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Abstract. Let �n = (γij ) be an n × n random matrix such that its distribution is the nor-
malized Haar measure on the orthogonal group O(n). Let also Wn := max1≤i,j≤n |γij |. We
obtain the limiting distribution and a strong limit theorem on Wn. A tool has been developed
to prove these results. It says that up to n/(log n)2 columns of �n can be approximated
simultaneously by those of some Y n = (yij ) in which yij are independent standard normals.
Similar results are derived also for the unitary group U(n), the special orthogonal group
SO(n), and the special unitary group SU(n).

1. Introduction

To study the generality of mutual incoherence of two orthogonal bases, Donoho
and Huo [14] studied a behavior of the largest entry in a random orthogonal matrix.
Their result is stated in italics as follows:

Let � = (γij ) denote a real n × n orthogonal matrix, uniformly distributed on
the orthogonal group O(n). Let Wn = max1≤i,j≤n |γij |. Then,

P
{
Wn > 2

√
log(n)/n(1 + ε)

}
→ 0 (1.1)

as n → ∞ for any ε > 0.

This result says roughly that the order of Wn, measured in probability, is at
most 2

√
log(n)/n. Their simulations also suggest that a normalized Wn converges

to some probability distribution.
In this paper, for a sequence of such Wn’s, we find out its almost sure behavior.

Moreover, we prove that the distribution of Wn converges weakly to an extreme
distribution. Further, we show that the similar results also hold for unitary groups
U(n), special orthogonal groups SO(n), and the special unitary group SU(n).

First, let us review the definitions of the groups mentioned above. The orthogo-
nal group O(n) and the unitary group U(n) are the sets of all n×n real orthogonal
matrices and complex unitary matrices, respectively. The special orthogonal group
SO(n) and the special unitary group SU(n) are the subgroups of O(n) and U(n)

such that every matrix in these subgroups has determinant equal to 1. All of the
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above groups are equipped with the natural matrix product. For details, see [19]
and [35].

For any compact group G with multiplication “·”, for example, O(n), U(n),
SO(n) and SU(n), there exists an unique Haar-invariant probability measure µ,

that is, µ(g1 · C · g2) = µ(C) for any measurable subset C ⊂ G, g1 ∈ G and
g2 ∈ G. We call such µ a normalized Haar measure, or normalized Haar distri-
bution, when G is equal to one of the above four groups. To check these details
readers are referred to [16], [17] or [30].

Now we state our results. For any n × n matrix �n = (γij ), we define

Wn = max
1≤i,j≤n

|γij |. (1.2)

As usual, log x is the natural logarithm of a positive number x.

The result in (1.1) says roughly that the magnitude of Wn is at most 2
√

(log n)/n.

The following gives the property of Wn in terms of convergence in probability.

Proposition 1. (i) Suppose �n follows the normalized Haar measure on O(n) or
SO(n). Then

√
n/ log nWn converges to 2 in probability as n → ∞;

(ii) if �n follows the normalized Haar measure on U(n) or SU(n), then√
n/ log nWn converges to

√
2 in probability as n → ∞.

This result is stronger than (1.1) by the definition of convergence in probability.
We next look at the almost sure behavior for a sequence of such Wn’s. To obtain

an almost behavior, a structure of the sequence {Wn; n ≥ 1} has to be assumed.
Inspired by a common procedure for simulating a sequence of Haar distributed
matrices in statistical programs, we assume that {Wn; n ≥ 1} is an independent
sequence. A result is obtained as follows:

Theorem 1. Let {�n; n ≥ 1} be a sequence of independent random matrices. Let
also Wn be as in (1.2). If, for each n ≥ 1, �n follows the normalized Haar dis-
tribution on the orthogonal group O(n) or the special orthogonal group SO(n),

then

(i) lim inf
n→∞

√
n

log n
Wn = 2 a.s. and lim sup

n→∞

√
n

log n
Wn =

√
6 a.s.;

(ii) the sequence {
√

n/ log nWn, n ≥ 2} is dense in [2,
√

6 ] a.s.

In contrast to Proposition 1 the quantity
√

n/ log nWn, under the independence
assumption, does not concentrate on any particular value in the long run. Instead,
the sequence {√n/ log nWn, n ≥ 2} visits every neighborhood whose center is in
[2,

√
6] almost surely. This has an analogy with the classical Hartman-Wintner-

Strassen’s Law of Iterated Logarithm: let {ξi; i ≥ 1} be a sequence of i.i.d. random
variables with mean zero, variance one and partial sums Sn = ∑n

i=1 ξi . Let also
dn = √

2n log(log n). Then Sn/dn converges to zero in probability as n goes to
infinity. However, lim supn Sn/dn = 1 a.s., and lim infn Sn/dn = −1 a.s. and
{Sn/dn; n ≥ 3} is dense in [−1, 1] almost surely. See, e.g., section 7.9 from [15]
for the real case and section 8.2 from [28] for extensions to random variables taking
values in Banach spaces.
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The heuristic for deriving Theorem 1 comes from the maximum of independent
standard normals. One can check easily that the above result also holds if

√
nWn is

replaced by W ′
n = max1≤i≤n2 |ξn,i |, where {ξn,i; 1 ≤ i ≤ n2, n ≥ 1} is a triangular

array of i.i.d. standard normals.
The next result is about the unitary groups.

Theorem 2. Suppose that {�n; n ≥ 1} is a sequence of independent random matri-
ces. Let Wn be as in (1.2). If, for each n ≥ 1, �n follows the normalized Haar
distribution on the unitary group U(n) or the special unitary group SU(n), then

(i) lim inf
n→∞

√
n

log n
Wn =

√
2 a.s. and lim sup

n→∞

√
n

log n
Wn =

√
3 a.s.;

(ii) the sequence {
√

n/ log nWn, n ≥ 2} is dense in [
√

2,
√

3 ] a.s.

The key difference of proving Theorems 1 and 2 is that normalized entries of �n

in Theorem 2 asymptotically follow the exponential distribution with parameter
one. But the counterparts in Theorem 1 follow asymptotically the standard normal
distribution. This distinction is also reflected in the following two results on limit-
ing distributions. We first consider the case that �n is an Haar orthogonal invariant
matrix.

Theorem 3. Suppose �n has the normalized Haar distribution on the orthogonal
group O(n) or the special orthogonal group SO(n). Then

lim
n→∞ P(nW 2

n − 4 log n + log(log n) ≤ x) = exp(−Ke−x/2)

for any x ∈ R, where K = √
1/2π.

Again, the heuristic of figuring out the above result is thinking of
√

nWn as the
maximum of the absolute values of n2 i.i.d. standard normals. Then the above con-
clusion is drawn quickly. Actually, there are similar results for i.i.d. normals in
the literature. For instance, on p. 377 from [8] the following result is stated: Let
W ′′

n = max1≤i≤n ξi, where {ξi; 1 ≤ i ≤ n} are i.i.d. standard normals. Then

P(W ′′
n ≤ (2 log n − log(log n) − log(4π) + 2x)1/2) → e−e−x

(1.3)

as n → ∞ for any x ∈ R. This can also be seen in Theorem 1.5.3 on p.14 from
[27]. Our Theorem 3 can be rewritten in the following form:

P(
√

nWn ≤ (4 log n − log(log n) − log(2π) + 2x)1/2) → e−e−x

, x ∈ R,

(1.4)

as n → ∞. One can see clearly that W ′′
n2 and

√
nWn share the same scale and

the same limiting distribution. The only difference is the normalized constant:
− log(8π) corresponding to W ′′

n2 in (1.3) and − log(2π) in (1.4). This is because
there is no absolute value sign in the definition of W ′′

n . But there is such sign in that
of Wn.

For the unitary group and its subgroup SU(n), we have the following conclu-
sion:
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Theorem 4. Suppose �n follows the normalized Haar distribution on the unitary
group U(n) or the special unitary group SU(n). Then,

lim
n→∞ P(nW 2

n − 2 log n ≤ x) = exp(−e−x)

for any x ∈ R.

