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Abstract. We study continuous time Glauber dynamics for random configurations with
local constraints (e.g. proper coloring, Ising and Potts models) on finite graphs with n ver-
tices and of bounded degree. We show that the relaxation time (defined as the reciprocal
of the spectral gap |λ1 − λ2|) for the dynamics on trees and on planar hyperbolic graphs,
is polynomial in n. For these hyperbolic graphs, this yields a general polynomial sampling
algorithm for random configurations. We then show that for general graphs, if the relaxation
time τ2 satisfies τ2 = O(1), then the correlation coefficient, and the mutual information,
between any local function (which depends only on the configuration in a fixed window)
and the boundary conditions, decays exponentially in the distance between the window and
the boundary. For the Ising model on a regular tree, this condition is sharp.

1. Introduction

Context

In recent years, Glauber dynamics on the lattice Zd was extensively studied.A good
account can be found in [25]. In this work, we study this dynamics on other graphs.

The main goal of our work is to determine which geometric properties of the
underlying graph are most relevant to the mixing rate of the Glauber dynamics on
particle systems.

To define a general particle system [21] on an undirected graph G = (V ,E),
define a configuration as an element σ of AV where A is some finite set, and
to each edge (v,w) ∈ E, associate a weight function αvw : A × A → R+.
The Gibbs distribution assigns every configuration σ probability proportional to
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∏
{v,w}∈E αvw(σv, σw). The Ising model (for which αvw(σv, σw) = eβσvσw ) and

the Potts model are examples of such systems; so is the coloring model (for which
αvw = 1σv �=σw )

On a finite graph, the Heat-Bath Glauber dynamics is a continuous time Markov
chain with the generator

(L(f ))(σ ) =
∑

v∈V

(
∑

a∈A
K[σ → σav ]

(
f (σav )− f (σ)

)
)

, (1)

where σav is the configuration s.t.

σav (w) =
{
a if w = v

σ(w) if w �= v

and

K[σ → σav ] =

∏

w:(w,v)∈E
αvw(a, σw)

∑

a′∈A

(
∏

w:(w,v)∈E
αvw(a′, σw)

) .

It is easy to check that this dynamics is reversible with respect to the Gibbs
measure. An equivalent representation for the Glauber dynamics, known as the
Graphical representation, is the following: Each vertex has a rate 1 Poisson clock
attached to it. These Poisson clocks are independent of each other. Assume that the
clock at v rang at time t and that just before time t the configuration was σ . Then
at time t we replace σ(v) by a random spin σ ′(v) chosen according to the Gibbs
distribution conditional on the rest of the configuration:

P[σ ′(v) = i | σ ]

P[σ ′(v) = j | σ ]
=

∏

w:{v,w}∈E

αvw(i, σ (w))

αvw(j, σ (w))
.

We are interested in the rate of convergence of the Glauber dynamics to the
stationary distribution. Note that this process mixes n = |V | times faster than the
corresponding discrete time process, simply because it performs (on average) n
operations per time unit while the discrete time process performs one operation per
time unit.

In section 2.1, we describe a connection between the geometry of a graph and
the mixing time of Glauber dynamics on it. In particular, we show that for balls
in hyperbolic tilings, the Glauber dynamics for the Ising model, the Potts model
and proper coloring with � + 2 colors (where � is the maximal degree), have
mixing time polynomial in the volume. An example of such a hyperbolic graph can
be obtained from the binary tree by adding horizontal edges across levels; another
example is given in Figure 1.

In sections 2.3-4 we study Glauber dynamics for the Ising model on regular
trees. For these trees we show that the mixing time is polynomial at all tempera-
tures, and we characterize the range of temperatures for which the spectral gap is
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Fig. 1. A ball in hyperbolic tiling

bounded away from zero. Thus, the notion that the two sides of the phase transition
(high versus low temperatures) should correspond to polynomial versus super-poly-
nomial mixing times for the associated dynamics, fails for the Ising model on trees:
here the two sides of the high/intermediate versus low temperature phase transition
just correspond to uniformly bounded versus unbounded inverse spectral gap. We
also exhibit another surprising phenomenon: On infinite regular trees, there is a
range of temperatures in which the inverse spectral gap is bounded, even though
there are many different Gibbs measures.

