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Abstract. We consider a class of dissipative PDE’s perturbed by an external random force.
Under the condition that the distribution of perturbation is sufficiently non-degenerate, a
strong law of large numbers (SLLN) and a central limit theorem (CLT) for solutions are
established and the corresponding rates of convergence are estimated. It is also shown that
the estimates obtained are close to being optimal. The proofs are based on the property
of exponential mixing for the problem in question and some abstract SLLN and CLT for
mixing-type Markov processes.
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0. Introduction

This paper deals with a class of randomly forced PDE’s arising in mathematical
physics. To be precise, we confine ourselves in this introduction to the 2D Navier–
Stokes system perturbed by an external force white in time and smooth in the space
variables:
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u̇ − �u + (u, ∇)u + ∇p = η(t, x), div u = 0, x ∈ D. (0.1)

Here D ⊂ R
2 is a bounded domain with C1 boundary ∂D, u = (u1, u2) is the

velocity field of the fluid, p is the pressure, and η is a random force. Equation (0.1)
is supplemented with Dirichlet boundary condition

u
∣
∣
∂D

= 0. (0.2)

Excluding the pressure, we can write the problem (0.1), (0.2) as an evolution equa-
tion in the space H of divergence-free vector fields u ∈ L2(D, R

2) whose normal
component vanishes at ∂D (see [38]):

u̇ + Lu + B(u, u) = η(t). (0.3)

Here L is the Stokes operator and B is a bilinear form resulting from the nonlinear
term in (0.1). We assume that the right-hand side η, for which we retained the same
notation as in the original equation, is a random process of the form

η(t) =
∞
∑

j=1

bj β̇j (t)ej , (0.4)

where bj ≥ 0 are some constants such that
∑

j b2
j < ∞, {ej } is a complete set of

normalised eigenfunctions of L, and {βj } is a sequence of independent standard
Brownian motions. Assuming that

bj �= 0 for j = 1, . . . , N, (0.5)

where N ≥ 1 is sufficiently large, we obtain some estimates for the rate of con-
vergence in the strong law of large numbers (SLLN) and central limit theorem
(CLT) for solutions of Eq. (0.3). To this end, we establish some abstract versions
of SLLN and CLT and then apply them to the problem in question. Before giving
more detailed formulations, we discuss some earlier results in this direction and
explain the main difficulties.

Exponential mixing for SDE’s in R
n. Let us consider the equation

u̇ = F(u) + ẇ, u(t) ∈ R
n, (0.6)

where F ∈ C1(Rn, R
n) and w is a standard Brownian motion in R

n. Assume that
the function F satisfies the condition

〈F(u), u〉 ≤ −c|u|2 + C for u ∈ R
n,

where C and c are positive constants, 〈·, ·〉 is the scalar product in R
n, and | · | is

the corresponding norm. In this case, it is not difficult to show that for any v ∈ R
n

Eq. (0.6) has a unique solution u(t), t ≥ 0, adapted to the filtration of w and
satisfying the initial condition

u(0) = v. (0.7)
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The large-time asymptotics of solutions of the problem (0.6), (0.7) was studied by
many authors. First results in this domain were obtained in the papers [25, 41, 26,
14]. It was shown that the family of Markov processes associated with (0.6), (0.7)
has a unique stationary measure µ. Moreover, the Markov family is mixing in the
sense that, for any Borel subset � ⊂ R

n and any v ∈ R
n,

Pt(v, �) → µ(�) as t → +∞, (0.8)

where Pt(v, �) denotes the transition function.
These results were further developed in a number of works. In particular, it was

shown in [39, 31] that the rate of convergence in (0.8) is exponential uniformly in
all Borel subsets � ⊂ R

n. In other word, for any v ∈ R
n we have

‖Pt(v, �) − µ‖var ≤ Cve
−γ t for t ≥ 0. (0.9)

Here Cv and γ are positive constants, and for any probability measures µ1, µ2
on R

n we set

‖µ1 − µ2‖var = sup
�

|µ1(�) − µ2(�)|,

where the supremum is taken over all Borel subsets � ⊂ R
n. Furthermore, if αv(t)

denotes the strong mixing coefficient for the solution with initial condition (0.7),
then

αv(t) ≤ Cve
−γ t for t ≥ 0. (0.10)

SLLN and CLT for Markov processes with strong mixing. Inequalities (0.9)
and (0.10) provide substantial information on the distribution of solutions and can
be used for studying the time and ensemble averages of various functionals of
solutions. For instance, it is a straightforward consequence of (0.9) that, for any
v ∈ R

n and any bounded measurable function f : R
n → R satisfying the inequality

|f | ≤ 1, we have

∣
∣E f (u(t, v)) − (f, µ)

∣
∣ ≤ Cve

−γ t , t ≥ 0, (0.11)

where u(t, v) denotes the solution of (0.6), (0.7) and (f, µ) is the mean value of f

with respect to µ. Furthermore, it is well known that Markov processes with strong
mixing properties satisfy SLLN and CLT (see [31, 32, 15, 1]). Combining (0.9)
and (0.10) with some general results of this type, one can prove the following two
assertions:

SLLN: For any ε > 0, v ∈ R
n, and f ∈ L∞(Rn), there is an almost surely finite

random constant C > 0 such that
∣
∣
∣
∣

1

t

∫ t

0
f (u(s, v)) ds − (f, µ)

∣
∣
∣
∣
≤ Ct−

1
2 +ε for t ≥ 1. (0.12)
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CLT: For any f ∈ L∞(Rn) there is a constant σf ≥ 0 such that

1√
t

∫ t

0
f (u(s, v)) ds − √

t(f, µ) → N (0, σf ) as t → +∞,

(0.13)

where N (0, σ ) denotes the one-dimensional centred Gaussian distribution
with variance σ , and the convergence holds in the sense of distribution.
Moreover, the rate of convergence of the corresponding distribution func-

tions is t−
1
2 .

We emphasize that it is important in the above CLT that the strong mixing coeffi-
cient αv(t) decays sufficiently fast (see [32] for more details).

Exponential mixing, SLLN and CLT for randomly forced PDE’s. The first result
on ergodicity for randomly forced Navier–Stokes equations was obtained by Fland-
oli and Maslowski [10].Assuming that the random perturbation is sufficiently irreg-
ular, they established the uniqueness of stationary measure and convergence to it
in the total variation norm. Their result was refined by Ferrario [9]. Mattingly [28]
considered the case in which the forcing is smooth and the viscosity is sufficiently
large.

In the case of smooth right-hand side and any positive viscosity, uniqueness was
established by Kuksin and the author [18]. We studied a large class of randomly
forced PDE’s (including the 2D Navier–Stokes system and complex Ginzburg-
Landau equation) perturbed by a discrete forcing. Assuming that the perturbation
is sufficiently non-degenerate, we proved the uniqueness of stationary measure and
convergence to it of other solutions in the weak∗ topology. E, Mattingly, Sinai [7]
and Bricmont, Kupiainen, Lefevere [4] studied the Navier–Stokes system in the
case when the space variables x belong to the 2D torus and the right-hand side is
white noise in time and trigonometric polynomial in x. They showed that there is
a unique stationary measure. Moreover, it was proved by Bricmont et al. [4] that
the above model possesses a property of exponential mixing. Eckmann and Hai-
rer [8] used an infinite-dimensional version of the Malliavin calculus to study the
problem of ergodicity for the real Ginzburg–Landau equation perturbed by a rough
degenerate forcing.

Another approach for studying the problem of ergodicity for randomly forced
PDE’s was suggested in [19, 20, 29, 27, 12, 21]. It is based on the classical idea
of coupling and enables one to improve the above-mentioned results. Using the
coupling approach, Mattingly [29] gave a different proof of exponential mixing for
the 2D Navier–Stokes equation on the torus and found an explicit dependence of
the constants on the initial data, Masmoudi, Young [27] and Kuksin et al. [19, 20,
16] proved exponential convergence to the stationary measure for a class of par-
abolic PDE’s perturbed by a discrete forcing, and Hairer [12] established similar
results for some models in which the forcing does not act directly on all determining
modes. In [21, 22, 36], Kuksin and the author established exponential mixing for the
2D Navier–Stokes system in the case of bounded domain and infinite-dimensional
perturbation. We refer the reader to [5, 11, 17, 30, 37] for a more detailed account
of the results obtained in this domain.
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We note that inequalities (0.9) and (0.10), in general, do not hold for systems
with infinite-dimensional phase space, even if the difference between two trajecto-
ries goes to zero exponentially fast (see Example 1.3). However, it was shown by
Kuksin [17] that the aforementioned results combined with a coupling argument
imply SLLN and CLT. As was mentioned above, the aim of this article is to esti-
mate the corresponding rates of convergence. We emphasize that known abstract
versions of SLLN and CLT for different classes of dependent random variables
do not apply to our problem, since they require that the strong mixing coefficient
decay sufficiently fast (for instance, see [1, 32]). Our approach is based on a mar-
tingale approximation for the time average of functionals of Markov processes [15,
24], some limit theorems for martingales [13, 24], and the property of exponential
mixing for the models in question [4, 19, 20, 29, 27, 12, 21, 22].

The following theorem is a simplified version of the main results of this paper.

Main Theorem. Suppose that the non-degeneracy condition (0.5) is satisfied for
a sufficiently large N . Then for any uniformly Lipschitz bounded functional f :
H → R and any solution u(t) of Eq. (0.3) with deterministic initial condition the
following statements hold.