Historically, Genedenko [18] studied the limiting behavior ofUn:=max1≤i≤n ξi,

where {ξi; i = 1, 2, · · · , } is a sequence of i.i.d. random variables. He actually ob-
tained the sufficient and necessary conditions for different limiting distributions of
Un. A recent treatment in this direction can be found in [33]. When the ξi’s are
weakly dependent, a good way to study Un is the Chen-Stein Poisson approxima-
tion method. See, e.g., Arratia, Goldstein, and Gordon [3] and Jiang [21] for details
and applications in biology in Jiang [22].

The primary concern of Random Matrix Theory is the eigenvalues of different
random matrices; see [29] for a book-length treatment. However, Diaconis, Eaton
and Lauritzen [11], and D’Aristotile, Diaconis and Newman [7] studied the entries
of random orthogonal matrices based on statistical problems. As mentioned earlier,
this paper investigates the entries of Haar invariant matrices based on an image
analysis problem initially studied by Donoho and Huo [14]. On the other hand, the
maxima of the entries of sample correlation matrices is treated by Jiang [23] due to
a statistical testing problem. It seems that the study of entries of random matrices
is also interesting.

The proofs of the above theorems rely on the following approximation theo-
rems. The first one is about Haar measures on the orthogonal groups. It describes
how an Haar invariant orthogonal matrix is similar to a matrix with i.i.d. standard
normals as entries. Such a relationship is characterized by measuring their compo-
nent-wise differences. It is also the rigorous mathematical implementation of our
heuristics of deriving Theorems 1 and 3 as mentioned earlier.

Theorem 5. For each n ≥ 2, there exists matrices �n = (γij )1≤i,j≤n and Y n =
(yij )1≤i,j≤n whose 2n2 elements are random variables defined on the same prob-
ability space such that

(i) the law of �n is the normalized Haar measure on the orthogonal group On;
(ii) {yij ; 1 ≤ i, j ≤ n} are i.i.d. random variables with the standard normal

distribution;
(iii) set εn(m) = max1≤i≤n,1≤j≤m |√nγij − yij | for m = 1, 2, · · · , n. Then

P(εn(m) ≥ rs + 2t) ≤ 4me−nr2/16 + 3mn

(
1

s
e−s2/2 + 1

t

(
1 + t2

3(m + √
n)

)−n/2
)

for any r ∈ (0, 1/4), s > 0, t > 0, and m ≤ (r/2)n.

The idea behind the proof of the above theorem is as follows: Let Y n = (yij )

be an n×n matrix where the yij ’s are independent standard normals. Then Y n/
√

n

has roughly the same law as that of �n as in Theorem 5. Why? First, it is orthogonal
invariant. Second, it is almost orthogonal: the length of the first column of Y n/

√
n

is (
∑n

i=1 y2
i1/n)1/2 which goes to one rapidly (the convergence rate is governed by
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large deviations); the inner product of the first and second columns of Y n/
√

n is
equal to (1/

√
n) · (∑n

i=1 yi1yi2/
√

n), which goes to zero in the order of o(1/
√

n)

by the classical central limit theorem. Such heuristic is rigorously executed by using
the Gram-Schmidt algorithm on Y n, which generates an Haar invariant orthogonal
matrix.

Recall i = √−1. The next approximation theorem is about the unitary group.

Theorem 6. For each n ≥ 2, there exists two n × n matrices �n = (γpq) and
Y n = ((xpq + iypq)/

√
2) such that γpq ’s, xpq ’s and ypq ’s are random variables

defined on the same probability space, and

(i) the law of �n is the normalized Haar measure on the unitary group U(n);
(ii) the 2n2 random variables {xpq, ypq; 1 ≤ p, q ≤ n} are independent standard

normals;
(iii) set εn(m) = max1≤p≤n,1≤q≤m |√nγpq − (xpq + iypq)/

√
2| for m =

1, 2, · · · , n. Then

P(εn(m) ≥ rs + 2t) ≤ 4me−nr2/8 + mne−s2 + 6mn

t

(
1 + t2

12(m + t
√

n)

)−n

for any r ∈ (0, 1/4), s > 0, t > 0, and m ≤ (r/2)n.

One curious question is: what is the largest order of mn such that εn(mn) goes
to zero in probability? By choosing special values of r, s, t and mn, we have

Corollary 1. Let mn = [n/(log n)2]. Let also εn(mn) be as in Theorem 5 or
Theorem 6. Then εn(mn) → 0 in probability as n → ∞.

Recently, Jiang [25] proved that the maximum order of mn is o(n/ log n) when
�n is an orthogonal matrix generated by performing the Gram-Schmidt algorithm
on the columns of Y n, where the entries of Y n are independent standard normals.

We next make some remarks about Theorems 5 and 6.
Let �n = (γij ) be a random orthogonal matrix which is uniformly distributed

on O(n). Borel [4] showed that

P(
√

nγ11 ≤ x) → 1

2π

∫ x

−∞
e−t2/2 dt

as n → ∞. He obtained this result in studying “Equivalence of Ensembles” in sta-
tistical mechanics. Later, D’Aristotle, Diaconis, Eaton, Freedman, Lauritzen and
Newman have extended this result and applied it to some statistical problems; see
[7], [11] and [13]. In particular, Diaconis, Lauritzen and Eaton [11] showed that
the variation distance between the joint distribution of the entries of the upper-left
kn × kn block of

√
n�n and that of k2

n independent standard normals converges
to zero provided kn = o(n1/3) (the largest order of kn such that the variation dis-
tance goes to zero is an open problem, see section 6.3 from [10]; it has been solved
recently by Jiang [24]: the largest order is o(n1/2)).

Our Theorems 5 and 6 study the relationship between the above �n and Y n,

where Y n is a matrix with independent standard normals as entries. Our results
show that the largest difference between entries of the first m columns of �n and
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the corresponding entries of Y n converges to zero in probability when m = mn =
O(n/(log n)2). This provides another way to characterize the relationship between
�n and Y n.

There are some other studies on the entries of Haar invariant matrices.
Pickrell [32], Olshanky and Vershik [31], and Borodin and Olshansky [5] have
studied entries of matrices in terms of conjugation by random unitary matrices.

We now list some other recent results about Haar measures on some classi-
cal groups. Diaconis and Evans [12] proved a functional central limit theorem of
eigenvalues of Haar distributed random matrices. Also, Johansson [26] obtained a
result on the speed that the traces of Haar distributed random matrices converge in
distribution to the standard normal distribution.

Finally, we give the outline of this paper. The proofs of Proposition 1, Theorems
1, 2, 3 and 4, and Corollary 1 are given in Section 2. Theorems 5 and 6 are given
in Section 3. In Section 4, some known results are listed for proofs in previous
sections.

2. Proofs of theorems on maxima of entries

Let C be the set of all complex numbers. For z = x + iy ∈ C, as usual, |z| =√
x2 + y2. The notation ‖v‖ is the Euclidian norm for a vector v ∈ C

n. For a p×q

matrix M = (mij ), we use the following notation: |||M||| := max{|mij |, 1 ≤ i ≤
p, 1 ≤ j ≤ q}. For a random vector X, its probability distribution is denoted by
L(X). The standard normal distribution is denoted by N(0, 1).

To prove the Theorems on maxima of entries, we accept, for now, Theorems 5
and 6. They will be proved later in Section 3. Theorems 1, 2, 3 and 4 are proved
first. Then we prove Corollary 1 and Proposition 1. There is no circular reasoning
in this process.

The following lemma tells us that we only need to work on the Haar measure
on O(n) or U(n) in order to obtain conclusions for SO(n) or SU(n).