In section 5 of the paper we go beyond trees and hyperbolic graphs and study
Glauber dynamics for families of finite graphs of bounded degree. We show that
if the inverse spectral gap of the Glauber dynamics on the ball centered at ρ stays
bounded as the ball grows, then the correlation between the state of a vertex ρ and
the states of vertices at distance r from ρ, must decay exponentially in r .

Setup

The graphs. Let G = (V ,E) be an infinite graph with maximal degree �. Let
ρ be a distinguished vertex and denote by Gr = (Vr , Er) the induced graph on
Vr = {v ∈ V : dist(ρ, v) ≤ r}. Let nr be the number of vertices in Gr . At some
parts of the paper we will focus on the case where G = T = (V ,E) is the infinite
b-ary tree. In these cases, T (b)r = (Vr , Er) will denote the r-level b-ary tree.
The Ising model. In the Ising model on Gr at inverse temperature β, every con-
figuration σ ∈ {−1, 1}Vr is assigned probability

µ[σ ] = Z(β)−1 exp
(
β

∑

{v,w}∈Er
σ (v)σ (w)

)

where Z(β) is a normalizing constant. When Gr = T
(b)
r , this measure has the

following equivalent definition [8]: Fix ε = (1 + e2β)−1. Pick a random spin ±1
uniformly for the root of the tree. Scan the tree top-down, assigning vertex v a spin
equal to the spin of its parent with probability 1−ε and opposite with probability ε.
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The Heat-Bath Glauber dynamics for the Ising model chooses the new spin
σ ′(v) in such a way that:

P[σ ′(v) = +1 | σ ]

P[σ ′(v) = −1 | σ ]
= exp

(
2β

∑

w: {w,v}∈Er
σ (w)

)
.

See [21] or [25] for more background.

Mixing times.

Definition 1.1. For a reversible continuous time Markov chain, let 0 = λ1 ≤ λ2 ≤
. . . ≤ λk be the eigenvalues of −L where L is the generator. The spectral gap of
the chain is defined as λ2, and the relaxation time, τ2, is defined as the inverse of
the spectral gap.

Note that the corresponding discrete time Glauber dynamics has transition matrix
M = I + 1

n
L, where n is the number of vertices. Moreover, the eigenvalues of M

are 1, 1 − λ2
n
, 1 − λ3

n
, . . . and therefore the spectral gap of the discrete dynamics

is the spectral gap of the continuous dynamics divided by n.

Definition 1.2. For measures µ and ν on the same discrete space, the total-vari-
ation distance, dV (µ, ν), between µ and ν is defined as

dV (µ, ν) = 1

2

∑

x

|µ(x)− ν(x)| .

Definition 1.3. Consider an ergodic Markov chain {Xt } with stationary distribu-
tion π on a finite state space. Denote by Ptx the law ofXt givenX0 = x. The mixing
time of the chain, τ1, is defined as

τ1 = inf{t : sup
x,y

dV (Ptx ,Pty) ≤ e−1}.

For t ≥ ln(1/ε)τ1, we have

sup
x
dV (Ptx , π) ≤ sup

x,y
dV (Ptx ,Pty) ≤ ε.

Using τ2 one can bound the mixing time τ1, since every reversible Markov chain
with stationary distribution π satisfies (see, e.g., [1]),

τ2 ≤ τ1 ≤ τ2

(
1 + log

(
(min
σ
π(σ ))−1

))
. (2)

For the Markov chains studied in this paper, this gives τ2 ≤ τ1 ≤ O(n)τ2.

Cut-Width and relaxation time.

Definition 1.4. The cut-width ξ(G) of a graphG is the smallest integer such that
there exists a labeling v1, . . . , vn of the vertices such that for all 1 ≤ k ≤ n, the
number of edges from {v1, . . . , vk} to {vk+1, . . . , vn}, is at most ξ(G).
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Remark. The vertex-separation of a graph G is defined analogously to the cut-
width in terms of vertices among {v1, . . . , vk} that are adjacent to {vk+1, . . . , vn}.
In [20] it is shown that the vertex-separation of G equals its path-width, see [35].
In [19] the cut-width was called the exposure.

Generalizing an argument in [25, Theorem 6.4] for Zd , (see also [15]), we
prove:

Proposition 1.1. Let G be a finite graph with n vertices and maximal degree �.

1. Consider the Ising model on G. The relaxation time of the Glauber dynamics
is at most ne(4ξ(G)+2�)β .

2. Consider the coloring model on G. If the number of colors q satisfies q ≥
� + 2, then the relaxation time of the Glauber dynamics is at most (� + 1)n
(q − 1)ξ(G)+1.