Strong law of large numbers: For any ε > 0 there is an a.s. finite random con-
stant T ≥ 1 such that

∣
∣
∣
∣

1

t

∫ t

0
f (u(s)) ds − (f, µ)

∣
∣
∣
∣
≤ const t−

1
2 +ε for t ≥ T . (0.14)

Central limit theorem: If (f, µ) = 0, then there is a constant σ ≥ 0 depending
only on f such that, for any ε > 0, we have

sup
z∈R

(

θσ (z)

∣
∣
∣P

{ 1√
t

∫ t

0
f (u(s)) ds ≤z

}

− Φσ (z)

∣
∣
∣

)

≤const t−
1
4 +ε for t ≥ 1,

(0.15)

where θσ ≡ 1 for σ > 0, θ0(z) = 1 ∧ |z|, and Φσ (z) is the centred Gaussian
distribution function with variance σ .

We note that (0.14) and (0.15) remain valid for a large class of Hölder continu-
ous functionals on H with polynomial growth at infinity. Moreover, if we consider
Eq. (0.1) on a 2D torus, similar results hold for functionals defined on a Sobolev
space Hs with an arbitrarily large s, provided that the right-hand side is sufficiently
smooth. We shall not give a precise formulation and a proof of this assertion, since
they repeat almost literally the case of Dirichlet boundary condition.

Let us also note that the rates of convergence in the Main Theorem are close to
being optimal. Indeed, one cannot take ε = 0 in (0.14), and therefore our SLLN
is sharp in the power scale. The rate of convergence in CLT for dependent random

variables is t−
1
2 , provided that the strong mixing coefficient decays sufficiently fast

(see [1]). If this condition is not satisfied, then the convergence to the limiting dis-

tribution holds, in general, with a rate slower than t−
1
4 , and it is widely believed that
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the threshold t−
1
4 is critical (see [33, 23, 13]). Moreover, counterexamples show

that the rate t−
1
4 cannot be achieved in the case of martingales (see [2, 13]).

Let us briefly describe the structure of the paper. In Section 1, the main results
are presented. We consider the 2D Navier–Stokes system (0.1), (0.2), (0.4), as well
as a class of dissipative PDE’s perturbed by a random force of the form

η(t, x) =
∞
∑

k=1

ηk(x)δ(t − k), (0.16)

where δ(t) is the Dirac measure concentrated at zero and {ηk} is a sequence of
independent identically distributed (i.i.d.) random variables in an appropriate func-
tional space. In Section 2, we establish an SLLN and a CLT for mixing-type Markov
processes. Section 3 is devoted to the proof of the main results of this paper. In the
Appendix, we have compiled some auxiliary assertions.

Notation

Let H be a real Hilbert space with norm | · | and let α ∈ (0, 1] be a constant. We
shall use the following notation:

BH (R) is the closed ball in H of radius R > 0 centred at zero;
B(H) is the Borel σ -algebra in H ;
P(H) is the family of probability measures on (H, B(H));
C(H) is the space of continuous functionals f : H → R;
Cb(H) is the space of bounded functionals f ∈ C(H) endowed with the norm
‖f ‖∞ := sup

u∈H

|f (u)|.
W is the space of increasing continuous functions w(r) > 0 defined for r ≥ 0.
The elements of W will be called weight functions. In particular, we use the
functions vδ(r) = eδr2

and wp(r) = (1 + r)p.

For the next two definitions, we fix an arbitrary weight function w ∈ W . C(H, w)

is the space of continuous functionals f ∈ C(H) such that

|f |w := sup
u∈H

|f (u)|
w(|u|) < ∞.

Cα(H, w) is the space of continuous functionals f ∈ C(H) for which the following
norm is finite:

|f |w,α := |f |w + sup
u�=v

|f (u) − f (v)|
|u − v|α(

w(|u|) + w(|v|)) .

If f : H → R is a B(H)-measurable functional and µ ∈ P(H), then we denote
by (f, µ) the integral of f over H with respect to µ.

Ci , i = 1, 2, . . . , stand for unessential positive constants.
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1. Main results

1.1. Dissipative PDE’s perturbed by random kicks

Let H be a real Hilbert space with norm | · | and orthonormal base {ej } and let S :
H → H be a continuous operator such that S(0) = 0. We consider a discrete-time
random dynamical system (RDS) in H ,

uk = S(uk−1) + ηk, (1.1)

where k ≥ 1 and {ηk} is a sequence of i.i.d. random variables in H .As was explained
in [18, 19], a large class of dissipative PDE’s perturbed by a random force of the
form (0.16) reduces to the RDS (1.1), and in this case S is the time-one shift along
trajectories of the unperturbed equation. We assume that the operator S satisfies the
following three conditions introduced in [18, 19]:

(A) For any R > r > 0 there are positive constants a = a(R, r) < 1 and
C = C(R) and an integer n0 = n0(R, r) ≥ 1 such that

|S(u1) − S(u2)| ≤ C(R)|u1 − u2| for u1, u2 ∈ BH (R),

|Sn(u)| ≤ max{a|u|, r} for u ∈ BH (R), n ≥ n0.

(B) For any compact set K ⊂ H and any bounded set B ⊂ H there is a con-
stant R > 0 such that the sets Ak(K, B) defined recursively by the formulas
A0(K, B) = B and Ak(K, B) = S(Ak−1(K, B)) + K are contained in the
ball BH (R) for all k ≥ 0.

(C) For any R > 0 there is an integer N ≥ 1 such that
∣
∣QN(S(u1) − S(u2))

∣
∣ ≤ 1

2 |u1 − u2| for u1, u2 ∈ BH (R),

where QN is the orthogonal projection onto the closed subspace spanned
by {ej , j ≥ N + 1}.

We note that the above conditions are satisfied for the resolving operators of the
2D Navier–Stokes system and the complex Ginzburg–Landau equation.

As for the random kicks ηk , we assume that they are i.i.d. random variables
in H of the form

ηk =
∞
∑

j=1

bj ξjkej ,

where bj ≥ 0 are some constants such that

B0 :=
∞
∑

j=1

b2
j < ∞, (1.2)

and ξjk are independent scalar random variables satisfying the following condition:



222 A. Shirikyan

(D) For any j ≥ 1, the random variables ξjk have the same distribution πj (dr),
which is absolutely continuous with respect to the Lebesgue measure.
Moreover, the corresponding density pj (r) is a function of bounded total
variation, is supported by the interval [−1, 1], and satisfies the condition
∫

|r|≤ε
pj (r) dr > 0 for any ε > 0.

Let (uk, Pu) be the family of Markov chains that is associated with the RDS (1.1)
and is parametrised by the initial condition u ∈ H . We denote by Pk(u, �) the cor-
responding transition function and by Pk and P∗

k the Markov operators generated
by Pk:

Pk : Cb(H) → Cb(H), Pkf (u) =
∫

H

Pk(u, dv)f (v),

P∗
k : P(H) → P(H), P∗

kµ(�) =
∫

H

Pk(u, �)µ(du).

Recall that a measure µ ∈ P(H) is said to be stationary for the family (uk, Pu)

if P∗
1µ = µ.
It was proved in [19, 20, 27, 16] that if Hypotheses (A)–(D) are fulfilled together

with the non-degeneracy condition (0.5), where N ≥ 1 is sufficiently large, then
the RDS (1.1) has a unique stationary measure µ, which is exponentially mixing in
the following sense: for any α ∈ (0, 1] and w ∈ W there is a constant β > 0 and
an increasing function C(r), r ≥ 0, such that 1

∣
∣Pkf (u) − (f, µ)

∣
∣ ≤ C(|u|) |f |w,α e−βk, k ≥ 0, (1.3)

where u ∈ H and f ∈ Cα(H, w) are arbitrary. (See Notation in the Introduction
for the definition of the space Cα(H, w).)

The following theorem establishes an SLLN for the family (uk, Pu) with an
estimate of the rate of convergence.

Theorem 1.1. Suppose that Hypotheses (A) – (D) and the non-degeneracy condi-
tion (0.5) are satisfied. Then for any α ∈ (0, 1] and w ∈ W there is a constant
D > 0 such that, for any f ∈ Cα(H, w) and ε ∈ (0, 1

2 ), the following statements
hold:

(i) There is a random integer Kε(ω) ≥ 1 depending on f and ε such that
∣
∣
∣
∣
k−1

k−1
∑

l=0

f (ul) − (f, µ)

∣
∣
∣
∣
≤ D |f |wk− 1

2 +ε for k ≥ Kε(ω).

(ii) For any u ∈ H , the random integer Kε is Pu-a.s. finite. Moreover, for any
m ≥ 1 there is a constant pm and an increasing function Cm(r), r ≥ 0, such
that

EuK
m
ε ≤ Cm(|u|) |f |pm

w,α.

We now turn to the CLT. For any function f ∈ Cα(H, w) satisfying the condi-
tion (f, µ) = 0, we set

1 In [19, 20, 27, 16], inequality (1.3) is proved for uniformly Lipschitz bounded function-
als on H . However, the proofs given there remain valid for any functional that is uniformly
Hölder continuous on bounded subsets of H .
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g(u) =
∞
∑

l=0

Pkf (u), u ∈ H.

The fact that g(u) is well defined follows from inequality (1.3). We introduce a
non-negative constant σf such that

σ 2
f = 2(gf, µ) − (f 2, µ). (1.4)

The following relation, which can easily be verified with the help of (1.3) and the
Markov property, shows that the right-hand side of (1.4) is indeed non-negative:

σ 2
f = lim

k→∞
Eµ

(
1√
k

k−1
∑

l=0

f (ul)

)2

, (1.5)

where Eµ is the expectation corresponding to the stationary measure:

Pµ(�) =
∫

H

Pu(�)µ(du), � ∈ B(H). (1.6)

For any σ > 0, we denote by Φσ (r) the one-dimensional centred Gaussian distri-
bution with variance σ :

Φσ (r) = 1

σ
√

2π

∫ r

−∞
e−s2/2σ 2

ds.

Finally, for σ = 0, we set

Φ0(r) =
{

1, r ≥ 0,

0, r < 0.