Lemma 2.1. Let µ1, µ2, ν1 and ν2 be the normalized Haar measures on O(n),

SO(n), U(n) and SU(n), respectively. We have

(i) µ1 (� ∈ O(n); |||�||| ≤ t) = µ2(� ∈ SO(n); |||�||| ≤ t);
(ii) ν1 (� ∈ U(n); |||�||| ≤ t) = ν2(� ∈ SU(n); |||�||| ≤ t)

for any t > 0.

Proof. (i) LetK =O(n), G={e, e′} andH = SO(n),where e = diag(1, 1, · · · , 1)

and e′ = diag(−1, 1, 1, · · · , 1). It is easy to check that both G and H are closed
subgroups of K, and H is a normal subgroup of K. Further, K = GH := {gh; g ∈
G and h ∈ H }, G∩H = {e} and K ⊂ R

n2
. Let µ3 be the normalized Haar measure

on G, that is, µ3({e}) = µ3({e′}) = 1/2. Then by Corollary 7.6.2 on p. 144 from
[36],

∫

K

f (k)µ1(dk) =
∫

H

∫

G

f (gh)µ3(dg)µ2(dh) (2.5)
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for any µK -integrable real function f (x) defined on K. Choose f (x) = I {|||x||| ≤
t}, x ∈ K and t > 0. Note that |||gh||| = |||h||| for any g ∈ G and h ∈ H. Then (i)
follows.

(ii) Similarly, let K = U(n), G = {diag(eiθ , 1, 1, · · · , 1); θ ∈ [0, 2π)} and
H = SU(n). Then all the remaining arguments in (i) are valid here. So (ii) is
proved. ��

Proof of Theorem 1. By Lemma 2.1 and the independence assumption about the
Wn’s, we only need to prove the result about O(n).

We claim that

lim sup
n→∞

√
n

log n
Wn ≤

√
6 a.s. and lim inf

n→∞

√
n

log n
Wn ≥ 2 a.s. (2.6)

and

P(
√

n/ log nWn ∈ (a, b) i.o.) = 1 (2.7)

for any (a, b) ⊂ (2,
√

6).

Suppose (2.6) and (2.7) are true. Then (2.7) implies that {√n/ log nWn; n ≥ 2}
is dense in [2,

√
6] a.s. So (ii) is valid. It follows from (ii) that (2.6) still holds if

the two inequality signs are reversed respectively. Then (i) follows. Now we prove
the two claims.

The proof of the lower bound in (2.6). For any α ∈ (0, 1), set bn = 2(1 −
α)

√
log n. Then, by Theorem 5, there exist �n = (γ 1, γ 2, · · · , γ n) and Y =

(y1, y2, · · · , yn) = (yij ) for which {yij ; 1 ≤ i, j ≤ n} are i.i.d. random vari-
ables with the standard normal distribution and Theorem 5 holds. Recall Wn =
max1≤j≤n |||γ j ||| and ||| · ||| is a norm. By the definition of εn(m)

∣∣∣∣ max
1≤j≤m

|||√nγ j ||| − max
1≤j≤m

|||yj |||
∣∣∣∣ ≤ max

1≤j≤m

∣∣|||√nγ j ||| − |||yj |||
∣∣ ≤ εn(m). (2.8)

It follows that

P(Wn ≤ bn/
√

n) ≤ P( max
1≤j≤m

|||√nγ j ||| ≤ bn) ≤ P(|||Y nm||| ≤ bn + εn(m)) (2.9)

for any 1 ≤ m ≤ n, where Y nm := (y1, y2, · · · , ym). Now, in Theorem 5,
choose m = mn = [n/(log n)2], r = (log n)−1, s = (log n)(log2 n)−1/2 and
t = √

(log n)/ log2 n, where log2 n := log(log n). We have that

P(εn(m) > 3
√

(log n)/ log2 n) ≤ 4n · exp

(
− n

16(log n)2

)

+3n2 · exp

(
− (log n)2

2 log2 n

)

+3n2
(

1 + (log n)3

6n log2 n

)−n/2
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for sufficiently large n, where we also used the facts that 1/s ≤ 1, 1/t ≤
1 and 3(m + √

n) ≤ 6n/(log n)2 for n large enough. The last term above is
O(exp(−(log n)2)). Therefore we have

P(εn(m) > 3
√

(log n)/ log2 n) = O(e−(log n)3/2
) (2.10)

as n → ∞. Recall bn = (2 − 2α)
√

log n. Then by (2.9),

P(Wn ≤ bn/
√

n)

≤ P(|||Y nm||| ≤ bn + 3
√

(log n)/(log2 n)) + P(εn(m) > 3
√

(log n)/ log2 n)

≤ P(|||Y nm||| ≤ b′
n) + O(e−(log n)3/2

),

as n → ∞, where b′
n = (2 − α)

√
log n. By the second inequality of Lemma 4.1,

we have that P(y1,1 ≥ b′
n) ≤ exp(−(2 − α)2(log n)/2) as n is sufficiently large. It

follows from independence that

P(|||Y nm||| ≤ b′
n) = (1 − 2P(y1,1 ≥ b′

n))
nmn ≤ exp(−2nmnP (y1,1 ≥ b′

n))

≤ exp(−nC)

for sufficiently large n, where C is a positive constant depending on α only. Also,
the fact that 1 + x ≤ ex for any x ∈ R is used in the first inequality. In conclusion,

P(Wn ≤ bn/
√

n) = O(e−(log n)3/2
)

as n → ∞, This implies
∑

n≥1 P(Wn ≤ bn/
√

n) < ∞. By the Borel-Cantelli
lemma,

lim inf
n→∞

√
n

log n
Wn ≥ 2(1 − α) a.s.

The lower bound in (2.6) is proved since α ∈ (0, 1) in the above inequality is
arbitrary.

The proof of the upper bound in (2.6). For any ε ∈ (0, 1), set hn = (
√

6 + ε)√
(log n)/n. Recall �n = (γij ) follows the normalized Haar distribution on O(n).

We know that L(γij ) = L(ξ1(
∑n

i=1 ξ2
i )−1/2) for any 1 ≤ i, j ≤ n, where ξi, 1 ≤

i ≤ n are independent standard normals. Then

P(Wn ≥ hn) ≤ n2P(|ξ1| ≥ hn(

n∑
i=1

ξ2
i )1/2)

≤ n2P(|ξ1| ≥ hn

√
n − n2/3) + n2P(

n∑
i=1

ξ2
i ≤ n − n2/3).

(2.11)

Take Xi = ξ2
i − 1, an = n−1/3, A = (−1, 1)c and t0 = 1/4 in (ii) of Lemma 4.2.

Then E exp(t0X1) < ∞ and

P(

n∑
i=1

ξ2
i ≤ n − n2/3) ≤ P

(
|

n∑
i=1

(ξ2
i − 1)| ≥ n2/3

)
≤ e−n1/4

(2.12)
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for n large enough. By the second inequality of Lemma 4.1, since hn

√
n − n2/3 > 1

as n is sufficiently large,

n2P(|ξ1| ≥ hn

√
n − n2/3 ) ≤ n2 exp

(
−h2

n(n − n2/3)

2

)

= O(n−(1+ε)) (2.13)

as n → ∞. Therefore, by (2.11), (2.12) and (2.13),
∑

n≥1 P(Wn ≥ hn) < ∞. By

the Borel-Cantelli lemma, lim supn→∞
√

n/ log nWn ≤ √
6 + ε, a.s. This implies

the upper bound in (2.6).
The proof of (2.7). Since the Wn’s are independent, by the Borel-Cantelli lemma,

we only need to show that
∑
n≥1

P(
√

n/ log nWn ∈ (a, b)) = ∞ (2.14)

for any (a, b) ⊂ (2,
√

6). Replace hn in (2.11) by b
√

(log n)/n. Note that hn(n −
n2/3)1/2 ∼ (

√
6+ε)

√
log n and b

√
(log n)/n ·√n − n2/3 ∼ b

√
log n. By the same

argument as in (2.11), we obtain that

P(
√

n/ log nWn ≥ b) ≤ n(4−b2
1)/2 (2.15)

as n is sufficiently large for fixed b1 < b. By (2.8), we use the fact Wn ≥
max1≤j≤m |||γ j ||| to obtain

P(
√

n/ log nWn > a) ≥ P(|||Y nm||| − εn(m) > a
√

log n)

≥ P(|||Y n,m||| > fn) − P(εn(m) ≥ 3
√

(log n)/ log2 n),

(2.16)

where fn = a
√

log n + 3
√

(log n)/ log2 n and m = mn as in (2.10). Now, by
independence and the first inequality of Lemma 4.1,

P(|||Y n,m||| ≥ fn) = 1 − (1 − P(|y1,1| ≥ fn))
mn

≥ 1 −
(

1 − 2fn√
2π(1 + f 2

n )
e−f 2

n /2

)mn

. (2.17)

Since 1 − x ≤ e−x for all x ∈ R, 1 − (1 − x)n ≥ 1 − e−nx ∼ nx if nx → 0.

