Equation (25) results as a special case of n = 1 and we
leave it as a simple exercise to the Reader to study the case n = 2 and to find the
covariance of the free cumulants, analogous to (23). �

Theorem 11 (Induction of representations). Suppose that the sequence of rep-
resentations (ρq) has character factorization property. Let a sequence of integers
rq be given, such that rq ≤ q and the limit p = limq→∞

rq
q

exists.

Let ρ′
q = ρrq ↑Sq

Srq
denote the induced representation. Then the sequence (ρ′

q)

has the characters factorization property with

c′
l+1 =

{
p

l+1
2 cl+1 for l ≥ 2,

1 for l = 1,

and with an explicit (but involved) covariance of free cumulants.

Proof. It is enough to adapt the proof of Theorem 10. �

Theorem 12 (Tensor product of representations). Suppose that for i ∈ {1, 2}
the sequence of representations (ρ

(i)
q ) has character factorization property. Then

the tensor product ρ′
q = ρ

(1)
q ⊗ρ

(2)
q has the property of factorization of characters.

Furthermore, the limit distribution and the fluctuations are the same as for the
Plancherel measure (21) and (22).

Proof. Since the normalized characters fulfill for any π ∈ Sq

χρ′
q
(π) = (

χ
ρ

(1)
q

⊗ χ
ρ

(2)
q

)
(π ⊗ π)

hence also the corresponding cumulants are equal:

kρ′
q
(σ1, . . . , σn) = k

ρ
(1)
q ⊗ρ

(2)
q

(σ1 ⊗ σ1, . . . , σn ⊗ σn).

Theorem 16 of Leonov and Sirjaev can be used to calculate the right-hand side.
Lemma 18 together with the condition (12) for ρ(i) show that the right-hand side
is of order O(q−(|σ1|+···+|σn|+n−1)) hence condition (12) is fulfilled for ρ′. It also
follows that the limits in Theorem 3 are given by

cl+1 = lim
q→∞ E(σ )q

l−1
2 =

{
1 if l = 1,

0 if l ≥ 2,
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lim
q→∞ Cov(σ1, σ2)q

l1+l2
2 = 0,

where σ , σ1, σ2 are disjoint cycles with lengths, respectively, l, l1, l2. �


4. Proof of the main result

4.1. Toy example

Let us have a look on the main result (Theorem and Definition 1) for the simplest
nontrivial case of n = 2. This will give us a heuristical insight into the problems
which we shall encounter in the proof.

As we shall see in the following, the proof of the equivalence (14) and (15) is
very easy, therefore the main difficulty is to show the equivalence of the conditions
(12), (13), (14). For simplicity, we shall concentrate on the implications in only one
direction (12) �⇒ (13) �⇒ (14).

The condition (14) for n = 2 requires that k(�l1 , �l2) should not grow too fast.
The identity

k(�l1 , �l2) = χ(�l1�l2) − χ(�l1)χ(�l2)

= χ(�l1�l2 − �l1 • �l2)

+[χ(�l1 • �l2) − χ(�l1)χ(�l2)
]

(27)

shows that there are three reasons why k(�l1 , �l2) is non-zero:

1. the difference �l1�l2 −�l1 •�l2 is non-zero. We need to estimate the conjugacy
classes contributing to this difference.

2. there are ql1ql2 summands which contribute to χ(�l1)χ(�l2) while there are
only ql1+l2 summands which contribute to χ(�l1 •�l2), where the falling pow-
ers qk were defined in (20). Under the simplifying assumption that χ(π1π2) ≈
χ(π1)χ(π2) the second summand in (27) is therefore of order

(ql1+l2 − ql1ql2)χ(π1π2),

where π1, π2 are disjoint cycles of length l1, l2, respectively.
We need to find an estimate for (ql1+l2 − ql1ql2).

3. every summand contributing to χ(�l1)χ(�l2) is equal to χ(π1)χ(π2) while
every summand contributing to χ(�l1,l2) is equal to χ(π1π2). We need to find
an estimate for (χ(π1π2) − χ(π1)χ(π2)).

The difficulty caused by 3 can be very easily overcome: it is basically the condition
(12). Our proof of the main result will be therefore divided into two parts; each
devoted to one of the remaining difficulties.