Theorem 1.2. Suppose that Hypotheses (A) – (D) and the non-degeneracy condi-
tion (0.5) are satisfied. Then for any α ∈ (0, 1] and w ∈ W the following statements
hold:

(i) For any σ̄ > 0 and ε ∈ (0, 1
4 ) there is a function hσ̄ ,ε(r1, r2) ≥ 0 defined

on R+ × R+ and increasing in both arguments such that, for any functional
f ∈ Cα(H, w) satisfying the conditions σf ≥ σ̄ and (f, µ) = 0, we have

sup
z∈R

∣
∣
∣Pu

{

k− 1
2

k−1
∑

l=0

f (ul) ≤ z
}

− Φσf
(z)

∣
∣
∣ ≤ hσ̄ ,ε(|u|, |f |w,α)k− 1

4 +ε,

where k ≥ 1 and u ∈ H .
(ii) There is a function h(r1, r2) ≥ 0 defined for R+ × R+ and increasing in

both arguments such that, for any functional f ∈ Cα(H, w) satisfying the
conditions σf = 0 and (f, µ) = 0, we have

sup
z∈R

(
(|z| ∧ 1

)
∣
∣
∣Pu

{

k− 1
2

k−1
∑

l=0

f (ul) ≤ z
}

− Φ0(z)

∣
∣
∣

)

≤ h(|u|, |f |w,α) k− 1
4 ,

where k ≥ 1 and u ∈ H .
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We emphasize that Theorems 1.1 and 1.2 are valid for any family of Markov
chains with bounded trajectories that is uniformly mixing in the sense of inequal-
ity (1.3), and the function C(r) entering (1.3) may grow at infinity arbitrarily fast.

Before turning to the case of the NS system perturbed by a white noise force,
we consider an example showing that even if the operator S : H → H is a uniform
contraction, convergence to the stationary measure does not hold, in general, in the
total variation norm, and the strong mixing coefficient does not decay to zero.

Example 1.3. Let H be the space of real-valued sequences u = {uj } such that

‖u‖2 :=
∞
∑

j=1

u2
j < ∞.

We consider the following RDS in H :

uk = S(uk−1) + ηk. (1.7)

Here S : H → H is an operator of the form S(u) = (0, ϕ(u1), ϕ(u2), . . . ),
where ϕ ∈ C1(R, R), and ηk = (ξk, 0, 0, . . . ), where {ξk} is a sequence i.i.d. ran-
dom variables in R whose distribution has a smooth density ρ(x) with respect to
the Lebesgue measure. In what follows, we assume that ρ has a compact support.

Let us take ϕ(u) = ε χ(u)u, where ε > 0 is a small parameter, χ ∈ C∞(R),
0 ≤ χ ≤ 1, χ(u) = 1 for |u| ≤ 1 and χ(u) = 0 for |u| ≥ 2. It is matter of direct
verification to show that if 2ε(1 + 2 sup |χ ′|) ≤ 1, then

‖S(u) − S(v)‖ ≤ 1
2 ‖u − v‖ for all u, v ∈ H.

Thus, the RDS (1.7) has a unique stationary measure µ, which is exponentially
mixing in the sense that

∣
∣Pkf (u) − (f, µ)

∣
∣ ≤ C

(

1 + ‖u‖) e−βk, k ≥ 0, u ∈ H,

where Pk : Cb(H) → Cb(H) denotes the Markov semigroup associated with (1.7),
f : H → R is an arbitrary uniformly Lipschitz functional with constant ≤ 1, and C

and β are positive constants not depending on f and u. We claim that the following
two assertions hold:

(i) For any initial point v ∈ H such that |v1| ≤ 1, we have

‖Pk(v, ·) − µ‖var = 1 for all k ≥ 0. (1.8)

(ii) Suppose that the support of ρ contains the interval [−2, 2]. Then there is a
constant c > 0 such that for any stationary trajectory uk , k ≥ 0, we have

αk ≥ c for all k ≥ 0, (1.9)

where αk is the strong mixing coefficient of {uk}.
Proof of (i). Let us note that, for any initial point v ∈ H , the trajectory of (1.7)
starting from v has the form
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vk = (ξk, ϕ1(ξk−1), . . . , ϕk−1(ξ1), ϕk(v1), ϕk(v2), . . . ), (1.10)

where ϕm = ϕ ◦ · · · ◦ ϕ (m times). It follows that the unique stationary measure µ

coincides with the distribution of the random variable (ξ1, ϕ1(ξ2), ϕ2(ξ3), . . . ).
Setting �k = {u ∈ H : uk+1 = ϕk(v1)}, we see from (1.10) that

Pk(v, �k) = 1 for any k ≥ 0. (1.11)

On the other hand, the definition of ϕ implies that, for any z �= 0, the set {y ∈ R :
ϕk(y) = z} consists of at most two points. Since ϕk(v1) �= 0 for |v1| ≤ 1 and the
distribution of ξk+1 has a density, we conclude that

µ(�k) = P
{

ϕk(ξk+1) = ϕk(v1)
} = 0 for any k ≥ 0. (1.12)

Relations (1.11) and (1.12) imply (1.8). ��
Proof of (ii). It is shown in [1] that the strong mixing coefficient can be represented
in the form

αk = 1

2
sup
f

∫

H

∣
∣Pkf (v) − (f, µ)

∣
∣ µ(dv), (1.13)

where the supremum is taken over all measurable functions f : H → R such that
0 ≤ f ≤ 1. Let gk(v) = 0 for vk+1 = 0 and gk(v) = 1 otherwise. In this case,
relation (1.10) implies that

Pkgk(v) = E gk(v
k) = IR∗(ϕk(v1)) = I�(v1),

where R
∗ = R \ {0} and � = {x ∈ R : 0 < |x| < 2}. Combining this with (1.13),

we see that

αk ≥ 1

2

∫

H

∣
∣Pkgk(v) − (gk, µ)

∣
∣ µ(dv) = 1

2

∫

R

∣
∣I�(x) − (gk, µ)

∣
∣ρ(x) dx.

Since supp ρ ⊃ [−2, 2], the integral over R is separated from zero uniformly
in k ≥ 0. ��

1.2. Navier–Stokes system perturbed by white noise

We now turn to the problem (0.3), (0.4), where the right-hand side η satisfies the
conditions formulated in the Introduction. Let H be the space of divergence-free
vector fields u ∈ L2(D, R

2) such that (u, ν)
∣
∣
∂D

= 0, where ν is the unit normal
to ∂D (see [38] for details). It is well known (see [40, 6]) that the problem (0.3),
(0.4) generates a family of Markov processes (ut , Pu) in the space H . We denote
by Pt(u, �) = Pu{ut ∈ �} the corresponding transition function and by Pt and P∗

t

the Markov operators associated with Pt(u, �). It was shown in [7, 4, 29, 21] that
if

B1 :=
∑

j

αj b
2
j < ∞,
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where αj are the eigenvalues of the Stokes operator, and the non-degeneracy con-
dition (0.5) holds with a sufficiently large N ≥ 1, then the family (ut , Pu) has
a unique stationary measure µ ∈ P(H), and any other solution converges to it
exponentially fast in the weak∗ topology. Moreover, according to Proposition 3.2
in [22], there is d > 0 such that, for any positive constants α ≤ 1 and δ ≤ d and
any functional f ∈ Cα(H, vδ) (where vδ(r) = eδr2

), we have2

∣
∣Pt f (u) − (f, µ)

∣
∣ ≤ C|f |vδ,αvδ(|u|) e−βt , t ≥ 0, (1.14)

where u ∈ H , and β and C are positive constants depending only on α and δ.
Let w ∈ W be a weight function such that

lim
r→+∞ w(r) eδr2 = 0 for any δ > 0. (1.15)

The following result on SLLN is an analog of Theorem 1.1 for the case of the
problem (0.3), (0.4).

Theorem 1.4. Let d > 0 be the constant mentioned above and let α ∈ (0, 1]. Sup-
pose that (1.15) holds and that the non-degeneracy condition (0.5) is satisfied with
sufficiently large N ≥ 1. Then there is a constant D > 0 such that the following
statements hold.

(i) For any f ∈ Cα(H, w) and ε ∈ (0, 1
2 ) there is a random variable Tε(ω) ≥ 1

such that
∣
∣
∣
∣
t−1

∫ t

0
f (us) ds − (f, µ)

∣
∣
∣
∣
≤ D |f |wt−

1
2 +ε for t ≥ Tε(ω). (1.16)

(ii) For any u ∈ H , the random variable Tε is Pu-a.s. finite. Moreover, for any
m ≥ 1 there are constants pm ≥ 1 and Cm > 0 such that

EuT
m
ε ≤ Cm

(|f |pm
vδ,α

+ 1
)

ed|u|2 . (1.17)

The above theorem concerns functionals f : H → R that grow at infinity slower
than eδ|u|2 for any δ > 0. A similar result takes place for functionals f ∈ Cα(H, vδ)

with sufficiently small δ > 0. In this case, however, we can only claim that (1.16)
and (1.17) hold for some fixed constants ε ∈ (0, 1

2 ) and m > 0 depending on δ. We
shall not give a precise formulation.