Remember a > 2. It is easy to check that

n(4−a2
1 )/2 ≤ 2mnfn√

2π(1 + f 2
n )

e−f 2
n /2 → 0

when n → ∞ for any a1 > a. In summary,

P(|||Y n,m||| ≥ fn) ≥ n(4−a2
1 )/2 (2.18)

as n is sufficiently large. Therefore by (2.10), (2.16) and the above inequality

P(
√

n/ log nWn > a) ≥ n(4−a2
1 )/2
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as n is sufficiently large for fixed a1 > a. Combining this with (2.15), we obtain

P(
√

n/ log nWn ∈ (a, b)) = P(
√

n/ log nWn > a) − P(
√

n/ log nWn ≥ b)

≥ n(4−a2
1 )/2 − n(4−b2

1)/2 ∼ n(4−a2
1 )/2

as n → ∞ for any interval (a1, b1) ⊂ (a, b) ⊂ (2,
√

6). Therefore, (2.14) follows.
The entire proof is complete. ��

The essence of the proof of Theorem 1 is Theorem 5. Theorem 6 bears some
analogy with Theorem 5. The following proof of Theorem 2, based on Theorem 6,
is similar to that of Theorem 1. The difference is that instead of working on normal
random variables we deal with the square of the norm of a random variable with
the standard complex normal distribution. Such a norm follows the exponential
distribution with parameter one.

Proof of Theorem 2. By Lemma 2.1 and the independence assumption about the
Wn’s, we only need to prove the unitary group case.

As in the proof of Theorem 1, we only need to show that

√
2 ≤ lim inf

n→∞

√
n

log n
Wn ≤ lim sup

n→∞

√
n

log n
Wn ≤

√
3 a.s. (2.19)

and

P(
√

n/ log nWn ∈ (a, b) i.o.) = 1 (2.20)

for any (a, b) ⊂ (
√

2,
√

3). We claim that

P(
√

n/ log nWn ≤
√

2(1 − α)) = O(e−(log n)3/2
) (2.21)

as n → ∞ for any α ∈ (0, 1), and

n2−b2
2 ≤ P(

√
n/ log nWn ≥ b) ≤ n2−b2

1 (2.22)

as n is sufficiently large for any b >
√

2 and 0 < b1 < b < b2. If the claims are
true, the lower bound in (2.19) follows from (2.21); the upper bound and (2.20)
follow from (2.22). Now let’s prove the claims.

Set bn = (1 − α)
√

2 log n for α ∈ (0, 1). Then, as in (2.9), we obtain that

P(Wn ≤ bn/
√

n) ≤ P(|||Y nm||| ≤ bn + εn(m)) (2.23)

for any 1 ≤ m ≤ n, where Y nm is a matrix generated by the first m columns of the
matrix Y n = ((xpq + iypq)/

√
2), and the 2n2 random variables {xpq, ypq; 1 ≤

p, q ≤ n} are i.i.d. with the standard normal distribution. Choosing m = mn =
[n/(log n)2], r = (log n)−1, s = (log n)(log2 n)−1/2 and t = √

(log n)/ log2 n,

we have by the same argument as in (2.10) that

P(εn(m) > 3
√

(log n)/ log2 n) = O(e−(log n)3/2
)
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as n → ∞. It follows from (2.23) that

P(Wn ≤ bn/
√

n) ≤ P(|||Y nm||| ≤ b′
n) + O(e−(log n)3/2

) as n → ∞, (2.24)

where b′
n = (

√
2 −α)

√
log n. Observe that (x2

11 + y2
11)/2 ∼ Exp(1), the exponen-

tial distribution with parameter 1. So P((x2
11 +y2

11)/2 ≥ t) = e−t for t > 0. Using
independence and the fact that 1 + x ≤ ex for all x ∈ R, we have that

P(|||Y nm||| ≤ b′
n) =

(
1 − P((x2

11 + y2
11)/2 ≥ b′2

n )
)nm ≤ exp(−nme−b′2

n ) ≤ e−nα

for sufficiently large n. This together with (2.24) yields (2.21).
Now we prove the second inequality in (2.22). Recall �n follows the normal-

ized Haar distribution on the unitary group, then each element of �n has the same
distribution as (x11 + iy11)(

∑
1≤p≤n(x

2
p1 + y2

p1))
−1/2, where the xpq ’s and the

ypq ’s are as in (2.23). Therefore,

P(
√

n/ log nWn ≥ b) ≤ n2P


x2

11 + y2
11

2
≥ b2 log n

2n

n∑
p=1

(x2
p1 + y2

p1)


 .

Again, (x2
11 +y2

11)/2 ∼ Exp(1), by using the same argument as in (2.11), we obtain
the second inequality in (2.22). The first inequality in (2.22) can be shown by using
the same spirit as deriving (2.18) and the fact that (x2

11 + y2
11)/2 ∼ Exp(1). We

omit the details. ��
To prove Theorem 3, we need the following lemma.

Lemma 2.2. Suppose that a random matrix �n follows the normalized Haar dis-
tribution on the orthogonal group O(n). Let �n = (γ 1, γ 2, · · · , γ n). Define Aj =
{√n|||γ j ||| ≥ √

an + x } for x > −an and j = 1, 2, · · · , n, where an = 4 log n −
log(log n). For any integer m ≥ 1, we have that

lim
n→∞ nmP (A1 ∩ A2 ∩ · · · ∩ Am) = (

√
1/2πe−x/2)m

for any x ∈ R.

Proof. First, by Theorem 5, there exists an n × n random matrix Y = (yij ) =
(y1, y2, · · · , yn) such that {yij ; 1 ≤ i, j ≤ n} are i.i.d. standard Gaussian random
variables and Theorem 5 holds. Choose r = n−1/4, s = n1/8 and t = n−1/8 in
Theorem 5. Then we have that

P(εn(m) ≥ 3n−1/8) ≤ 4ne−n1/2/16 + 3n2e−n1/4/2 + 3n3
(

1 + n−1/4

3(m + √
n)

)−n/2

as n is sufficiently large, where we use the fact s−1 ≤ 1 and t−1 ≤ n. It is easy to
see that the last term above is bounded by exp(−Cn1/4) for each n ≥ 1 and some
positive constant C depending on m only. Therefore

P(εn(m) ≥ 3n−1/8) = o(e−n1/8
) (2.25)
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as n → ∞. Now, set

d+
n = √

an + x + εn(m), d−
n = √

an + x − εn(m),

B+
j = {|||yj ||| ≥ d+

n } and B−
j = {|||yj ||| ≥ d−

n }

for j = 1, 2, · · · , m. It follows from (2.8) that |||yj ||| − εn(m) ≤ |||√nγ j ||| ≤
|||yj ||| + εn(m) for j = 1, 2, · · · , m. Thus, {|||yj ||| ≥ d+

n } ⊂ Aj ⊂ {|||yj ||| ≥
d−
n }, j = 1, 2, · · · , m and

P(B+
1 ∩ B+

2 ∩ · · · ∩ B+
m) ≤ P(A1 ∩ A2 ∩ · · · ∩ Am)

≤ P(B−
1 ∩ B−

2 ∩ · · · ∩ B−
m). (2.26)

We next calculate P(B−
1 ∩B−

2 ∩ · · ·∩B−
m). Set hn = √

an + x − 3n−1/8. It is easy
to see that

B−
1 ∩ B−

2 ∩ · · · ∩ B−
m

⊂
(
B−

1 ∩ B−
2 ∩ · · · ∩ B−

m ∩ {εn(m) < 3n−1/8}
)

∪ {εn(m) ≥ 3n−1/8}
⊂ { min

1≤j≤m
|||yj ||| ≥ hn} ∪ {εn(m) ≥ 3n−1/8}.