Note that the second summand on the right-hand side in (27) can be written as

k•(�l1 , �l2) = χ(�l1 • �l2) − χ(�l1)χ(�l2);
in other words the proof of the implication (12) �⇒ (13) is equivalent to overcom-
ing the difficulty 2 and the proof of the implication (13) �⇒ (14) is equivalent to
overcoming the difficulty 1.
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4.2. Partitions

We recall that π = {π1, . . . , πr} is a partition of a finite ordered set X if sets
π1, . . . , πr are nonempty and disjoint and if π1 ∪ · · · ∪ πr = X.

We say that a partition π is smaller (or finer) than a partition ρ of the same set
if every block of π is a subset of some block of ρ and we denote it by π ≤ ρ. For
partitions π1, π2 of the same set we denote by π1 ∨π2 the minimal partition which
is greater or equal than both π1 and π2. The set of all partitions of some given set
X has a maximal element, namely the partition with only one block equal to X.

4.3. Algebra of conjugacy classes and its filtration

Ivanov and Kerov [IK99] defined a partial permutation of a set X as a pair α =
(d, w), where d (called support of α) is any subset of X and w : X → X is
a bijection which is equal to identity outside of d. The usual product of partial
permutations is given by

(d1, w1)(d2, w2) = (d1 ∪ d2, w1w2)

and their disjoint product • was defined in (5). Partial permutations behave like
the usual permutations (to a partial permutation we can canonically associate the
usual permutation w) except that we can distinguish two kinds of fix-points x for
a partial permutations: true fix-points (i.e. x /∈ d) and cycles of length one (x ∈ d,
w(x) = x). Partial permutations form a semigroup; in this article we are inter-
ested also in the corresponding semigroup algebra which should be regarded as an
analogue of the permutation group algebra C(Sq) equipped with some additional
structure.

In fact, to define correctly the notion of the disjoint product • from Section 2.2
we must use the semigroup algebra corresponding to partial permutations and not
the group algebra C(Sq). The reason for this is that we must distinguish two kinds
of fix-points since, for example, �1,1 and �1 represent multiples of each other in
C(Sq), but the disjoint product treats them differently.

One can show [IK99, Śni04] that the family of normalized conjugacy classes
(�k1,...,kn) and the family of free cumulants (Ri) generate the same filtered algebra,
called algebra of conjugacy classes, when for the degrees of the generators we take

deg �k1,...,kn = (k1 + 1) + · · · + (kn + 1),

deg Ri = i.

The above statement holds true both when as the product we take the usual prod-
uct of partial permutations (in this case we denote the resulting algebra by �) and
when as the product we take the disjoint product (in this case we denote the resulting
algebra by �•).
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One can also show [IK99, Śni04] that in the scaling considered in this article
(i.e. a typical Young diagram has at most O(

√
q) rows and columns) so defined

degree determines the asymptotic behavior of an element, namely

EX = O
(
q

deg X
2
)

for any element X of this algebra. Furthermore, the generators fulfill

Ri = �i−1 + (terms of degree at most i − 2). (28)

4.4. Three probability spaces

Commutative algebras � and �• can be regarded as algebras of random variables
on a purely formal level (usually it is not possible to represent them as algebras of
functions on some Kolmogorov probability space).

Algebras � and �• are trivially isomorphic as vector spaces; we will denote by
E

id : � → �• the identity map between them, in other words

E
id(x) = x.

One can think that E
id is a kind of a ‘conditional expectation’.

If ρ is a representation of Sq we consider maps E : � → C and E
• : �• → C

given by

E(x) = E
•(x) = χρ(x).

In this way the following diagram commutes:

�
E

id
��

E

��
�•

E
•

��
C . (29)

and we may consider three different probability structures:

– algebra � equipped with the expectation E (which gives rise to the natural cum-
ulants k),

– algebra �• equipped with the expectation E
• (which gives rise to the disjoint

cumulants k•),
– algebra � equipped with the ‘conditional’ expectation E

id : � → �• (corre-
sponding ‘conditional’ cumulants belong to �• and will be denoted by kid).

The commutativity of the diagram (29) implies that the relation between the cor-
responding three cumulants is given by the following formula of Brillinger [Bri69]
(see also [Leh04b]).

Proposition 13. For x1, . . . , xn ∈ �

k(x1, . . . , xn) =
∑

π

k•[kid(xi : i ∈ πj ) : j = 1, 2, . . .
]
, (30)

where the sum runs over all partitions π = {π1, π2, . . . } of the set {1, . . . , n}.
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Example 14. Let us consider n = 2: there are two partitions of {1, 2}, namely{{1}, {2}} and
{{1, 2}} therefore

k(x1, x2) = k•(kid(x1), k
id(x2)

)+ k•(kid(x1, x2)
)
.