Analogous results hold for the independent set and hard core models.

Cut-Width and long-range correlations for hyperbolic graphs. The usefulness
of Proposition 1.1 comes about when we bound the relaxation time of certain graphs
by estimating their cut-width. The following proposition bounds the cut-width of
balls in hyperbolic tilings of the plane. Recall that the Cheeger constant of an
infinite graph G is

c(G) = inf

{ |∂A|
|A|

∣
∣
∣
∣A ⊆ G; 0 < |A| < ∞

}

, (3)

where ∂A is the set of vertices of A which have neighbors in G \ A.

Proposition 1.2. For every c > 0 and� < ∞, there exists a constantC = C(c,�)

such that if G is an infinite planar graph with

• Cheeger constant at least c,
• maximum degree bounded by � and
• for every r no cycle from Gr separates two vertices of G \Gr ,
then ξ(Gr) ≤ C log nr for all r , where nr is the number of vertices of Gr .

Combining this with Proposition 1.1 we get that the Glauber dynamics for the Ising
models on balls in the hyperbolic tiling has relaxation time polynomial in the vol-
ume for every temperature. On the other hand, we have the following proposition:

Proposition 1.3. Let G be a planar graph with bounded degrees, bounded co-
degrees and a positive Cheeger constant. Then there exist β ′ < ∞ and δ > 0 such
that for all r , all β > β ′, and all vertices u, v inGr , the Ising model onGr satisfies
that E[σuσv] ≥ δ. In other words, at low enough temperature there are long-range
correlations.

This shows that for the Ising model on balls of hyperbolic tilings at very low tem-
perature, there are long-range correlations coexisting with polynomial time mixing.
While there is no characterization of all planar graphs with positive Cheeger con-
stants, an important family of such graphs is Cayley graphs of nonelementary fuch-
sian groups which are nonamenable, and hence have a positive Cheeger constant,
see [31, 24, 18] for background and [11] for some explicit estimates.
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Relaxation time for the Ising model on the tree. The Ising model on the b-ary
tree has three different regimes, see [3, 8]. In the high temperature regime, where
1−2ε < 1/b, there is a unique Gibbs measure on the infinite tree, and the expected
value of the spin at the root σρ given any boundary conditions σ

∂T
(b)
r

decays expo-

nentially in r . In the intermediate regime, where 1/b < 1 − 2ε < 1/
√
b, the

exponential decay described above still holds for typical boundary conditions, but
not for certain exceptional boundary conditions, such as the all + boundary; con-
sequently, there are infinitely many Gibbs measures on the infinite tree. In the low
temperature regime, where 1 − 2ε > 1/

√
b, typical boundary conditions impose

bias on the expected value of the spin at the root σρ .

Theorem 1.4. Consider the Ising model on the b-ary tree Tr = T
(b)
r with r levels.

Let ε = (1 + e2β)−1. The relaxation time τ2 for Glauber dynamics on T (b)r can be
bounded as follows:

1. The relaxation time is polynomial at all temperatures: τ2 = n
O(log(1/ε))
r . Fur-

thermore, the limit

lim
r→∞

log(τ2(T
(b)
r , β))

log(nr)

exists.
2. Low temperature regime:

(a) If 1−2ε ≥ 1/
√
b then supr τ2(Tr) = ∞. In fact, τ2(Tr) = �(n

logb(b(1−2ε)2)
r )

when 1 − 2ε > 1/
√
b and τ2(Tr) = �(log nr) when 1 − 2ε = 1/

√
b.

(b) Moreover, the degree of τ2 tends to infinity as ε tends to zero: τ2(Tt ) =
n
�(log(1/ε))
r .

3. Intermediate and high temperature regimes:
If 1 − 2ε < 1/

√
b then the relaxation time is uniformly bounded: τ2 = O(1).

Furthermore, this result holds for every external field {H(v)}v∈Tr .
In particular we obtain from Equation (2) that in the low temperature region

τ1 = n
�(β)
r , and in the intermediate and high temperature regions τ1 = O(nr).

A recent work by Peres and Winkler [33] compares the mixing times of single
site and block dynamics for the heat-bath Glauber dynamics for the Ising model.

They show that if the blocks are of bounded volume, then the same mixing time
up to constants is obtained for the single site and block dynamics.