We now discuss the CLT for the problem (0.3), (0.4). Let us fix an arbitrary
constant p > 0 and set wp(r) = (1 + r)p. For any f ∈ Cα(H, wp) satisfying the
condition (f, µ) = 0 we introduce the function

g(u) =
∫ ∞

0
Psf (u) ds, u ∈ H. (1.18)

Inequality (1.14) implies that g is well defined. Furthermore, we introduce a non-
negative constant σf such that (cf. (1.4) and (1.5))

σ 2
f = 2(gf, µ) = lim

t→+∞ Eµ

(

t−
1
2

∫ t

0
f (us) ds

)2

. (1.19)

2 Proposition 3.2 in [22] concerns uniformly Lipschitz functionals on H with exponential
growth at infinity. However, the proof remains valid for the class Cα(H, vδ).
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Theorem 1.5. Suppose that the non-degeneracy condition (0.5) is satisfied with
sufficiently large N ≥ 1. Then for any α ∈ (0, 1] and p > 0 the following state-
ments hold:

(i) For any σ̄ > 0 and ε ∈ (0, 1
4 ) there is a function hσ̄ ,ε(r1, r2) ≥ 0 defined

on R+ × R+ and increasing in both arguments such that, for any functional
f ∈ Cα(H, wp) satisfying the conditions σf ≥ σ̄ and (f, µ) = 0, we have

sup
z∈R

∣
∣
∣Pu

{

t−
1
2

∫ t

0
f (us) ds ≤ z

}

− Φσf
(z)

∣
∣
∣ ≤ hσ̄ ,ε(|u|, |f |wp,α) t−

1
4 +ε,

(1.20)

where t ≥ 1 and u ∈ H .
(ii) There is a function h(r1, r2) ≥ 0 defined on R+ × R+ and increasing in

both arguments such that, for any functional f ∈ Cα(H, wp) satisfying the
conditions σf = 0 and (f, µ) = 0, we have

sup
z∈R

(
(|z| ∧ 1

)
∣
∣
∣Pu

{

t−
1
2

∫ t

0
f (us) ds ≤z

}

− Φ0(z)

∣
∣
∣

)

≤h(|u|, |f |wp,α) t−
1
4 ,

(1.21)

where t ≥ 1 and u ∈ H .

2. LLN and CLT for mixing-type Markov processes

In this section, we establish some versions of SLLN and CLT (with rates of con-
vergence) for Markov processes possessing a mixing property. They are used in the
next section to prove Theorems 1.4 and 1.5.

2.1. Strong law of large numbers

Let H be a real Hilbert space with norm | · |, let (ut , Pu) be a family of H -valued
Markov processes, and let Ft be the σ -algebra generated by us , 0 ≤ s ≤ t . We shall
assume that, for any u ∈ H and Pu-a.e. ω ∈ �, the trajectory ut (ω), t ≥ 0, is con-
tinuous. (In what follows, a family of Markov processes satisfying this additional
condition is said to be continuous.) Let Pt(u, �) = Pu{ut ∈ �} be the transition
function for (ut , Pu) and let Pt and P∗

t be the corresponding Markov semi-groups
(see Section 1.1).

Let us fix a constant α ∈ (0, 1] and a weight function w ∈ W . For any f ∈
Cα(H, w), we set

St (f ) =
∫ t

0
f (us) ds, st (f ) = t−1St (f ). (2.1)

Suppose that the Markov family in question satisfies the following two conditions.
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Condition 2.1. The family (ut , Pu) has a unique stationary measure µ ∈ P(H),
and the mean value (f, µ) of any functional f ∈ Cα(H, w) is finite. Moreover,
there is a constant p > 1/2 and a continuous function κ(r), r ≥ 0, that do not
depend on f such that

Eu

∣
∣st (f ) − (f, µ)

∣
∣2p ≤ κ(|u|)|f |2p

w,αt−p for t ≥ 1, u ∈ H. (2.2)

Condition 2.2. There are constants q ∈ (0, 1
2 ) and s > 0, a random time M(ω) ≥

1, and a continuous function τ(r), r ≥ 0, such that, for any u ∈ H , we have

Pu

{|ut (ω)| ≤ w−1(tq) for t ≥ M
} = 1, (2.3)

EuM
s ≤ τ(|u|), (2.4)

where w−1(r) is the inverse function of w(r).

The following theorem shows that Conditions 2.1 and 2.2 imply an SLLN with
an estimate for the rate of convergence.

Theorem 2.3. Let (ut , Pu) be a family of continuous Markov processes in H that
satisfies Conditions 2.1 and 2.2 with some α ∈ (0, 1], w ∈ W , p > 1/2, q < 1/2,
and s > 0. Then there is a constant D > 0 not depending on the these parameters
such that the following statements hold.

(i) For any f ∈ Cα(H, w) and ν ∈ (0, 2p−1) there is a random time T (ω) ≥ 1
such that

∣
∣t−1St (f ) − (f, µ)

∣
∣ ≤ D |f |wt−

1
2 +rν for t ≥ T (ω), (2.5)

where rν = q ∨ ( 1+ν
4p

)

.
(ii) For any u ∈ H , the random time T is Pu-a.s. finite. Moreover, for any � ≤ s

satisfying the inequality � < ν/2, we have

EuT
� ≤ 2p

ν−2�
|f |2p

w,α κ(|u|) + τ(|u|). (2.6)

We note that if w ∈ W is bounded (and hence any functional in Cα(H, w) is
bounded), then Condition 2.2 can be omitted. In this case, we should take q = 0
and τ ≡ 0 in the formulation of the theorem; see [35] for a particular case of this
result.

Proof of Theorem 2.3. Let us fix a constant ν ∈ (0, 2p − 1) and an arbitrary func-
tion f ∈ Cα(H, w). There is no loss of generality in assuming that |f |w ≤ 1 and
(f, µ) = 0; the proof in the general case is similar.

Step 1. Let us set

tn = n2, δ = 1 − 1+ν
2p

and consider the events

Gn = {

ω ∈ � : |stn(f )| > n−δ
}

, n ≥ 1.
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Using (2.2) and the Chebyshev inequality, for any u ∈ H and n ≥ 1 we derive

Pu(Gn) ≤ n2pδ
Eu|stn(f )|2p ≤ κ(|u|)|f |2p

w,α n−1−ν . (2.7)

Let us define m(ω) as the smallest integer m ≥ 0 such that

|stn(f )| ≤ n−δ = t
− δ

2
n for n ≥ m + 1. (2.8)

Inequality (2.7) and the Borel–Cantelli lemma imply that, for any u ∈ H , the
random integer m(ω) is Pu-a.s. finite. Moreover, it follows from the definition that,
if m(ω) ≥ 1, then

|stm(f )| > m−δ. (2.9)

We now estimate |st (f )| for tn < t < tn+1, n ≥ m. To this end, we note that

|st (f ) − stn+1(f )| ≤ (

t−1 − t−1
n+1

) |Stn+1(f )| + t−1|St (f ) − Stn+1(f )|. (2.10)

In view of (2.8), we have

(

t−1 − t−1
n+1

) |Stn+1(f )| ≤ tn+1−t
t

|stn+1(f )| ≤ tn+1−tn
tn

t
− δ

2
n+1. (2.11)

Furthermore, it follows from (2.3) that, for t ≥ M(ω),

t−1|St (f ) − Stn+1(f )| ≤ t−1
∫ tn+1

t

|f (us)| ds ≤ t−1
∫ tn+1

t

w
(|us |

)

ds

≤ t−1
∫ tn+1

t

sqds ≤ t
q+1
n+1 − t

q+1
n

tn
. (2.12)

Since tn = n2, there is C > 0 such that for any r ∈ [1, 3/2] we have

t rn+1 − t rn

tn
≤ C (n + 1)2r−3 = C t

r− 3
2

n+1 .

Combining this inequality with (2.10) – (2.12) and (2.8), for tn < t < tn+1,
n ≥ m(ω), t ≥ M(ω), we obtain

|st (f )| ≤ |st (f ) − stn+1(f )| + |stn+1(f )|
≤ Ct

− 1+δ
2

n+1 + C t
q− 1

2
n+1 + t

− δ
2

n+1 ≤ D t−
1
2 +rν .

Thus, inequality (2.5) holds with T (ω) = M(ω) ∨ m(ω)2.

Step 2. We now prove (2.6). To this end, let us note that, for 0 < � < ν/2, we have

Eum
2� =

∞
∑

n=1

Pu{m = n}n2� ≤
∞
∑

n=1

Pu(Gn)n
2�

≤ κ(|u|) |f |2p
w,α

∞
∑

n=1

n−1−ν+2� ≤ 2p
ν−2�

κ(|u|) |f |2p
w,α, (2.13)

where we used inequalities (2.7), (2.9) and the definition of m(ω) and Gn. Further-
more, if � ≤ s, then (2.4) implies that
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EuM
� ≤ EuM

s ≤ τ(|u|). (2.14)

Now note that

EuT
� ≤ Eum

2� + EuM
�.

Hence, using (2.13) and (2.14) to estimate the right-hand side of the above inequal-
ity, we obtain (2.6). The proof of Theorem 2.3 is complete.

��
Theorem 2.3 implies the following corollary, in which the rate of convergence

is arbitrarily close to 1
2 .

Corollary 2.4. Let (ut , Pu) be a family of continuous Markov processes in H that
satisfies Conditions 2.1 and 2.2 with some fixed α ∈ (0, 1] and w ∈ W , arbi-
trary p > 1/2 and q < 1/2, and s = q−1. We denote by κp, τq , and Mq the
corresponding functions and random time in Conditions 2.1 and 2.2. Then the
following statements hold.

(i) For any f ∈ Cα(H, w) and ε ∈ (0, 1
2 ) there is a random time Tε(ω) ≥ 1 such

that
∣
∣t−1St (f ) − (f, µ)

∣
∣ ≤ D |f |wt−

1
2 +ε for t ≥ Tε(ω), (2.15)

where D > 0 is the constant constructed in Theorem 2.3.
(ii) For any u ∈ H , the random variable Tε is Pu-a.s. finite. Moreover, for any

m ≥ 1 there is a constant pm ≥ 1 such that

EuT
m
ε ≤ pm|f |pm

w,ακpm(|u|) + τm(|u|). (2.16)

Proof. We fix arbitrary ε ∈ (0, 1
2 ) and f ∈ Cα(H, w) and, for any ω ∈ �, denote

by Tε ≥ 0 the smallest constant for which (2.15) is fulfilled. The definition of Tε

implies that assertion (i) holds. To prove (ii), we choose an integer m ≥ 3 such that
ε ≤ m−1 and apply Theorem 2.3 with

p = m(m + 1)

2
, q = 1

m
, s = m, ν = 2m + 1.