Similarly, for n = 3

k(x1, x2, x3) = k•(kid(x1), k
id(x2), k

id(x2)
)+ k•(kid(x1, x2), k

id(x3)
)

+k•(kid(x1, x3), k
id(x2)

)+ k•(kid(x2, x3), k
id(x1)

)

+k•(kid(x1, x2, x3)
)
.

The following result will be of great importance in this article.

Theorem 15. For any x1, . . . , xn ∈ �

deg kid(x1, . . . , xn) ≤ deg x1 + · · · + deg xn − 2(n − 1). (31)

Furthermore, the highest-order term of the second cumulant is given by

kid(�l1 , �l2) =
∑

r≥1

∑

a1,...,ar≥1
a1+···+ar=l1

∑

b1,...,br≥1
b1+···+br=l2

l1l2

r
�(a1+b1−1),...,(ar+br−1)

terms of degree at most (l1 + l2 − 2). (32)

We postpone its proof to Section 5.

4.5. Multiplicative extension of cumulants

If ρ = {ρ1, . . . , ρk} is a partition of the set {1, . . . , n} with blocks ρi = {ρi,1, . . . ,

ρi,m(i)} we define partition–indexed cumulants given by a multiplicative extension
of the usual cumulants:

kρ(X1, . . . , Xn) =
∏

i

k(Xρi,1 , Xρi,2 , . . . , Xρi,m(i)
); (33)

for example

k{1,3,4},{2,5}(X1, X2, X3, X4, X5) = k(X1, X3, X4) k(X2, X5).

In this article we will use the following property of cumulants: it turns out that
the cumulants are implicitly determined by a sequence of relations

E(X1 · · · Xn) =
∑

µ

kµ(X1, . . . , Xn), (34)

where the sum runs over all partitions µ of the set {1, . . . , n}.
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4.6. Cumulants of products

The following formula for cumulants of products of random variables was proved
by Leonov and Sirjaev [LS59].

Theorem 16. Let i1 < i2 < · · · < in+1 be integers and letXi1+1, Xi1+2, . . . , Xin+1

be a family of random variables; then

k
( ∏

i1+1≤j≤i2

Xj , . . . ,
∏

in+1≤j≤in+1

Xj

)
=
∑

π

kπ (Xi1+1, Xi1+2, . . . , Xin+1),

(35)

where the sum runs over all partitions π of the set {i1 + 1, i1 + 2, . . . , in+1} with
the additional property that

π ∨ {{i1 + 1, i1 + 2, . . . , i2}, . . . , {in + 1, in + 2, . . . , in+1}
}

is the maximal partition with only one block.

Corollary 17. Let permutations σ1, . . . , σn be disjoint cycles of length l1, . . . , ln.
Then

k•(�l1 , . . . , �ln)

=
∑

π(1),π(2)

kπ(1) (σ1, . . . , σn) k•
π(2) (�1, . . . , 1︸ ︷︷ ︸

l1 times

, . . . , �1, . . . , 1︸ ︷︷ ︸
ln times

), (36)

where the sum runs over all partitions π(1), π(2) of the set {1, . . . , n} such that
π(1) ∨ π(2) = {{1, . . . , n}}.
Proof. We consider the algebra C(Sq)⊗�• with the usual product on the first factor
and the disjoint product on the second one: (a1 ⊗b1)(a2 ⊗b2) = (a1a2)⊗(b1 •b2).
We equip it with the expected value E(a ⊗ b) = χρ(a)χρ(b).

For all integers l1, . . . , ln ≥ 1 and disjoint cycles σ1, . . . , σn with appropriate
lengths we clearly have

E
(
�l1 • · · · • �ln

) = E
[
(σ1 ⊗ �1, . . . , 1︸ ︷︷ ︸

l1 times

) · · · (σn ⊗ �1, . . . , 1︸ ︷︷ ︸
ln times

)
]
,

where the product on the left-hand side is taken in �• and the product on the
right-hand side is taken in C(Sq) ⊗ �•. In other words: the mixed moments of the
family of random variables (�li ) coincide with the mixed moments of the family
(σi ⊗ �1, . . . , 1︸ ︷︷ ︸

li times

). It follows that the corresponding cumulants are equal:

k•(�l1 , . . . , �ln

) = k(σ1 ⊗ �1, . . . , 1︸ ︷︷ ︸
l1 times

, . . . , σn ⊗ �1, . . . , 1︸ ︷︷ ︸
ln times

).