Combining these results with the path coupling argument of Section 4, it follows
that τ1 = O(log nr) in the intermediate and high temperature regions.

We emphasize that Theorem 1.4 implies that in the intermediate region 1/2 <
1 − 2ε < 1/

√
b, the relaxation time is bounded by a constant, yet, in the infinite

volume there are infinitely many Gibbs measures. This Theorem is perhaps easiest
to appreciate when compared to other results on the Gibbs distribution for the Ising
model on binary trees, summarized in Table 1. The proof of the low temperature
result is quite general and applies to other models with “soft” constraints, such as
Potts models on the tree.
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Table 1. The Ising model on binary trees. Here the root is denoted ρ, and the vertices at
distance r from the root are denoted ∂T

Temp. 1 − 2ε σρ |σ∂T ≡ + I (σρ, σ∂T ) τ2

high < 1/2 unbiased → 0 O(1)
med. ∈ ( 1

2 ,
1√
2
) biased → 0 O(1)

low > 1√
2

biased inf> 0 n�(1)

freeze 1 − o(1) biased 1 − o(1) n�(β)

Spectral gap and correlations. At infinite temperature, where distinct vertices are
independent, the Glauber dynamics on a graph of n vertices reduces to an (accel-
erated by a factor of n) random walk on a discrete n-dimensional cube, where it
is well known that the relaxation time is �(1). Our next result shows that at any
temperature where such fast relaxation takes place, a strong form of independence
holds. This is well known in Zd , see [25], but our formulation is valid for any graph
of bounded degree.

Theorem 1.5. Denote by σr the configuration on all vertices at distance r from ρ.
IfG has bounded degree and the relaxation time of the Glauber dynamics satisfies
τ2(Gr) = O(1), then the Gibbs distribution onGr has the following property. For
any fixed finite set of vertices A, there exists cA > 0 such that for r large enough

Cov[f, g] ≤ e−cAr
√

Var(f )Var(g) , (4)

provided that f (σ) depends only on σA and g(σ ) depends only on σr . Equivalently,
there exists c′A > 0 such that

I [σA, σr ] ≤ e−c
′
Ar , (5)

where I denotes mutual information (see [6].)

This theorem holds in a very general setting which includes Potts models,
random colorings, and other local-interaction models.

Our proof of Theorem 1.5 uses “disagreement percolation” and a coupling argu-
ment exploited by van den Berg, see [2], to establish uniqueness of Gibbs measures
in Zd ; according to F. Martinelli (personal communication) this kind of argument is
originally due to B. Zegarlinski. Note however, that Theorem 1.5 holds also when
there are multiple Gibbs measures – as the case of the Ising model in the interme-
diate regime demonstrates. Moreover, combining Theorem 1.5 and Theorem 1.4,
one infers that for 1 − 2ε < 1/

√
b, we have limr→∞ I [σ0, σr ] = 0. This yields

another proof of this fact which was proven before in [3, 12, 8].

Plan of the paper

In section 2 we prove Proposition 1.1 via a canonical path argument, and give the
resulting polynomial time upper bound of Theorem 1.4 part 1. We also present
a more elementary proof of the upper bound on the relaxation time for the tree,
which gives sharper exponents and the existence of a limiting exponent; this proof
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uses Martinelli’s block dynamics to show sub-additivity. In section 3 we sketch a
proof of Theorem 1.4 part 2a and present a proof of Theorem 1.4 part 2b. These
lower bounds are obtained by finding a low conductance “cut” of the configuration
space, using global majority of the boundary spins for the former result, and recur-
sive majority for the latter result. In section 4 we establish the high temperature
result, using comparison to block dynamics which are analyzed via path-coupling.
Finally, in section 5 we prove Theorem 1.5 by a Peierls argument controlling “paths
of disagreement” between two coupled dynamics.

Remark. Most of the results proved here were presented (along with proof sketches)
in the extended abstract [19]. However, the proofs of our results for hyperbolic
graphs (see Section 2.2), which involve some interesting geometry, were not even
sketched there. Also, the general polynomial upper bound for trees that we estab-
lish in Section 2.3 is a substantial improvement on the results of [19], since it only
assumes the dynamics is ergodic and allows for arbitrary hard-core constraints.

2. Polynomial upper bounds

2.1. Cut-Width and mixing time

We begin by showing how part 1 of Proposition 1.1 implies the upper bound in part
1 of Theorem 1.4.