Denoting by T (ω, m) the corresponding random variable and recalling the defini-
tion ofTε(ω), we see thatTε(ω) ≤ T (ω, m) for allω ∈ �. In view of inequality (2.6)
with � = m, we have

EuT (·, m)m ≤ pm |f |pm
w,α κpm(|u|) + τm(|u|),

where pm = m(m + 1). This completes the proof of the corollary. ��
In what follows, we shall need a sufficient condition for the validity of inequal-

ity (2.2). To this end, we introduce the following definition.

Definition 2.5. We shall say that the family (ut , Pu) is uniformly mixing for the
class Cα(H, w) if it has a unique stationary measure µ ∈ P(H) and there are
non-negative continuous functions ρ(r), r ≥ 0, and γ (t), t ≥ 0, such that
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γ̄ :=
∫ ∞

0
γ (t) dt < ∞, (2.17)

and, for any f ∈ Cα(H, w) and u ∈ H , we have 3

∣
∣Pt f (u) − (f, µ)

∣
∣ ≤ γ (t)ρ(|u|)|f |w,α, t ≥ 0. (2.18)

Note that, taking t = 0 in (2.18), we derive

|(f, µ)| ≤ C |f |w,α, |f (u)| ≤ C |f |w,α

(

ρ(|u|) + 1
)

, (2.19)

where C > 0 is a constant not depending on f and u. The proposition below shows
that uniform mixing combined with an additional assumption on the function ρ

implies Condition 2.1.

Proposition 2.6. Let (ut , Pu) be a family of continuous Markov processes that is
uniformly mixing for a class Cα(H, w). Suppose that the function ρ in Definition 2.5
satisfies the inequality

Euρ
2p(|ut |) ≤ σ(|u|) for all t ≥ 0, u ∈ H , (2.20)

where p ≥ 1 is an integer and σ(r), r ≥ 0, is a continuous function. Then Condi-
tion 2.1 holds with the above p and the function

κ(r) = (

2p(2p − 1)γ̄ γ (0)
)p

σ(r).

Proof. Let us fix an arbitrary functional f ∈ Cα(H, w). Without loss of generality,
we assume that |f |w ≤ 1 and (f, µ) = 0 and set

Ip(t) = sup
0≤r≤t

Eu

∣
∣Sr(f )

∣
∣2p

.

We have

Eu

∣
∣Sr(f )

∣
∣2p = Eu

∫

[0,r]2p

f (ur1) · · · f (ur2p ) dr1 · · · dr2p

= (2p)! Eu

∫

�p(r)

(

f (ur1) · · · f (ur2p )
)

dr1 · · · dr2p

= (2p)! Eu

∫

�p(r)

f (ur1) · · · f (ur2p−2)g(r2p−1, r2p) dr1 · · · dr2p ,

(2.21)

where we set

�p(r) = {

(r1, . . . , r2p) ∈ R
2p : 0 ≤ r1 ≤ · · · ≤ r2p ≤ r

}

,

g(s1, s2) = f (us1)Eu

(

f (us2) | Fs1

)

, s1 ≤ s2.

3 In particular, we assume that (f, µ) < ∞ for any f ∈ Cα(H, w).
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The integral on the right-hand side of (2.21) can be represented as

∫

�1(r)

g(r2p−1, r2p)

{ ∫

�p−1(r2p−1)

f (ur1) · · · f (ur2p−2) dr1 · · · dr2p−2

}

dr2p−1dr2p

= 1

(2p − 2)!

∫

�1(r)

g(r2p−1, r2p)
∣
∣Sr2p−1(f )

∣
∣2(p−1)

dr2p−1dr2p,

where the domain of integration �1(r) is taken for the variables r2p−1 and r2p.
Substituting this expression into (2.21) and applying the Hölder inequality, we
obtain

Eu

∣
∣Sr(f )

∣
∣2p =Cp

∫

�1(r)

(

Eu

∣
∣Sr2p−1(f )

∣
∣2p) p−1

p
(

Eu |g(r2p−1, r2p)|p) 1
p dr2p−1dr2p,

where Cp = 2p(2p − 1). Taking the supremum over r ∈ [0, t], we see that

Ip(t) ≤ Cp

(

Ip(t)
) p−1

p

∫

�1(t)

(

Eu |g(s1, s2)|p
) 1

p ds1ds2.

Thus, we have arrived at the inequality

Ip(t) ≤
(

Cp

∫

�1(t)

(

Eu |g(s1, s2)|p
) 1

p ds1ds2

)p

. (2.22)

We now estimate the function g(s1, s2). It follows from the Markov property
and inequality (2.18) that

∣
∣Eu

(

f (us2 | Fs1

)∣
∣ = ∣

∣Ps2−s1f (us1)
∣
∣ ≤ γ (s2 − s1)ρ(|us1 |)|f |w,α. (2.23)

Using inequality (2.18) with t = 0, we obtain

|g(s1, s2)| ≤ γ (s2 − s1) |f (us1)| ρ(|us1 |) |f |w,α

≤ γ (0)γ (s2 − s1) ρ2(|us1 |) |f |2
w,α.

It follows from (2.20) that

(

Eu |g(s1, s2)|p
) 1

p ≤ γ (0)γ (s2 − s1) |f |2
w,α

(

Euρ
2p(|us1 |)

) 1
p

≤ γ (0)γ (s2 − s1) |f |2
w,ασ (|u|) 1

p .

Substituting this inequality into (2.22) and taking into account (2.17), we arrive at
the required estimate (2.2). ��

Remark 2.7. It is clear that Proposition 2.6 remains valid for discrete-time Markov
processes. In what follows, we shall refer to it for both continuous and discrete
time.
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2.2. Central limit theorem

In this subsection, we show that the rate of convergence in CLT for uniformly mix-
ing Markov processes can be expressed in terms of the conditional variance for an
associated martingale. To formulate the corresponding result, we shall need some
notation.

Let (ut , Pu) be a family of continuous Markov processes that is uniformly mix-
ing in the sense of Definition 2.5.As before, we denote by Ft the filtration generated
by the Markov family. Let us fix u ∈ H and an arbitrary function f ∈ Cα(H, w)

such that (f, µ) = 0 and set

Mt =
∫ ∞

0

{

Eu

(

f (us) | Ft

) − Eu

(

f (us) | F0
)}

ds. (2.24)

We claim that, for any u ∈ H , the random variables Mt , t ≥ 0, are Pu-a.s. finite
and form a zero-mean martingale. Indeed, using (2.23) we derive

∫ ∞

0

∣
∣Eu

(

f (us) | Ft

)∣
∣ ds ≤

∫ t

0

∣
∣f (us)

∣
∣ ds + γ̄ |f |w,αρ(|ut |), t ≥ 0,

where γ̄ is the constant in (2.17). Thus, integral (2.24) converges absolutely for
Pu-a.e. ω. The fact that Mt is a zero-mean martingale can easily be established by
taking in (2.24) the (conditional) expectation.

For any integer k ≥ 1, we define a conditional variance for Mk by the formula

V 2
k =

k
∑

l=1

Eu

(

(Ml − Ml−1)
2 | Fl−1

)

.

Given a random variable ζ and a non-negative constant σ , we set

�σ (ζ, z) =
{

Fζ (z) − Φσ (z), σ > 0,

(|z| ∧ 1)
(

Fζ (z) − Φ0(z)
)

, σ = 0,

where Fζ (z) is the distribution function of ζ .
The following theorem reduces the CLT for uniformly mixing Markov families

to an LLN for the conditional variance (cf. [15, Theorem VIII.3.22]).

Theorem 2.8. Let (ut , Pu) be a family of Markov processes that is uniformly mix-
ing in the sense of Definition 2.5. Suppose that there is a constant a > 0 and a
continuous function κ(r), r ≥ 0, such that

Eu

(

sup
t∈[k,k+1]

exp{ρa(|ut |)}
)

≤ κ(|u|) for k ≥ 0, u ∈ H. (2.25)

Then the following statements hold:
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(i) For any σ̄ > 0 and ε ∈ (0, 1
4 ) there is a non-negative continuous function

hσ̄ (r1, r2) defined on R+ × R+ and increasing in both arguments such that,
for any σ ≥ σ̄ , q > 0, and f ∈ Cα(H, w) with (f, µ) = 0, we have

sup
z∈R

∣
∣�σ

(

t−
1
2 St (f ), z

)∣
∣ ≤ t−

1
4 +ε hσ̄ ,ε

(|u|, |f |w,α

)

+σ−4q t̂q(1−4ε)
Eu

∣
∣t̂−1V 2

t̂
− σ 2

∣
∣2q

, (2.26)

where t ≥ 1 and t̂ is the integer part of t .
(ii) There is a non-negative continuous function h(r1, r2) defined on R+ × R+

and increasing in both arguments such that, for any function f ∈ Cα(H, w)

with (f, µ) = 0 and any t ≥ 1, we have

sup
z∈R

∣
∣�0

(

t−
1
2 St (f ), z

)∣
∣ ≤ t−

1
4 h

(|u|, |f |w,α

) + t̂−
1
2
(

EuV
2
t̂

) 1
2 . (2.27)

Proof. We first describe the idea of the proof. Let us fix an arbitrary functional
f ∈ Cα(H, w) and, following a well-known argument (cf. [24, 15]), represent
St = St (f ) in the form

St = Mt̂ +
∫ t

t̂

f (us) ds −
∫ ∞

t̂

Eu

(

f (us) | Ft̂

)

ds +
∫ ∞

0
Eu

(

f (us) | F0
)

ds

= Mt̂ + ζt − g(ut̂ ) + g(u0), (2.28)

where t̂ is the integer part of t , Mt is defined by (2.24), and

ζt :=
∫ t

t̂

f (us) ds, (2.29)

g(u) :=
∫ ∞

0
Euf (us) ds =

∫ ∞

0
Psf (u) ds. (2.30)

It follows from (2.18) and (2.17) that the function g(u) is well defined and satisfies
the inequality

|g(u)| ≤ γ̄ ρ(|u|)|f |w,α, u ∈ H. (2.31)

Combining (2.28), (2.31), and (2.25), it is not difficult to show that

∣
∣t−

1
2 St − t̂−

1
2 Mt̂

∣
∣ ≤ const t−

1
4 for t � 1.