Therefore

P(B−
1 ∩ B−

2 ∩ · · · ∩ B−
m) ≤ P( min

1≤j≤m
|||yj ||| ≥ hn) + P(εn(m) ≥ 3n−1/8)

= P( max
1≤i≤n

|ηi | ≥ hn)
m + P(εn(m) ≥ 3n−1/8),

(2.27)

where {ηi; 1 ≤ i ≤ n} are i.i.d. random variables with the standard normal distri-
bution. We claim that

lim sup
n→∞

nmP (B−
1 ∩ B−

2 ∩ · · · ∩ B−
m) ≤ ((2π)−1/2e−x/2)m. (2.28)

By (2.25) and (2.27), to prove the claim, it suffices to show that

lim sup
n→∞

(nP ( max
1≤i≤n

|ηi | ≥ hn))
m ≤ ((2π)−1/2e−x/2)m. (2.29)

Indeed, by Lemma 4.1, we have that

n2P(|η1| ≥ hn) ∼ n2 · 2√
2πhn

e−h2
n/2 ∼ 1√

2π
e−x/2 (2.30)

as n → ∞. Given t ∈ (0, 1). By Taylor’s expansion, (1− t)n = 1−nt +(n(n−1)/

2)t2(1−δ)n−2 for some δ such that 0 < δ < t < 1. Therefore |(1− t)n −1+nt | ≤
(nt)2 for n ≥ 2. Now choose t = P(|η1| ≥ hn). By (2.30)

1 − (1 − P(|η1| ≥ hn))
n ∼ 1

n

(
1

2π
e−x/2

)
+ o

(
1

n

)
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as n → ∞. So

nP ( max
1≤i≤n

|ηi | ≥ hn) = n{1 − (1 − P(|η1| ≥ hn))
n} ∼ 1

2π
e−x/2

as n → ∞. Therefore (2.29) is validated since m is fixed, and the claim (2.28) then
follows. By the same arguments, we obtain

lim inf
n→∞

{
nmP (B+

1 ∩ B+
2 ∩ · · · ∩ B+

m)
} ≥ (

√
1/2πe−x/2)m.

This inequality together with (2.26) and (2.28) yields the desired result. ��
Now we are ready to prove Theorem 3.

Proof of Theorem 3. As in the proof of Theorem 1, we only need to deal with the
orthogonal group case.

Let us continue the notation in Lemma 2.2. Recall (1.2) and � = (γ 1, γ 2, · · · ,

γ n). The following equality is true:

Wn = max
1≤j≤n

|||γ j |||.

So, to prove the theorem, we only need to show that

P( max
1≤j≤n

{√
n|||γ j |||

} ≥ √
an + x ) → 1 − e−J , x ∈ R, (2.31)

where J = √
1/2π ·e−x/2. Recall the definitions of Aj ’s in Lemma 2.2. Fix integer

m ≥ 1. For any n ≥ 2m, by the Bonferroni inequality (see, e.g., p. 22 from [15]),
the probability in (2.31) is bounded below and above respectively by

n∑
j=1

P(Aj ) −
∑
i<j

P (Ai ∩ Aj) + · · · + (−1)2m+1
∑

j1<j2<···<j2m

P (Aj1 ∩ Aj2 ∩ · · · ∩ Aj2m
)

(2.32)

and
n∑

j=1

P(Aj )−
∑
i<j

P (Ai ∩ Aj) + · · · + (−1)2m+2
∑

j1<j2<···<j2m+1

P(Aj1 ∩ Aj2 ∩ · · · ∩ Aj2m+1).

(2.33)

By assumption, �n = (γ 1, γ 2, · · · , γ n) satisfies the normalized Haar distribution.
By right multiplying �n with permutation matrices (see, e.g., p.25 from [20] for the
definition), we know that the n random vectors γ 1, γ 2, · · · , γ n are exchangeable.
Thus the term in (2.32) is equal to

nP (A1) −
(

n

2

)
P(A1 ∩ A2) + · · · + (−1)2m+1

(
n

2m

)
P(A1 ∩ A2 ∩ · · · ∩ A2m).

If i ≥ 1 is fixed, we know that
(
n
i

)
/ni → 1/i! as n → ∞. Letting n → ∞, by

Lemma 2.2, we obtain

lim inf
n→∞ P( max

1≤j≤n

{√
n|||γ j |||

} ≥ √
an + x ) ≥

2m∑
i=1

(−1)i+1 J i

i!
.
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Applying the same argument to (2.33), we obtain

lim sup
n→∞

P( max
1≤j≤n

{√n|||γ j |||} ≥ √
an + x ) ≤

2m+1∑
i=1

(−1)i+1 J i

i!
. (2.34)

Pass the limit m → +∞ for the above two inequalities. Remember that the
left hand sides of the above two inequalities are irrelevant to m. Also, e−J =∑∞

i=0(−1)iJ i/i!. Then (2.31) is concluded. ��
Now we prove Theorem 4.

Proof of Theorem 4. Again, as in the proof of Theorem 2, it suffices to prove the
theorem for the unitary group case.

Let an = 2 log n and Aj = {√n|||γ j ||| ≥ √
an + x }, j = 1, 2, · · · , n. We first

claim that

lim
n→∞ nmP (A1 ∩ A2 ∩ · · · ∩ Am) = (e−x)m (2.35)

for any integer m ≥ 1. If (2.35) is true, by following the proof of Theorem 3
completely, the proof of Theorem 4 is then terminated. Now we prove the claim.

Recall the proof of Lemma 2.2. Take a sequence of i.i.d. random variables
{η, η1, · · · , ηn} with η following the standard complex normal distribution. The cor-
responding of (2.25) is still true by Theorem 6. Let hn = √

an + x −3n−1/8. Since
|η1|2 follows the exponential distribution with parameter one we have n2P(|η1| ≥
hn) = n2e−h2

n ∼ e−x as n → ∞. Following the rest arguments in the proof of
Lemma 2.2, we obtain (2.35). ��

Now we prove Corollary 1.

Proof of Corollary 1. As usual, for a real number x, the notation [x] stands for the
largest integer less than or equal to x. We next only focus on orthogonal case. The
unitary case can be done by the same arguments.

Now, choosing r = (log n)−1, s = (log n)3/4, t = (log n)−1/4 and m = mn =
[n/(log n)2] in Theorem 5. Then by Theorem 5, we have that

P(εn(mn) ≥ 3(log n)−1/4)

≤ 4n · exp

(
− n

16(log n)2

)
+ 3n2(log n)−3/4 · exp

(
−(log n)3/2/2

)

+3n2(log n)1/4
(

1 + 1

3
· (log n)−1/2

[n(log n)−2] + √
n

)−n/2

for sufficiently large n. The first two terms on the right hand side go to zero. The
last term is bounded by

n3
(

1 + (log n)3/2

4n

)−n/2

≤ n3 · exp(−(log n)3/2/9)

as n is sufficiently large. So the third term also goes to zero. It follows that εn(mn)

goes to zero in probability. ��
We prove Proposition 1 to end this section.
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Proof of Proposition 1. By Lemma 2.1, it suffices to show (i) and (ii) for the orthog-
onal case and the unitary case, respectively. We only deal with the O(n) case. The
U(n) case is similar.