We use now Theorem 16 to compute the right-hand side which finishes the proof.
�


In applications of this result we will find useful the following lemma.
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Lemma 18. Let π = {π1, . . . , πm} be a partition which contributes to the right-
hand side of (35). Then

∑

i

(|πi | − 1
) ≥ n − 1.

Let π(k) = {π(k)
1 , . . . , π

(k)

m(k)} for k ∈ {1, 2} be partitions which contribute to
the right-hand side of (36). Then

∑

i

(|π(1)
i | − 1

)+
∑

i

(|π(2)
i | − 1

) ≥ n − 1.

Proof. Partition π can be obtained from the trivial partition (every block consists of
exactly one element) by performing

∑
i

(|πi | − 1
)

times the following operation:
we select two blocks and merge them into a single one. Clearly, the number of
blocks of partition

π ∨ {{i1 + 1, i1 + 2, . . . , i2}, . . . , {in + 1, in + 2, . . . , in+1}
}

either decreases by one or stays the same in each step. The initial number of blocks
is equal to n and the final number of blocks is equal to 1, which finishes the proof.

The proof of the second statement is analogous and we skip it. �


Corollary 19. Let X be a set of generators of the algebra of conjugacy classes �.
Suppose that

k(a1, . . . , an)q
− deg a1+···+deg an−2(n−1)

2 = O(1) (37)

holds true for all n ≥ 1 and a1, . . . , an ∈ X. Then (37) holds true for all n ≥ 1
and a1, . . . , an ∈ �.

Proof. Clearly, it is enough to consider the case when a1, . . . , an are monomials in
elements of X. In order to estimate each summand on the right-hand side of (35)
we apply Lemma 18. �


Remark 20. Note that the above Corollary holds true also when the cumulants k

are replaced by k•. In particular, this Corollary can be applied for (13) and (14).

4.7. Proof of the main theorem: equivalence (13) ⇐⇒ (14)

Proof (Proof of the implication (13) �⇒ (14)). Our goal is to use Proposition
13 in order to express k•(�l1 , . . . , �ln) in terms of the cumulants kid and k•. To
estimate a summand on the right-hand side of (30) corresponding to a partition
π = {π1, . . . , πm} of {1, . . . , n} we use Theorem 15 and get

deg kid(xi : i ∈ πj ) ≤
(∑

i∈πj

deg xi

)
− 2(|πj | − 1).
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Thus
( ∑

1≤j≤m

deg kid(xi : i ∈ πj )
)

− 2(m − 1) ≤
(∑

i

deg xi

)
− 2(n − 1). (38)

Assumption (13) and Corollary 19 show that

k•[kid(xi : i ∈ πj ) : j = 1, 2, . . .
]
q

−∑j deg kid(xi :i∈πj )+2(m−1)

2 = O(1).

Now (38) finishes the proof. �

As a byproduct, in a similar way we obtain a proof of the identity

lim
q→∞ Cov(�l1 , �l2)q

− l1+l2
2 = lim

q→∞ Cov•(�l1 , �l2)q
− l1+l2

2

+
∑

r≥1

∑

a1,...,ar≥1
a1+···+ar=l1

∑

b1,...,br≥1
b1+···+br=l2

l1l2

r
ca1+b1 · · · car+br

(39)

which is a part of Theorem 3.

Proof (Proof of the implication (14) �⇒ (13)). We will use induction with respect
to (deg �l1 + · · · + deg �ln). Equation (30) can be written in the form

k•(�l1 , . . . , �ln) = k(�l1 , . . . , �ln)

−
∑

π �={{1,...,n}}
k•[kid(xi : i ∈ πj ) : j = 1, 2, . . .

]
.

The inductive hypothesis can be used to estimate the right-hand side in the same
way as in the proof of the opposite implication above. �


4.8. Proof of the main theorem: equivalence (12) ⇐⇒ (13)

4.8.1. Cumulants of falling factorials

Element �1, . . . , 1︸ ︷︷ ︸
k times

∈ C(Sq) is equal to q(q − 1) · · · (q + 1 − k), the multiple of

identity, therefore no matter which representation we consider we always have

E�1, . . . , 1︸ ︷︷ ︸
k times

= q(q − 1) · · · (q + 1 − k).