Therefore, to establish (2.26) and (2.27), it suffices to estimate the rate of conver-
gence of t̂−

1
2 Mt̂ to a Gaussian distribution in terms of the conditional variance Vt̂ .

This will be done by applying a result from [13].
The accurate proof is divided into three steps.

Step 1. Let us show that it suffices to establish inequalities (2.26) and (2.27)

with t−
1
2 St replaced by t̂−

1
2 Mt̂ . We shall need the following simple lemma, whose

proof is given in the Appendix (see Section 4.1).
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Lemma 2.9. Let ξ and η be real-valued random variables defined on a probability
space (�, F, P). Then for any σ ≥ 0 and ε > 0 we have

sup
z∈R

∣
∣�σ (ξ, z)

∣
∣ ≤ sup

z∈R

∣
∣�σ (η, z)

∣
∣ + P{|ξ − η| > ε} + cσ ε, (2.32)

where cσ = (σ
√

2π)−1 for σ > 0 and c0 = 2.

We wish to apply Lemma 2.9 with ξ = t−
1
2 St and η = t̂−

1
2 Mt̂ . To this end, we

first estimate Eu|ξ − η|. It follows from (2.28) that

∣
∣t−

1
2 St − t̂−

1
2 Mt̂

∣
∣ ≤ (

t t̂
1
2
)−1|St | + t̂−

1
2
∣
∣ζt − g(ut̂ ) + g(u0)

∣
∣. (2.33)

Inequality (2.25) implies that the conditions of Proposition 2.6 are satisfied for any
integer p ≥ 1. In particular, taking p = 1, we obtain

Eu|St | ≤ (

EuS
2
t

) 1
2 ≤ C1t

1
2 |f |w,ακ

1
2 (|u|). (2.34)

Using (2.17), (2.18) and the first inequality in (2.19), we derive

Eu|ζt | ≤
∫ t

t̂

∣
∣Eu|f (us)| − (|f |, µ)

∣
∣ ds + (|f |, µ)

≤ γ̄ ρ(|u|)|f |w,α + (|f |, µ) ≤ C2|f |w,αρ(|u|). (2.35)

Furthermore, inequalities (2.31) and (2.25) imply that

Eu

∣
∣g(ut̂ ) − g(u0)

∣
∣ ≤ γ̄ |f |w,αEu

(

ρ(|u0|) + ρ(|ut̂ |)
) ≤ C3γ̄ |f |w,ακ(|u|).

(2.36)

Combining (2.33) – (2.36), we see that

Eu

∣
∣t−

1
2 St − t̂−

1
2 Mt̂

∣
∣ ≤ t−

1
2 d1(|u|)|f |w,α, t ≥ 1.

Here and henceforth, we denote by di(r), r ≥ 0, non-negative continuous func-

tions. Applying now the Chebyshev inequality and using (2.32) with ε = t−
1
4 , we

see that

sup
z∈R

∣
∣�σ (t−1St , z)

∣
∣ ≤ sup

z∈R

∣
∣�σ (t̂−1Mt̂, z)

∣
∣ + t−

1
4 d2(|u|) (|f |w,α + 1

)

.

This implies the assertion formulated in the beginning of Step 1.

Step 2. We now prove (2.26) with t−
1
2 St replaced by t̂−

1
2 Mt̂ . We shall need the

following proposition, which can be obtained by a slight modification of the proof
of Theorem 3.7 in [13] (see Section 4.2 of the Appendix).
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Proposition 2.10. Let (�, F, P) be a probability space and let Mk , 0 ≤ k ≤ n,
be a zero-mean martingale with respect to σ -algebras Fk . Suppose that, for some
positive constants β and B, we have

E exp
(|Mk − Mk−1|β

) ≤ B, 1 ≤ k ≤ n. (2.37)

Then for any σ̄ > 0 and ε ∈ (0, 1
4 ) there is a constant Aε(σ̄ ) > 0 depending on β

and B such that, for any q > 0, we have

sup
z∈R

∣
∣�σ (n− 1

2 Mn, z)
∣
∣ ≤ Aε(σ̄ )n− 1

4 +ε + σ−4qnq(1−4ε)
E

∣
∣n−1V 2

n −σ 2
∣
∣2q

, (2.38)

where σ ≥ σ̄ is an arbitrary constant and V 2
n is the conditional variance:

V 2
n =

n
∑

k=1

E
(

(Mk − Mk−1)
2 | Fk−1

)

.

Let us fix t ≥ 1 and ε ∈ (0, 1
4 ). We wish to apply Proposition 2.10 with n = t̂ to

the zero-mean martingale Mk defined by (2.24). To this end, we shall show that con-
dition (2.37) is satisfied with β = a

2 (see (2.25)) and some constant B = B(|f |w,α).
This will imply the required inequality (2.26).

It follows from (2.24) and the Markov property that

Mk − Mk−1 =
∫ k

k−1
f (us) ds + g(uk) − g(uk−1). (2.39)

Therefore, using the second inequality in (2.19) and (2.31), we obtain

|Mk − Mk−1| ≤ C5|f |w,α

(

1 + sup
s∈[k−1,k]

ρ(|us |)
)

,

whence it follows that

exp
(|Mk − Mk−1| a

2
) ≤ C6 exp

(

C6|f |aw,α

)

sup
s∈[k−1,k]

exp{ρa(|us |)},

Inequality (2.37) follows now from (2.25).

Step 3. To prove inequality (2.27) with t−
1
2 St replaced by t̂−

1
2 Mt̂ , it suffices to

show that

sup
z∈R

∣
∣�0(k

− 1
2 Mk, z)

∣
∣ ≤ (

k−1
EuV

2
k

) 1
2 , k ≥ 1. (2.40)

It is a matter of direct verification to show that EuM
2
k = EuV

2
k . Therefore, by

the Chebyshev inequality, for any z > 0 we have

Pu

{|k− 1
2 Mk| ≥ z

} ≤ z−1k− 1
2 Eu|Mk| ≤ z−1k− 1

2
(

EuV
2
k

) 1
2 .

To prove (2.40), it remains to note that
∣
∣�0(k

− 1
2 Mk, z)

∣
∣ ≤ (|z| ∧ 1

)

Pu

{|k− 1
2 Mk| ≥ |z|}.

The proof of Theorem 2.8 is complete. ��



Law of large numbers and central limit theorem for randomly forced PDE’s 237

3. Proof of the main results

We shall confine ourselves to the case of the Navier–Stokes system perturbed by
the random force (0.4). The proof of the results on the discrete-time RDS (1.1) is
similar and technically much simpler.

3.1. Proof of theorem 1.4

We wish to apply Corollary 2.4. To this end, we shall show that Conditions 2.1
and 2.2 are satisfied for any p > 1/2, q < 1/2 and s = q−1, and that we can take

κp(r) = apedr2
, τq(r) = bqedr2

, (3.1)

where ap and bq are some positive constants. Once this claim is established, Cor-
ollary 2.4 will imply all required assertions.

Step 1: Checking Condition 2.1. Let us fix a constant α ∈ (0, 1] and a weight
function w ∈ W satisfying (1.15). As was mentioned in the beginning of Sec-
tion 1.2, the Markov family (ut , Pu) associated to the problem (0.3), (0.4) has
a unique stationary measure µ ∈ P(H), and there are positive constants d, C,
and β such that (1.14) holds for any u ∈ H and f ∈ Cα(H, vδ) with δ ∈ (0, d].
Furthermore, it is shown in [3, 34] that 4

Eue
d|ut |2 ≤ C1 ed|u|2 , t ≥ 0, u ∈ H. (3.2)

Here and henceforth, we denote by Ci positive constants not depending on u and t .
What has been said implies that the family (ut , Pu) is uniformly mixing for

the class Cα(H, w) in the sense of Definition 2.5. Indeed, it follows from (1.15)
that the space Cα(H, w) is continuously embedded into Cα(H, vδ) for any δ > 0.
Hence, by (1.14), for every δ > 0 there is a constant Aδ > 0 such that for any
functional f ∈ Cα(H, w) inequality (2.18) holds with

γ (t) = Aδe
−βt , ρ(r) = vδ(r). (3.3)

It is clear that (2.17) also holds.
We now fix an arbitrary integer p ≥ 1 and note that the conditions of Prop-

osition 2.6 are satisfied. Indeed, taking δ = d
2p

in (3.3) and using (3.2), we see
that

Euρ
2p(|ut |) = Eue

d|ut |2 ≤ C ed|u|2 for t ≥ 0.

Thus, Proposition 2.6 applies, and we conclude that Condition 2.1 is satisfied for
any p > 1/2 with the function κp(r) given in (3.1).

Step 2: Checking Condition 2.2. We shall show that Condition 2.2 is satisfied
for any positive constants s and q. Inequality (1.15) implies that, for any δ > 0, we
have

w(r) ≤ Cδe
δr2

for all r ≥ 0,

4 We can assume that the constant d in inequalities (1.14) and (3.2) is the same.
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where Cδ ≥ 1 is a constant depending on δ. It follows that

w−1(r)2 ≥ δ−1 log(r/Cδ) ≥ (2δ)−1 log r for r ≥ w(0) ∨ C2
δ .