Let �n have the normalized Haar measure on O(n). Then

P

(
|
√

n

log n
Wn − 2| ≥ ε

)
≤ P

(
nW 2

n ≥ (2 + ε)2 log n
)

+P
(
nW 2

n ≤ (2 − ε)2 log n
)

(2.36)

for any ε ∈ (0, 1). By Theorem 3,

lim sup
n→∞

P
(
nW 2

n ≥ (2 + ε)2 log n
)

≤ lim sup
n→∞

P(nW 2
n − 4 log n + log(log n) > x)

= 1 − exp(−Ke−x/2)

for any x > 0. Letting x ↑ +∞, we have that the middle probability in (2.36) goes
to zero as n → ∞. By the same argument, the last probability also goes to zero.
Therefore,

√
n/ log nWn goes to 2 in probability. ��

3. Proofs of Theorems 5 and 6

There are a lot of methods to generate random matrices with the normalized Haar
distribution on the orthogonal and the unitary groups. For example, let Y = (yij ) =
(y1, y2, · · · , yn) be an n × n random matrix whose n2 elements are i.i.d. random
variables with the standard normal distribution. Performing the Gram-Schmidt pro-
cedure on the columns of Y , we then obtain an orthogonal random matrix with the
normalized Haar distribution on the orthogonal group O(n); see Proposition 7.2
(take p = n) on page 234–235 from [16]. Also, the matrix Y (Y T Y )−1/2 follows
the normalized Haar distribution on O(n); see Proposition 7.1 in [17]. For the
unitary counterparts of the above two procedures, one only needs to replace Y by
(Y + iZ)/

√
2, where Z is an independent copy of Y . Then change the operation

“T ” to “∗”, where Y ∗ = ( yij )T . In this section, we prove Theorems 5 and 6 via
the Gram-Schmidt algorithm. Let us review it first.

For the sequence of n × 1 complex vectors {y1, y2, · · · , yn}, define w1 = y1,

and

wi = yi −
i−1∑
j=1

y∗
i wj

‖wj‖2 wj , i = 2, 3, · · · , n, (3.37)

where ‖wj‖2 = w∗
jwj (j = 1, 2, · · · , n). Then, {wi , 1 ≤ i ≤ n} are orthogonal,

i.e., w∗
i wj = 0 for any 1 ≤ i < j ≤ n. Let γ i = (1/‖wi‖)wi , i = 1, 2, · · · , n.We

then obtain an unitary matrix �n = (γ 1, γ 2, · · · , γ n). So (3.37) can be rewritten
as follows:

wi = yi −
i−1∑
j=1

(y∗
i γ j )γ j , i = 2, 3, · · · , n, (3.38)

For further reference see e.g. p.15 from [20] and Section A.5 on page 603 from [2].
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Define

�1 = 0, �i =
i−1∑
j=1

(y∗
i γ j )γ j and Li =

∣∣∣∣
√

n

‖wi‖2 − 1

∣∣∣∣ , i = 1, 2, · · · , n.

(3.39)

We need some preparations to prove Theorems 5 and 6.

Lemma 3.1. For any m such that 1 ≤ m ≤ n, we have that

εn(m) : = max
1≤i≤m

|||√nγ i − yi |||
≤ max

2≤i≤m
|||�i ||| + ( max

1≤i≤m
Li)( max

1≤i≤m,1≤j≤n
|yij | + max

2≤i≤m
|||�i |||).

Proof. Note that wi = yi − �i . We have that

√
n

‖wi‖2 wi − yi = −�i + (yi − �i )(

√
n

‖wi‖2 − 1).

Then, the desired inequality follows from the triangle inequality of ||| · |||. ��

The following properties of I (x) will be used later. It is called a rate function
in the theory of large deviations. The proof is standard and is omitted. The reader
is referred to p. 35 from [9].

Lemma 3.2. Let ξ ∼ N(0, 1) and I (x) = supθ∈R{θx − log(E exp(θξ2))} for
x ∈ R. Then

(i) E exp(θξ2) = (1 − 2θ)−1/2 for θ < 1/2;
(ii)

I (x) =
{

(x − 1 − log x)/2 if x > 0;
+∞ otherwise.

(iii) Define J (x) = I (x)/x for x > 0. Then both I (x) and J (x) are increasing
on (1, ∞) and decreasing on (0, 1].

We collect the following elementary facts. The proof is omitted.

Lemma 3.3. The following holds:

(i) x − 1 − log x ≥ (x − 1)2/2 for x ∈ (0, 1];
(ii) 2x − log(1 + 2x) ≥ x2 for x ∈ (0, 1/4];

(iii) (1 − x)−2 ≥ 1 + 2x and (1 + x)−2 ≤ 1 − x for x ∈ (0, 1/4].

The next lemma gives a probability bound about the tail of a product of a nor-
mal and a random variable with F -distribution. The proof is based mainly on the
property of the standard normal distribution.
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Lemma 3.4. Let {ξ, ξi, i = 1, 2, · · · , n} be a sequence of i.i.d. random variables
with ξ ∼ N(0, 1). Define η2 = (

∑m
k=1 ξ2

k )/(
∑n

k=1 ξ2
k ) for some 1 ≤ m < n. Then

P(|ξ | ≥ t/η) ≤ 6√
2πt

(
1 + t2

3(m + t
√

n)

)−n/2

for any t > 0.

Proof. Note that ξ and η are independent and η ≤ 1. By the upper bound from
Lemma 4.1 we have that

P(|ξ | ≥ t/η) = E{P(|ξ | ≥ tη−1 | η)}
≤ E

(
2√

2π(tη−1)
e−t2η−2/2

)
≤ 2√

2πt
Ee−t2η−2/2. (3.40)

Now, η−2 = 1 + (
∑n

k=m+1 ξ2
k )(

∑m
k=1 ξ2

k )−1, and {ξm+1, ξm+2, · · · , ξn} and∑m
k=1 ξ2

k are independent. Thus Ee−t2η−2/2 = e−t2/2E(Mn−m), where

M = E

{
exp

(
− t2ξ2

n

2
∑m

k=1 ξ2
k

)
| ξ1, ξ2, · · · , ξm

}
.

By (i) of Lemma 3.2, E exp(−βξ2
n ) = (1 + 2β)−1/2 for β > −1/2. Then M =

(1 + t2(
∑m

k=1 ξ2
k )−1)−1/2. In summary,

P(|ξ | ≥ t/η) ≤ 2e−t2/2

√
2πt

E




(
1 + t2

∑m
k=1 ξ2

k

)−(n−m)/2

 . (3.41)

By (i) of Lemma 4.2,

P

(
m∑

k=1

ξ2
k ≥ x

)
≤ 2e−mI (A), x > 0, (3.42)

where I (x) is as in (ii) of Lemma 3.2 and A = [x/m, ∞). By (iii) of Lemma 3.2,
I (A) = I (x/m) if x ≥ m. Given t > 0. Choose x0 = 2m + t

√
8(n − m). By

(3.42) and (iii) of Lemma 3.2 on J (x),

P

(
m∑

k=1

ξ2
k ≥ x0

)
≤ 2e−mI (x0/m) = 2e−x0J (x0/m) ≤ 2e−x0J (2) ≤ 2e−x0/16

since x0/m > 2 and J (2) = I (2)/2 = (1 − log 2)/4 > 1/16. Considering∑m
k=1 ξ2

k > x0 or not, we have from above that

E




(
1 + t2

∑m
k=1 ξ2

k

)−(n−m)/2

 ≤

(
1 + t2

x0

)−(n−m)/2

+ 2e−x0/16.
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Since 1 + x ≤ ex for any x ∈ R, e−x0/16 ≤ (1 + (t2/x0))
−x2