However, it should be stressed that if we consider the algebra of conjugacy classes
equipped with the disjoint product then this element is not longer a multiple of
identity and

�1, . . . , 1︸ ︷︷ ︸
k1 times

• �1, . . . , 1︸ ︷︷ ︸
k2 times

= �1, . . . , 1︸ ︷︷ ︸
k1+k2 times

.
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Lemma 21. For any integers l1, . . . , ln ≥ 1

k•(�1, . . . , 1︸ ︷︷ ︸
l1 times

, . . . , �1, . . . , 1︸ ︷︷ ︸
ln times

) = O(ql1+···+ln+1−n).

Proof. Since �1, . . . , 1︸ ︷︷ ︸
k times

∈ C(Sq) is a multiple of identity therefore

k(�1, . . . , 1︸ ︷︷ ︸
l1 times

, . . . , �1, . . . , 1︸ ︷︷ ︸
ln times

) =
{

q(q − 1) · · · (q + 1 − l1) if n = 1,

0 if n ≥ 2,

hence in particular

k(�1, . . . , 1︸ ︷︷ ︸
l1 times

, . . . , �1, . . . , 1︸ ︷︷ ︸
ln times

)q−(l1+···+ln+1−n) = O(1).

We leave it as a simple exercise to the reader to check that the presented above
proof of the implication (14) �⇒ (13) can be applied here. �

Proof (Proof of the implication (12) �⇒ (13)). Our goal is to estimate the right-
hand side of (36). The assumption (12) implies that

kπ(1)
(σ1, . . . , σn) = O

(
q− |σ1|+···+|σn|+2n−2(number of blocks of π(1))

2
);

Lemma 21 implies that

k•
π(2)

(�1, . . . , 1︸ ︷︷ ︸
l1 times

, . . . , �1, . . . , 1︸ ︷︷ ︸
ln times

) = O
(
ql1+···+ln+(number of blocks of π(2))−n

)
.

Now it is enough to use Lemma 18. �

We leave the proof of the identity

lim
q→∞ Cov•(�l1 , �l2)q

− l1+l2
2 = lim

q→∞ Cov(σ1, σ2)q
l1+l2

2 − l1l2cl1+1cl2+1

which is a part of Theorem 3 as a simple exercise.

Proof (Proof of the implication (13) �⇒ (12)). We use the induction over n. We
let us split the sum in equation (36) into the sum of terms where π(1) is the maximal
partition with only one block and the sum of all the other terms; therefore

k(σ1, . . . , σn)E
(
�1, . . . , 1︸ ︷︷ ︸

l1 times

• · · · • �1, . . . , 1︸ ︷︷ ︸
ln times

)

= k•(�l1 , . . . , �ln)

−
∑

π(1),π(2)

kπ(1)
(σ1, . . . , σn) k•

π(2)
(�1, . . . , 1︸ ︷︷ ︸

l1 times

, . . . , �1, . . . , 1︸ ︷︷ ︸
ln times

),

where the sum runs over partitions π(1), π(2) such as in (36) with the additional
constraint that π(1) is not equal to the maximal partition with only one block. We
use the inductive hypothesis and estimate the summands on the right-hand side in
the same way as in the proof of the opposite implication above. �
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4.9. Proof of the main theorem: equivalence (14) ⇐⇒ (15)

Proof (Proof of equivalence (14) ⇐⇒ (15)). It is enough to apply Corollary 19.
�


The remaining part of Theorem 3, namely

lim
q→∞ Cov(Rl1+1, Rl2+1)q

− l1+l2
2 = lim

q→∞ Cov(�l1 , �l2)q
− l1+l2

2

follows from the relation (28) between free cumulants and conjugacy classes.

5. Proof of Theorem 15

This section is devoted to the proof of Theorem 15 which is the only missing com-
ponent in the proof of the main theorem. We will use some tools presented in our
recent work [Śni04].

5.1. Partition–indexed conjugacy classes

In the following we present some constructions on partitions of the set X =
{1, 2, . . . , N}. However, it should be understood that by a change of labels these
constructions can be performed for any finite ordered set X.

We consider a matrix J , the entries of which belong to C(Sq), the symmetric
group algebra:

J =






0 (1, 2) . . . (1, q) 1
(2, 1) 0 . . . (2, q) 1

...
...

. . .
...

...

(q, 1) (q, 2) . . . 0 1
1 1 . . . 1 0






∈ Mq+1(C) ⊗ C(Sq).

Except for the last row, the last column and the diagonal, the entry in the i-th row
and the j -th column is equal to the transposition interchanging i and j .