Hence, the required assertion will be established if for any q > 0 and s > 0 we
find a constant δ > 0 such that, for any u ∈ H , the random variable

M(ω) = min{T ≥ 0 : |ut (ω)|2 ≤ q
2δ

log t for t ≥ T }

is Pu-a.s. finite, and

EuM
s ≤ bq,se

d|u|2 . (3.4)

To this end, let us set

Uk = sup
t∈[k,k+1]

|ut |2, (3.5)

and show that (cf. (3.2))

Eue
νUk ≤ C2e

2ν|u|2 , k ≥ 0, u ∈ H, (3.6)

where ν ≤ d
2 is a positive constant not depending on u and t . Indeed, it follows

from the Markov property that

Eue
νUk = Eu

{

Eu

(

eνUk | Fk

)} = Eu

(

Euk
eνU0

)

. (3.7)

Now note that, applying the Hölder inequality, we can show that (3.2) holds with d

replaced by any d ′ ∈ [0, d]. Combining inequalities (3.7) and (3.2) (with d = 2ν),
we see that it suffices to prove (3.6) for k = 0.

As is shown in [21] (see Lemma 2.3 with T = 1), there is a constant c ∈ (0, d]
such that

Pu

{

U0 − B0 − |u|2 ≥ z
} ≤ e−cz, z ∈ R, (3.8)

where B0 is defined in (1.2). Since U0 ≥ 0, it follows that

Eue
νU0 =

∫ ∞

0
Pu

{

eνU0 > z
}

dz = 1 +
∫ ∞

1
Pu

{

U0 > ν−1 log z
}

dz

≤ 1 + ec(B0+|u|2)
∫ ∞

1
exp

{

−c log z

ν

}

dz. (3.9)

Thus, if ν = c
2 , then the right-hand side of (3.9) is equal to 1 + e2ν(B0+|u|2). This

completes the proof of (3.6).
We now prove that the random constant M is Pu-a.s. finite and that (3.4) holds.

Let us fix an arbitrary q > 0 and define a random integer by the formula

K(ω) = {

m ≥ 0 : Uk ≤ q
2δ

log k for k ≥ m + 1
}

.
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Combining the Chebyshev inequality with (3.6), for 2δ < qν we derive

∞
∑

k=1

Pu

{

Uk >
q

2δ
log k

}

≤
∞
∑

k=1

k− qν
2δ Eue

νUk ≤ C3e
2ν|u|2 .

Hence, by the Borel–Cantelli lemma, we have Pu{K < ∞} = 1 for any u ∈ H .
Moreover, if δ > 0 is so small that 2δ(s + 1) < qν, then

EuK
s =

∞
∑

k=1

kPu{K = k} ≤
∞
∑

k=1

kPu

{

Uk >
q

2δ
log k

}

≤
∞
∑

k=1

ks− qν
2δ Eue

νUk ≤ C4e
2ν|u|2 .

It remains to note that K ≥ M for all ω ∈ �, and therefore the above inequality
implies (3.4). The proof of Theorem 1.4 is complete.

3.2. Proof of theorem 1.5

We first describe the scheme of the proof. The Markov family (ut , Pu) associated
with the NS system (0.3), (0.4) is uniformly mixing for the class Cα(H, wp) for any
α ∈ (0, 1] and p ≥ 1. Moreover, using (3.3), it is not difficult to prove that (2.25)
is also valid. Therefore, by Theorem 2.8, inequalities (2.26) and (2.27) hold. To
obtain the required assertion, we show that

V 2
k =

k−1
∑

l=0

ϕ(ul), (3.10)

where ϕ ∈ Cγ (H, vδ) for some sufficiently small γ ∈ (0, 1] and δ > 0. This will
imply that k−1V 2

k converges (in an appropriate sense) to the mean value (ϕ, µ) as
k → ∞. It turns out that (ϕ, µ) = σ 2

f . Therefore, if σf > 0, then taking σ = σf

in (2.26) and using Proposition 2.6, we prove assertion (i) of the theorem. If σf = 0,
then a similar argument enables one to establish assertion (ii).

The accurate proof is divided into several steps.

Step 1. We first show that the family (ut , Pu) is uniformly mixing and that inequal-
ity (2.25) holds. To this end, we shall need the following lemma.

Lemma 3.1. Under the conditions of Theorem 1.5, for any α ∈ (0, 1] and p > 0
there are positive constants C, β, and m such that

∣
∣Pt f (u) − (f, µ)

∣
∣ ≤ C e−βt |f |wp,α(1 + |u|)m, t ≥ 0, (3.11)

where wp(r) = (1 + r)p and f ∈ Cα(H, wp) is an arbitrary functional.
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Inequality (3.11) is an analogue of (1.14) for Hölder continuous functionals
with polynomial growth at infinity. To prove (3.11), it suffices to repeat the scheme
used in [22, Section 3] for deriving (1.14); we shall not dwell on it.

We now show that (2.25) holds for some a > 0. Indeed, in view of (3.11), we
can take ρ(r) = (1 + r)m. Therefore, if a = 1

m
, then

sup
t∈[k,k+1]

exp
(

ρa(|ut |)
) ≤ exp

(

1 + U
1
2
k

)

, k ≥ 0, (3.12)

where the random variable Uk is defined by (3.5). Hence, using the Markov property,
we obtain (cf. (3.7))

Eu

(

sup
t∈[k,k+1]

exp{ρa(|ut |)}
)

≤ Eu exp
(

1 + U
1
2
k

) = Eu

(

Euk
exp

(

1 + U
1
2

0

))

.

(3.13)

Furthermore, it follows from (3.6) that

Eu exp
(

1 + U
1
2

0

) ≤ C5e
d|u|2 .

Combining this estimate with (3.13), we derive

Eu

(

sup
t∈[k,k+1]

exp{ρa(|ut |)}
)

≤ C6Eue
d|uk |2 , k ≥ 0, u ∈ H. (3.14)

Using (3.2) to estimate the right-hand side of (3.14), we obtain the required inequal-
ity (2.25), in which κ(r) = edr2

. Thus, the conditions of Theorem 2.8 are fulfilled,
and statements (i) and (ii) take place.

Step 2. Our next goal is to estimate the expectations on the right-hand sides of (2.26)
and (2.27). To this end, we first establish (3.10). Namely, we shall show that there
is a functional ϕ : H → R belonging Cγ (H, vδ) for any δ > 0 and a sufficiently
small γ = γ (δ, α, p) ∈ (0, 1] such that, for any u ∈ H , relation (3.10) holds Pu-
almost surely.

Let us recall that (see (2.39), (2.29), and (2.30))

Ml − Ml−1 = ζ−
l + g(ul) − g(ul−1), l = 1, . . . , k,

where ζ−
l = ∫ l

l−1 f (us) ds. Therefore, by the Markov property, for any u ∈ H we
have

Eu

(

(Ml − Ml−1)
2 | Fl−1

) = ϕ(ul−1) Pu-a.s., (3.15)

where we set

ϕ(u) = EuM
2
1 = Eu

(

ζ−
1 + g(u1) − g(u0)

)2
. (3.16)

Thus, relation (3.10) holds Pu-a.s., and it remains to show that ϕ ∈ Cγ (H, vδ).
We shall need the following lemma, whose proof is given in the Appendix (see

Section 4.3).
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Lemma 3.2. Under the conditions of Theorem 1.5, the Markov semigroup Pt asso-
ciated with the problem (0.3), (0.4) possesses the following properties:

(i) For any α ∈ (0, 1], p > 0, and δ > 0 there is γ > 0 such that the operator

Pt : Cα(H, wp) → Cγ (H, vδ), t ≥ 0, (3.17)

is continuous, and its norm is uniformly bounded on any interval [0, T ].
Moreover, if f ∈ Cα(H, wp) and (f, µ) = 0, then the function g(u) de-
fined by (1.18) belongs to Cγ (H, vδ), and its norm can be estimated by
const |f |wp,α .

(ii) For any α ∈ (0, 1] and sufficiently small ν > 0 there are γ > 0 and δ > 0
such that the operator

Pt : Cα(H, vν) → Cγ (H, vδ), t ≥ 0, (3.18)

is continuous, and its norm is uniformly bounded on any interval [0, T ]. More-
over, the constants γ and δ can be chosen in such a way that δ → 0 as ν → 0.

It follows from relation (3.16) that

ϕ(u) = Eu(ζ
−
1 )2 + Eug

2(u1) + Eug
2(u0)

+2 Eu

(

ζ−
1 g(u1)

) − 2 Eu

(

ζ−
1 g(u0)

) − 2 Eu

(

g(u1)g(u0)
)

. (3.19)

By Lemma 3.2, for any δ > 0 there is γ ∈ (0, 1] such that the functionals

Eug
2(u0) = g2(u), Eug

2(u1) = P1g
2(u),

Eu

(

g(u0)g(u1)
) = g(u)P1g(u), Eu

(

ζ−
1 g(u0)

) = g(u)

∫ 1

0
Psf (u) ds

belong to the space Cγ (H, vδ). Furthermore, using the Markov property, we write

Eu

(∫ 1

0
f (us) ds

)2

=
∫ 1

0

∫ 1

0
Eu

(

f (us)f (ut )
)

dsdt

= 2
∫ 1

0

∫ t

0
Ps

(

f Pt−sf
)

(u) dsdt,

Eu

(

g(u1)

∫ 1

0
f (us) ds

)

=
∫ 1

0
Ps

(

f P1−sg
)

(u) ds.

Applying again Lemma 3.2, we see that these two functions are also elements
of Cγ (H, vδ) for any δ > 0 and sufficiently small γ > 0. What has been said
implies that for any δ > 0 there is a constant γ > 0 and a non-negative increasing
function dδ(r) defined for r ≥ 0 such that

|ϕ|vδ,γ ≤ dδ

(|f |wp,α

)

. (3.20)
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Step 3. We now estimate the second terms in the right-hand sides of (2.26) and (2.27).
To this end, we shall use Proposition 2.6.