0/(16t2). Also,
x2

0/(16t2) > (n − m)/2. The above says that

E




(
1 + t2

∑m
k=1 ξ2

k

)−(n−m)/2

 ≤ 3

(
1 + t2

x0

)−(n−m)/2

≤ 3et2/2
(

1 + t2

3(m + t
√

n)

)−n/2

,

where we use the facts (1 + t2x−1
0 )m/2 ≤ exp(t2x−1

0 m/2) ≤ et2/2 and x0 <

3(m + t
√

n) in the last step. This and (3.41) yield the desired inequality. ��
The following is a key result in analyzing the tail of εn(m) as stated in Theorem

5. Its proof relies on Lemma 3.4.

Lemma 3.5. Let {y1, y2, · · · , yn} be a sequence of i.i.d. R
n-valued random vec-

tors with y1 ∼ N(0, In), where In is the n × n identity matrix. Let also �i be as
in (3.39). For any t > 0 and m such that 1 ≤ m < n, we have that

P( max
1≤i≤m

|||�i ||| ≥ t) ≤ 6mn√
2πt

(
1 + t2

3(m + t
√

n)

)−n/2

.

Proof. Remember �1 = 0. We only need to deal with the case m ≥ 2. Review
�i as in (3.39). Using (yT

i γ j )γ j = (γ jγ
T
j )yi , we obtain �i = (

∑i−1
j=1 γ jγ

T
j )yi .

Observe that (
∑i−1

j=1 γ jγ
T
j )2 = ∑i−1

j=1 γ jγ
T
j by orthogonality. Also, γ j is a func-

tion of y1, y2, , · · · , yj . Hence {γ 1, γ 2, · · · , γ i−1} and yi are independent. Con-
sequently, conditionally on y1, y2, · · · , yi−1,

�i ∼ N(0, �i ), where �i =
i−1∑
j=1

γ jγ
T
j = (

i−1∑
j=1

γpjγqj )1≤p,q≤n. (3.43)

By (3.43), the p-th element of �i , say, zpi, follows N(0,
∑i−1

j=1 γ 2
pj ) condition-

ally on {y1, y2, · · · , yi−1}. Let {ξ, ξi, i = 1, 2, · · · , n} be a sequence of inde-
pendent standard normals which are also independent of {y1, y2, · · · , yn}. Then
L(zpi) = L(ξ · (

∑i−1
j=1 γ 2

pj )
1/2).

Since � = (γ 1, γ 2, · · · , γ n) has the normalized Haar distribution on O(n), the
p-th row of � is uniformly distributed on the n-dimensional sphere Sn−1. Thus, the
law of

∑i−1
j=1 γ 2

pj is the same as that of η2
i := (

∑i−1
k=1 ξ2

k )/(
∑n

k=1 ξ2
k ). In summary,

L(zpi) = L(ξηi). It follows that

P( max
2≤i≤m

|||�i ||| ≥ t) ≤ mn · max
1≤p≤n,2≤i≤m

P (|zpi | ≥ t)

= mn · max
2≤i≤m

P (|ξ | ≥ t/ηi) ≤ mnP(|ξ | ≥ t/ηm+1).

The desired conclusion follows from Lemma 3.4. ��
The next lemma, proved by large deviations, is also a key step as Lemma 3.5

to analyze the tail of εn(m).
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Lemma 3.6. Let {y1, y2, · · · , yn} be a sequence of i.i.d. R
n-valued random vec-

tors with L(y1) = N(0, In). We have that

P( max
1≤i≤m

Li ≥ r) ≤ 4me−nr2/16

for all r ∈ (0, 1/4) and m ≤ nr/2, where Li is defined in (3.39).

Proof. Obviously, for any i,

P (Li ≥ r) ≤ P(

√
n/‖wi‖2 ≤ 1 − r) + P(

√
n/‖wi‖2 ≥ 1 + r). (3.44)

By (3.38) and the orthogonality, ‖wi‖2 = ‖yi‖2 −∑i−1
j=1(y

T
i γ j )

2 ≤ ‖yi‖2. Also,
L(yi ) = L(y1). Then, by the first inequality of (iii) of Lemma 3.3 and (i) of Lemma
4.2,

max
1≤i≤n

P (

√
n/‖wi‖2 ≤ 1 − r) ≤ P

(‖y1‖2

n
≥ 1 + 2r

)
≤ 2e−nλ (3.45)

for r ∈ (0, 1/4) where λ := infx≥1+2r I (x) and I (x) is given in (ii) of Lemma 3.2.
Since I (x) is increasing on [1, ∞), λ = I (1+2r) = (2r − log(1+2r))/2 ≥ r2/2
for r ∈ (0, 1/4) by (ii) of Lemma 3.3. So

max
1≤i≤n

P (

√
n/‖wi‖2 ≤ 1 − r) ≤ 2e−nr2/2 (3.46)

for any r ∈ (0, 1/4).

Now we estimate the last term in (3.44). By the second inequality of (iii) of
Lemma 3.3, (1 + r)−2 ≤ 1 − r for r ∈ (0, 1/4). It follows that

P(

√
n/‖wi‖2 ≥ 1 + r) ≤ P

(‖wi‖2

n
≤ 1 − r

)
. (3.47)

Recall the definition of wi in (3.38), by the fact that (yT
i γ j )γ j = γ jγ

T
j yi , we can

rewrite wi = Byi , where B = In −∑i−1
j=1 γ jγ

T
j . Observe that γ j is a function of

y1, y2, · · · , yj . Thus, γ 1, γ 2, · · · , γ i−1 and yi are independent. By orthogonality,
B2 = B. It follows that

wi ∼ N(0, In −
i−1∑
j=1

γ jγ
T
j )

conditionally on y1, y2, · · · , yi−1. Since B2 = B, the rank of B is equal to
tr(B) = tr(In) − ∑i−1

j=1 tr(γ jγ
T
j ) = n − i + 1. By Lemma 4.3, there exists a

sequence of independent standard normals {ξ, ξi, i = 1, 2, · · · , n} which are inde-
pendent of {y1, y1, · · · , yn} such that L(‖wi‖2) = L(

∑n−i+1
j=1 ξ2

j ) conditionally
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on y1, y2, · · · , yi−1. This implies that L(‖wi‖2) = L(
∑n−i+1

j=1 ξ2
j ) uncondition-

ally. Note that
∑n−i+1

j=1 ξ2
j ≥ ∑n−m

j=1 ξ2
j for 1 ≤ i ≤ m. By using (i) of Lemma 4.2,

we have that

max
1≤i≤m

P

(‖wi‖2

n
≤ 1 − r

)
≤ P


 1

n − m

n−m∑
j=1

ξ2
j ≤ a




≤ 2e−(n−m)I (A)

= 2e−(n−m)I (a), (3.48)

where a := n(1− r)/(n−m), A = (−∞, a] and I (x) is as in Lemma 3.2. We use
the fact that I (x) is decreasing on (0, 1) in the equality, and a < 1 since m ≤ nr/2.

By (i) of Lemma 3.3,

(n − m)I (a) ≥ (n − m) · (1 − a)2

4
≥ (nr − m)2

4(n − m)
≥ nr2

16
(3.49)

as m ≤ nr/2. Now, combining (3.47), (3.48) and (3.49), we obtain

max
1≤i≤m

P (

√
n/‖wi‖2 ≥ 1 + r) ≤ 2e−nr2/16. (3.50)

This together with (3.44) and (3.46) implies that

P( max
1≤i≤m

Li ≥ r) ≤ m · max
1≤i≤m

P (Li ≥ r) ≤ 4me−nr2/16.

��
We now are ready to prove Theorems 5 and 6.