Let p = (p1, . . . , pl) be a sequence with p1, . . . , pl ∈ {1, . . . , q + 1} and let
π be a partition of the set {1, . . . , l}. We say that p ∼ π if for any 1 ≤ i, j ≤ l

the equality pi = pj holds if and only if i and j belong to the same block of the
partition π . We define [Śni04]

�π =
∑

p∼π
pl=q+1

Jp1p2Jp2p3 · · · Jpl−1pl
Jplp1 ∈ C(Sq). (40)

We will treat each summand as a partial permutation with a support {p1, . . . , pl} \
{q + 1}. Some partial results concerning expressions of this form were obtained
by Biane [Bia98]. We can show [Śni04] that �π = �k1,...,kt for some integers
k1, . . . , kt ≥ 1 which will be presented explicitly in Section 5.6. For this reason we
call �π a partition-indexed conjugacy class.
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5.2. Products of conjugacy classes

Theorem 22. Let i1 < · · · < in+1 be integers and for each 1 ≤ s ≤ n let πs be a
partition of the set ρs = {is + 1, is + 2, . . . , is+1}. We denote

π1 • · · · • πn = (π1 ∪ · · · ∪ πn) ∨ {{i2, i3, . . . , in+1}
}
.

Then

�π1 • · · · • �πn = �(π1•···•πn). (41)

Furthermore,

�π1 · · · �πn =
∑

σ

�σ , (42)

where the sum on the right-hand side runs over all partitions σ of the set {i1 +
1, i1 + 2, . . . , in+1} such that

1. for any a, b ∈ ρs , 1 ≤ s ≤ n we have that a and b are connected by σ if and
only if they are connected by πs ,

2. elements i2, i3, . . . , in+1 belong to the same block of σ .

Furthermore,

kid(�π1 , . . . , �πn) =
∑

σ

�σ , (43)

where the sum on the right-hand side runs over all partitions σ of the set {i1 +
1, i1 + 2, . . . , in+1} such that

1. for any a, b ∈ ρs , 1 ≤ s ≤ n we have that a and b are connected by σ if and
only if they are connected by πs ,

2. elements i2, i3, . . . , in+1 belong to the same block of σ ; we will denote this
block by σ1,

3. (σ \ σ1) ∨ {ρ1, . . . , ρn} is the maximal partition with only one block.

Proof. Equations (41) and (42) follow immediately from the definition (40).
We shall treat (43) as a definition of the left-hand side and we shall verify that

so defined cumulants fulfill the defining relation of cumulants (34). Before we do
this we need to compute the corresponding partition-indexed cumulants. Let µ be a
partition of {1, . . . , n}; we denote by µ̃ a partition of the set {i1+1, i1+2, . . . , in+1}
such that a ∈ ρs and b ∈ ρt belong to the same block of µ̃ if and only if s and t

belong to the same block of µ. Then (43) implies

kid
µ (�π1 , . . . , �πn) =

∑

σ

�σ , (44)

where the sum on the right-hand side runs over all partitions σ of the set {i1 +
1, i1 + 2, . . . , in+1} such that

1. for any a, b ∈ ρs , 1 ≤ s ≤ n we have that a and b are connected by σ if and
only if they are connected by πs ,
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2. elements i2, i3, . . . , in+1 belong to the same block of σ ; we will denote this
block by σ1,

3. (σ \ σ1) ∨ {ρ1, . . . , ρn} = µ̃.

Equation (44) implies immediately (34). �

For example, for

ρ1 = {1, 2, 3, 4}, ρ2 = {5, 6, 7, 8},
π1 = {{1, 3}, {2, 4}}, π2 = {{5, 7}, {6}, {8}}, (45)

the above theorem states that

�π1�π2 = �{{1,3},{2,4,8},{5,7},{6}
} + �{{1,3,6},{2,4,8},{5,7}

}

+�{{1,3,5,7},{2,4,8},{6}
}

and

kid(�π1 , �π2) = �{{1,3,6},{2,4,8},{5,7}
} + �{{1,3,5,7},{2,4,8},{6}

};

the readers acquainted with the results of Section 5.6 may check that it is equivalent
to

�1�1,1 = �1,1,1 + �1,1 + �1,1

and

kid(�1, �1,1) = �1,1 + �1,1.

5.3. Geometric interpretation of the degree of �π

It is very useful to represent partitions graphically by arranging the elements of the
set X = {1, . . . , n} counterclockwise on a circle and joining elements of the same
block by a line, as it can be seen on Figure 3.