Let us fix an arbitrary ε > 0 and choose an integer q ≥ 1 and a constant δ > 0
such that

16qε > 1, 2qδ ≤ d, (3.21)

where d > 0 is so small that (1.14) holds for δ ∈ (0, d] and inequality (3.2) is also
valid. As was shown in Step 3, we can find γ ∈ (0, 1] such that ϕ ∈ Cγ (H, vδ).

We claim that the conditions of the discrete analogue of Proposition 2.6 are
satisfied with α = γ , w = vδ and p = q. Indeed, the second inequality in (3.21)
implies that δ ≤ d . Therefore, by (1.14), the family (ut , Pu) is uniformly mixing for
the class Cγ (H, vδ) in the sense of Definition 2.5, and we can take ρ(r) = vδ(r).
Furthermore, it follows from (3.2) that (2.20) holds with σ(r) = edr2

. Hence, by
Proposition 2.6 (see Remark 2.7), for any u ∈ H and k ≥ 1, we have

Eu

∣
∣k−1V 2

k − (ϕ, µ)
∣
∣2q ≤ C7 |ϕ|2q

vδ,ε
ed|u|2 k−q

≤ C7 dδ

(|f |wp,α

)2q
ed|u|2 k−q, (3.22)

where C7 > 0 does not depend on u and k, and we used inequality (3.20).
Suppose now that we have established the relation

(ϕ, µ) = σ 2
f , (3.23)

where σf is defined in (1.19). If σf ≥ σ̄ , then setting k = t̂ , substituting (3.22)
and (3.23) into (2.26), and taking into account the first inequality in (3.21), we
obtain (1.20). Similarly, if σf = 0, then applying the Cauchy inequality to estimate
the second term on the right-hand side of (2.27) and using inequality (3.22) in
which (ϕ, µ) = 0, k = t̂ , and q = 1, we get (1.21). Thus, Theorem 1.5 will be
established if we prove (3.23).

Step 4. Let us recall that Eµ stands for the mean value corresponding to the sta-
tionary measure (see (1.6)). In view of (3.16), we have

(ϕ, µ) = Eµ

(

ζ−
1 + g(u1) − g(u0)

)2
. (3.24)

On multiplying out the brackets, we represent the right-hand side of (3.24) as a
sum of six terms (cf. relation (3.19) with Eu replaced by Eµ). Let us calculate each
of them. Using the Markov property and the stationarity of µ, we derive

Eµ

(

ζ−
1

)2 =
∫ 1

0

∫ 1

0
Eµ

(

f (us)f (ut )
)

dsdt

= 2
∫ 1

0

∫ t

0
Eµ

(

f (us)Eµ(f (ut ) | Fs)
)

dsdt

= 2
∫ 1

0

∫ t

0
Eµ

(

f (us)Pt−sf (us)
)

dsdt = 2
∫ 1

0

∫ t

0
(f Pt−sf, µ) dsdt

= 2
∫ 1

0
(1 − s)(f Psf, µ) ds. (3.25)
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Similar arguments combined with the relation

Psg =
∫ ∞

0
Ps+t f dt = g −

∫ s

0
Pt f dt

enable one to show that

Eµg2(u0) = Eµg2(u1) = (g2, µ),

Eµ

(

g(u0)g(u1)
) = (gP1g, µ) = (g2, µ) −

∫ 1

0
(gPsf, µ) ds,

Eµ

(

ζ−
1 g(u0)

) =
∫ 1

0
(gPsf, µ) ds,

Eµ

(

ζ−
1 g(u1)

) =
∫ 1

0
(f Psg, µ) ds = (fg, µ) −

∫ 1

0
(1 − s)(f Psf, µ) ds.

Substituting these relations together with (3.25) into (3.24), we derive

(ϕ, µ) = 2(fg, µ).

Recalling the definition of σf (see (1.19)), we see that this relation coincides
with (3.23). The proof of Theorem 1.5 is complete.

4. Appendix

4.1. Proof of lemma 2.9

We confine ourselves to the case σ > 0, since the proof for σ = 0 is similar. For
any ε > 0 and z ∈ R, we have

Fξ (z) ≤ P{ξ ≤ z, |ξ − η| ≤ ε} + P{|ξ − η| > ε} ≤ Fη(z + ε) + P{|ξ − η| > ε}.

It follows that

�σ (ξ, z) ≤ �σ (η, z + ε) + Φσ (z + ε) − Φσ (z) + P{|ξ − η| > ε}
≤ �σ (η, z + ε) + ε

σ
√

2π
+ P{|ξ − η| > ε}. (4.1)

Interchanging the roles of ξ and η and replacing z by z − ε, we obtain

�σ (ξ, z) ≥ �σ (η, z − ε) − ε

σ
√

2π
− P{|ξ − η| > ε}. (4.2)

Combining (4.1) and (4.2), we derive (2.32).
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4.2. Proof of proposition 2.10

Let us fix an arbitrary ε > 0. As is shown in [13] (see inequality (3.74) with

� = n− 1
2 +2ε and p = 1−4ε

8ε
),

sup
z∈R

∣
∣�1(n

− 1
2 Mn, z)

∣
∣ ≤ Aε n− 1

4 +ε + P
{|n−1V 2

n − 1| > n− 1
2 +2ε

}

, (4.3)

where Aε > 0 is a constant depending only on B and β. Applying the Chebyshev
inequality to the second term on the right-hand side of (4.3), we obtain (2.38)
with σ = 1.

To prove (2.38) for an arbitrary σ > 0, let us note that

�σ (n− 1
2 Mn, z) = �1(n

− 1
2 Mn(σ), σ−1z),

where we set Mn(σ) = Mn/σ . It follows from the estimate

|Mn(σ)| β
2 ≤ |Mn|β + 1

4σβ

that the zero-mean martingale Mn(σ) satisfies inequality (2.37) with β and B

replaced by β
2 and Bσ := B exp( 1

4σβ ), respectively.
Let us fix σ̄ > 0. The constants Bσ are uniformly bounded for σ ≥ σ̄ . Hence,

by inequality (2.38) with σ = 1, there is Aε(σ̄ ) > 0 such that

sup
z∈R

∣
∣�σ (n− 1

2 Mn, z)
∣
∣ = sup

z∈R

∣
∣�1(n

− 1
2 Mn(σ), σ−1z)

∣
∣

≤ Aε(σ̄ )n− 1
4 +ε + nq(1−4ε)

E
∣
∣n−1V 2

n (σ ) − 1
∣
∣2q

,

where V 2
n (σ ) is the conditional variance for Mn(σ). It remains to note that V 2

n (σ ) =
σ−2V 2

n . The proof is complete.

4.3. Proof of lemma 3.2

We shall confine ourselves to the proof of (i), since assertion (ii) can be established
using similar ideas.

Let us fix arbitrary constants α ∈ (0, 1], p > 0, δ > 0 and a functional
f ∈ Cα(H, wp) with norm |f |wp,α ≤ 1. The continuity of operator (3.17) and
uniform boundedness of its norm will be established if we show that

∣
∣Pt f (u)

∣
∣ ≤ C eδ|u|2 , (4.4)

∣
∣Pt f (u) − Pt f (v)

∣
∣ ≤ C |u − v|γ ebt+δ(|u|2+|v|2), (4.5)

where u, v ∈ H , t ≥ 0, and γ , b, C are some positive constants depending only
on α, p, and δ. Inequality (4.4) follows immediately from (3.2). To prove (4.5), let
us denote by ut and vt the solutions of the problem (0.3), (0.4) that correspond to
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the initial functions u and v, respectively. Then the difference ut − vt satisfies the
inequality (see [38])

|ut − vt | ≤ |u − v| exp
(

C1

∫ t

0
‖us‖2ds

)

, t ≥ 0, (4.6)

where ‖ · ‖ denotes the H 1 norm. Now note that, for any γ ∈ (0, α], we have

∣
∣f (ut ) − f (vt )

∣
∣ ≤ |ut − vt |α

(

wp(|ut |) + wp(|vt |)
)

≤ C2|ut − vt |γ
(

1 + |ut | + |vt |
)p+1

. (4.7)

Combining (4.6) and (4.7), we derive

∣
∣Pt f (u) − Pt f (v)

∣
∣ ≤ E

∣
∣f (ut ) − f (vt )

∣
∣

≤ C3 |u − v|γ E exp
(

γC1

∫ t

0
‖us‖2ds + γ (|ut |2 + |vt |2)

)

. (4.8)

It follows from Lemma 2.3 in [21] that

Pu

{

|ut |2 +
∫ t

0
‖us‖2ds − B0t − |u|2 ≥ z

}

≤ e−cz for all t, z ∈ R,

where c > 0 does not depend on t, z and u ∈ H . Therefore, if γ > 0 is suffi-
ciently small, then the expectation on the right-hand side of (4.8) does not exceed
ebt+δ(|u|2+|v|2) (cf. (3.9)). This completes the proof of (4.5).

We now fix a functional f ∈ Cα(H, wp) such that |f |wp,α ≤ 1 and (f, µ) = 0
and consider the function g(u). Inequalities (2.31) and (3.11) imply that

|g(u)| ≤ C4
(

1 + |u|)m
, u ∈ H. (4.9)

Furthermore, it follows from (3.11) and (4.5) that, for any u, v ∈ H and T > 0,
we have

∣
∣g(u) − g(v)

∣
∣ ≤

∫ T

0

∣
∣Pt f (u) − Pt f (v)

∣
∣ dt +

∫ ∞

T

(|Pt f (u)| + |Pt f (v)|) dt

≤ C5 |u − v|γ ecT +δ(|u|2+|v|2) + C6e
−βT (1 + |u| + |v|)m. (4.10)

Minimizing the right-hand side of (4.10) with respect to T , we obtain

∣
∣g(u) − g(v)

∣
∣ ≤ C7 |u − v|γ̂ eδ(|u|2+|v|2).

where γ̂ = βγ
β+c

. This completes the proof of assertion (i).
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