Proof of Theorem 5. Let {y1, y2, · · · , yn} be a sequence of real-valued i.i.d.
n-dimensional random vectors with L(y1) = N(0, In). Let also yij be the i-th
element of yj . We prove the theorem by performing the Gram-Schmidt procedure
on yi’s. If max1≤i≤m |||�i ||| ≤ t, max1≤i≤m Li ≤ r and max1≤i≤m,1≤j≤n |yij | ≤ s,

then εn(m) ≤ rs + 2t for r ∈ (0, 1/4) by Lemma 3.1. Then

P(εn(m) > rs + 2t)

≤ P( max
1≤i≤m

|||�i ||| > t) + P( max
1≤i≤m

Li > r) + P( max
1≤i≤m,1≤j≤n

|yij | > s).

By Lemma 4.1, it is easy to see that

P( max
1≤i≤m,1≤j≤n

|yij | ≥ s) ≤ mn√
2πs

e−s2/2

for any s > 0. This together with Lemmas 3.5 and 3.6 yields the desired inequality.
��

Finally, we prove Theorem 6 by using the same argument as that of Theorem 5.
The major difference is that the squared norm of a standard complex normal follows
the exponential distribution with parameter one.
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Proof of Theorem 6. For a complex vector µ and a positive semidefinite complex
matrix H , denote by CN n(µ, H ) the n-dimensional complex normal distribu-
tion with mean µ and covariance matrix H . The complex normal distribution is
uniquely determined by its mean and covariance matrix, e.g., Theorem 2.7 from [1]
or p.374 from [16]. Let {y1, y2, · · · , yn} be a sequence of complex-valued i.i.d.
n-dimensional random vectors with L(y1) = CN n(0, In). Then there exist two
independent sequences of i.i.d. real-valued random variables {ξ, ξj , j = 1, 2, · · · }
and {η, ηj , j = 1, 2, · · · } with the law N(0, 1) such that they are independent
of {y1, y2, · · · , yn} and the distribution of y1 is equal to that of (1/

√
2)(ξ1 +

iη1, ξ2 + iη2, · · · , ξn + iηn)
T . We prove the theorem next by performing the Gram-

Schmidt procedure for {y1, y2, · · · , yn} as at the beginning of this section. Then
�n = (γ 1, γ 2, · · · , γ n) is an unitary invariant matrix.

By Lemma 3.1 and the same argument as in the proof of Theorem 5, we only
need to estimate the tail probabilities of maximum of random variables �i , Li and
|yij | over certain indices, respectively, where yij is the i-th element of yj .

First, L(|yij |2) = L((ξ2+η2)/2). Note that (ξ2+η2)/2 follows the exponential
distribution Exp(1). We then have that

P( max
1≤i≤m,1≤j≤n

|yij | ≥ s) ≤ mnP((ξ2 + η2)/2 ≥ s2) = mne−s2
. (3.51)

Re-examining the proof of Lemma 3.5, in the current complex normal case, con-
ditionally on y1, y2, · · · , yi−1, we see that

�i ∼ CN n(0, U iU
∗
i ) and wi ∼ CN n(0, In − U iU

∗
i ), (3.52)

where U i = (γ 1, γ 2, · · · , γ i−1) = (γpq). Clearly, the p-th element of �i , say, zpi,

has the same distribution as L(λi(ξ + η
√−1)), where λi := (

∑i−1
j=1 |γpj |2/2)1/2.

By the Haar invariance of Un, L((γp1, γp2, · · · , γpn)) = L(γ 1) = L(y1/‖y1‖).
So, L(λ2

i ) = L((
∑2(i−1)

k=1 ξ2
k )/(2

∑2n
k=1 ξ2

k )). Consequently,

P( max
1≤i≤m

|||�i ||| ≥ t) ≤ mn max
1≤i≤m,1≤p≤n

P (|zpi | ≥ t)

≤ 2mn max
1≤i≤m,1≤p≤n

P (|ξ | ≥ t/(2λi))

≤ 2mnP(|ξ | ≥ t/(2λ′
m+1)),

where λ′
m+1 = (

∑2m
k=1 ξ2

k /
∑2n

k=1 ξ2
k )1/2 and the fact that |λi(ξ + η

√−1)| ≤
2λi max{|ξ |, |η|} is used in the last inequality. By Lemma 3.4, we have that

P( max
1≤i≤m

|||�i ||| ≥ t) ≤ 12mn√
2πt

(
1 + t2

12(m + t
√

n)

)−n

. (3.53)

Recall the proof of Lemma 3.6, two key steps to estimate the tail probability
of Li are (3.45) and (3.50). In our current case, ‖y1‖2 has the same law as that of
(1/2)

∑2n
i=1 ξ2

i . Thus, by following the proof of (3.46), we have

max
1≤i≤m

P (

√
n/‖wi‖2 ≤ 1 − r) ≤ 2e−nr2

(3.54)

for any r ∈ (0, 1/4).
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Now we turn to the estimate of P(
√

n/‖wi‖2 ≥ 1 + r). Note that

(In − U iU
∗
i )

∗ = In − U iU
∗
i and (In − U iU

∗
i )

2 = In − U iU
∗
i .

By the spirit of the proof of Lemma 4.3, we obtain that L(‖wi‖2) = L((1/2)∑2(n−i+1)
j=1 ξ2

j ). Now repeating the corresponding calculations in the proof of Lemma
3.6, it follows that

max
1≤i≤m

P (

√
n/‖wi‖2 ≥ 1 + r) ≤ 2e−nr2/8. (3.55)

From (3.54) and (3.55) we obtain that

P( max
1≤i≤m

Li ≥ r) ≤ 4me−nr2/8. (3.56)

The proof is completed by adding up the three probabilities respectively in (3.51),
(3.53) and (3.56). ��

4. Appendix

In this section we list some known results used in the previous sections.
The following is Lemma 3 on page 49 from [6].

Lemma 4.1. Suppose X ∼ N(0, 1). Then

1√
2π

· x

1 + x2 e−x2/2 ≤ P(X > x) ≤ 1√
2π

· 1

x
e−x2/2

for all x > 0.

For A ⊂ R, the notation A◦ and Ā stand for the interior and the closure of A

in R, respectively. The first part of next lemma gives sharp estimates of rare events
induced by partial sums of independent random variables (e.g., (c) of Remarks on
page 27 from [9]). Taking d = 1 and C = σ 2 from Theorem 3.7.1 on page 109 from
[9], we obtain the second part of next lemma, which is called moderate deviations.

Lemma 4.2. Let {X, Xi, i = 1, 2, · · · } be a sequence of i.i.d. random variables.
Let Sn = ∑n

i=1 Xi, n ≥ 1. Then

(i) For any A ⊂ R and n ≥ 1,

P (Sn/n ∈ A) ≤ 2e−nI (A),

where I (x) = supt∈R{tx − log E(etX)} and I (A) = infx∈A I (x).

(ii) Assume further that EX = 0, var(X) = σ 2 > 0 and Eet0X < ∞ for some
t0 > 0. Let {an; n = 1, 2, · · · } be a sequence of positive numbers such that
an → 0 and nan → ∞ as n → ∞. Then

lim
n→∞ an log P

(√
an

n
Sn ∈ A

)
= − inf

x∈A

{
x2

2σ 2

}

for any subset A ⊂ R such that inf{|x|; x ∈ A◦} = inf{|x|; x ∈ Ā}.
The following is (ii) on p.186 from [34].
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Lemma 4.3. Suppose y is a R
n-valued random vector with multi-normal distribu-

tion with mean 0 and covariance matrix � of rank r. If �2 = �, then there exists a
sequence of i.i.d. random variables {ξj ; j = 1, 2, · · · , n} with the standard normal
distribution such that ‖y‖2 has the same distribution as that of

∑r
j=1 ξ2

j , that is,

‖y‖2 ∼ χ2(r).
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