We consider a large sphere with a small circular hole. The boundary of this hole
is the circle mentioned above. Let us draw the blocks of the partition π with a fat
pen; in this way each block becomes a disc glued to the boundary of the hole, cf
Figure 4.

After gluing this first collection of discs, our sphere becomes a surface with
a number of holes. The boundary of each hole is a circle and we shall glue this
hole with a disc from the second collection. Thus we obtained an orientable surface
without a boundary. We call the genus of this surface the genus of the partition π

and denote it by genusπ .
The following result was proved in our previous work [Śni04].

Proposition 23. For any partition π of an n–element set

deg �π = n − 2 genusπ . (46)
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Fig. 3. Graphical representation of a partition
{{1, 3}, {2, 5, 7}, {4}, {6}}

Fig. 4. The first collection of discs for partition π from Figure 3

5.4. Geometric interpretation of Theorem 22

We will use the notations of Theorem 22. On the surface of a large sphere we draw
a small circle on which we mark counterclockwise points i1 + 1, i1 + 2, . . . , ir+1.
Inside the circle we cut r holes; for any 1 ≤ s ≤ r the corresponding hole has a
shape of a disc, the boundary of which passes through the points from the block ρs .
For every 1 ≤ s ≤ r the partition πs connects some points on the boundary of the
hole ρs and this situation corresponds exactly to the case we considered in Section
5.3. We shall glue to the hole ρs only the first collection of discs that we considered
in Section 5.3, i.e. the discs which correspond to the blocks of the partition πs . Thus
we obtained a number of holes with a collection of glued discs (cf Figure 5).

When we inflate the original small holes inside the circle we may think about
this picture alternatively: instead of r small holes we have a big one (in the shape
of the circle) but some arcs on its boundary are glued by an additional disc (on
Figure 6 drawn in black) glued to vertices i2, i3, . . . , ir+1. Furthermore we still have
a collection of all discs (on Figure 6 drawn in gray) corresponding to
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Fig. 5. Graphical representation of example (45)

Fig. 6. Figure 5 after inflating small holes

partitions πs . We merge the additional black disc to a gray disc from this col-
lection if they touch the same vertex. After this merging the collection of discs
corresponds to the partition π1 • · · · • πr = {{i2, i3, . . . , ir+1}

} ∨ (π1 ∪ · · · ∪ πr)

which appears in the formula (41) for the disjoint product.
The last step is to consider all ways of merging of the discs (or equivalently: all

partitions σ ≥ π1 • · · · •πr ) with the property that any two vertices that were lying
on the boundary of the same small hole ρs if were not connected by a disc from the
collection πs then they also cannot be connected after all mergings. In this way we
obtain all partitions which contribute to (42).

By splitting the holes (we recall that each hole corresponds to some set ρi) into
some new holes we can view the surface associated to the partition ρ as a sphere
with a number of new holes glued in pairs by handles and the number of these
handles is equal to the genus of the surface. In this way we obtain a graph Gσ the
vertices of which correspond to the old holes (or, equivalently, sets ρi) and the edges
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correspond to the handles between new holes. Of course the above construction can
be sometimes performed in many different ways but we do not mind it. Note that
multiple connections between vertices are allowed. Also, a vertex can be connected
with itself and the number of such loops is equal to the genus of the corresponding
partitions πi . The genus of σ is equal to the total number of edges in Gσ .

In order to obtain all partitions σ which contribute to (43) we should restrict
our attention only to σ such that the graph Gσ is connected. A connected graph
with n vertices has at least n − 1 non-loop edges therefore

genusσ ≥ genusπ1
+ · · · + genusπn

+(n − 1). (47)

Proof (Proof of Theorem 15). In order to prove (31) for the special case when
xi = �πi

it is enough to apply Proposition 23 and (47).
It remains now to prove (32) and we shall do it in the following. We use the nota-

tions of Theorem 22 if n = 2 and π1, π2 are trivial partitions (every blocks consists
of a single element). Let σ be a partition which contributes to (43) with the minimal
possible genus, namely genusσ = 1. It follows that one of the blocks of σ is equal to
{i2, i3}. Secondly, some of the elements of the set {i1+1, . . . , i2−1} (but at least one
of them) are paired with some of the elements of the set {i2 +1, . . . , i1+i3−1}; this
pairing however is not arbitrary. Let us travel counterclockwise along the boundary
of the hole corresponding to the block π1; in other words we visit the vertices in
the order i1 + 1 → i1 + 2 → · · · → i2 − 1 → i1 + 1. Some of these vertices
are paired by σ with some of the elements of {i2 + 1, . . . , i3 − 1} corresponding to
the other hole; let us have a look in which order these counterparts appear during
our walk. From the very definition of the genus of a partition we know that it is
possible to draw the blocks of σ \ {{i2, i3}

}
on the surface of the handle in such a

way that lines do not cross. It follows that these counterparts will be visited in the
clockwise order i3 − 1 → i3 − 2 → · · · → i2 + 1 → i3 − 1, cf Figure 7.

Let a1, . . . , ar denote the distances (counted cyclically counterclockwise) be-
tween consecutive elements of the pairs in the first hole and let b1, . . . , br denote
the distances (counted cyclically counterclockwise) between consecutive elements
of the pairs in the second hole. Readers acquainted with the results of Section 5.6
will see that

�σ = �a1+b1−1,...,ar+br−1.

It is easy to see that a1+· · ·+ar = i2−i1 and b1+· · ·+br = i3−i2. Such sequences
(ai) and (bi) uniquely determine σ once we specify the first element in each cycle
(there are i2 − i1 − 1 choices for the first one and i3 − i2 − 1 choices for the second
one). Partition σ can be represented like this in r different ways which correspond
to the cyclic rotations of the sequences (ai) and (bi). Since �π1 = �i2−i1−1 and
�π2 = �i3−i2−1 this finishes the proof of (32). �


5.5. Fat partitions

Let π = {π1, . . . , πr} be a partition of the set {1, . . . , n}. For every 1 ≤ s ≤ r let
πs = {πs,1, . . . , πs,ls } with πs,1 < · · · < πs,ls . We define πfat, called fat partition
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i1 + 2

i1 + 1i2

i3

Fig. 7. Partitions σ with genus 1 which contribute to (43)

of π , to be a pair partition of the 2n–element ordered set {1, 1′, 2, 2′, . . . , n, n′}
given by

πfat = {{π ′
s,t , πs,t+1} : 1 ≤ s ≤ r and 1 ≤ t ≤ ls

}
,

where it should be understood that πs,ls+1 = πs,1.
This operation can be easily described graphically as follows: we draw the

blocks of the partition with a fat pen and take the boundary of each block, as it
can be seen on Figure 8. This boundary is a collection of lines hence it is a pair

Fig. 8. The fat partition πfat corresponding to the partition π from Figure 3
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partition. However, every vertex k ∈ {1, . . . , n} of the original partition π has to
be replaced by its ‘right’ and ‘left’ copy (denoted respectively by k and k′).

5.6. Explicit form of the partition–indexed conjugacy class indicator �π

Let π be a partition of the set {1, . . . , n}. Since the fat partition πfat connects every
element of the set {1′, 2′, . . . , n′} with exactly one element of the set {1, 2, . . . , n},
we can view πfat as a bijection πfat : {1′, 2′, . . . , n′} → {1, 2, . . . , n}. We also con-
sider a bijection c : {1, 2, . . . , n} → {1′, 2′, . . . , n′} given by . . . , 3 
→ 2′, 2 
→
1′, 1 
→ n′, n 
→ (n − 1)′, . . . . Finally, we consider a permutation πfat ◦ c of the
set {1, 2, . . . , n}.

For example, for the partition π given by Figure 3 the composition πfat ◦ c has
a cycle decomposition (1, 2, 3, 5, 4)(6, 7), as it can be seen from Figure 9.

We decompose the permutation

πfat ◦ c = (b1,1, b1,2, . . . , b1,j1) · · · (bt,1, . . . , bt,jt )

as a product of disjoint cycles. Every cycle bs = (bs,1, . . . , bs,js ) can be viewed as
a closed clockwise path on a circle and therefore one can compute how many times
it winds around the circle, cf Figure 10.

To a cycle bs we assign the number

ks = (number of elements in a cycle bs)

−(number of clockwise winds of bs).

In the above example we have b1 = (1, 2, 3, 5, 4), b2 = (6, 7) and k1 = 2,
k2 = 1, as it can be seen from Figure 10, where all lines clockwise wind around
the central disc.

Fig. 9. Bijection corresponding to the partition πfat from Figure 8 plotted with a solid line
and the bijection c plotted with a dashed line
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Fig. 10. A version of Figure 9 in which all lines wind clockwise around the central disc

In our recent work [Śni04] we proved that

�π = �k1,...,kt ,

where �k1,...,kt on the right–hand side should be understood as in Section 2.1.
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