Lemma 2.1. Let T (b)r be the b-ary tree with r levels. Then, ξ(T (b)r ) < (b−1)r+1.

Proof. Order the vertices using the Depth first search left to right order , i.e., use
the following labeling for the vertices: The root is labeled 〈0, 0, . . . , 0〉. The chil-
dren of the root are labeled 〈1, 0, . . . , 0〉 through 〈b, 0, . . . , 0〉, and so on, so that
the children of 〈a1, a2, . . . , ak, 0, . . . , 0〉 are 〈a1, a2, . . . , ak, 1, . . . , 0〉 through
〈a1, a2, . . . , ak, b, . . . , 0〉. Then order the vertices lexicographically. Note that in
the lexicographic ordering, a vertex always appears before its children. When we
enumerated all vertices up to 〈a1, a2, . . . , ar 〉, the only vertices that were enu-
merated but whose children were not enumerated are among the set of at most r
vertices

{〈0, 0, . . . , 0〉, 〈a1, 0, . . . , 0〉, 〈a1, a2, . . . , 0〉, . . . , 〈a1, a2, . . . , ar 〉} .
Each of these vertices has at most b children, and for all but 〈a1, a2, . . . , ar 〉 at
least one child has already been enumerated. Therefore,

ξ(T (b)r ) < (b − 1)r + 1.


�
Corollary 2.2. 1. The relaxation time of the Glauber dynamics for the Ising model

on T (b)r is at most

C(ε)n
1+4(b−1) logb

1−ε
ε

r = n
O(log(1/ε))
r .
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2. The relaxation time of the Glauber dynamics for the coloring on T (b)r with
q > b + 2 colors is at most

(b + 1)n
1+2(b−1) logb(q)
r

Proof. The Corollary follows from Lemma 2.1 and Proposition 1.1. 
�
The upper bound in part 1 of Theorem 1.4 follows immediately.

Proof of part 1 of Proposition 1.1. The proof follows the lines of the proof given
in [25, Theorem 6.4] for the Ising model in Zd , (see also [15]).

Let � be the graph corresponding to the transitions of the Glauber dynamics
on the graph G. Between any two configurations σ and η, we define a “canonical
path" γ (σ, η) as follows. Fix an order < on the vertices of G which achieves the
cut-width. Consider the vertices v1 < v2 < . . . at which σv �= ηv .

We define the k-th configuration σ (k) on the path γ (σ, η) by giving spin σv
to every labeled vertex v ≤ vk , spin ηv to every labeled vertex v > vk , and spin
σv = ηv for every unlabeled vertex v. Note that σ (0) = η and σ (d(σ,η)) = σ . Since
σ (k−1) and σ (k) are identical except for the spin of vertex vk , they are adjacent in
�. This defines γ (σ, η) (see Figure 2). Note that for every k, there are at most ξ(G)
pairs of adjacent vertices (vi, vj ) such that i ≤ k < j , hence any configuration on
the canonical path between σ and η will have at most ξ(G) edges between spins
copied from σ and spins copied from η.

Using canonical paths to bound the mixing rate. For each directed edge
e = (ω, ζ ) on the configuration graph �, we say that e ∈ γ (σ, η) if ω and ζ
are adjacent configurations in γ (σ, η). Let

ρ = sup
e

∑

σ,η: e∈γ (σ,η)

µ[σ ]µ[η]

Q(e)
,

where µ is the stationary measure (i.e. the Gibbs distribution), and for any two
adjacent configurations ω and ζ ,Q(e) = Q((ω, ζ )) = µ[ω]K[ω → ζ ]. If L is the

η

σ

γ(σ,η)

v v vv v1 2 3 4 5

Fig. 2. The canonical path from σ to η. The vertices on which σ and η agree are marked in
grey; the other vertices are colored black if their spin is chosen according to σ and white if
their spin is chosen according to η
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ν

φ

σ
η

εv

Fig. 3. The injection from (e, ϕ) to (σ, η). The vertices on which both endpoints of e and
ϕ agree are marked in grey; the other vertices are colored black if they precede vk0 and
their spin is chosen according to ϕ, or if they are preceded by vk0 and their spin is chosen
according to the endpoints of e; and are colored white otherwise

maximal length of a canonical path, then by the argument in [15, 25], the relaxation
time of the Markov chain is at most

τ2 ≤ Lρ. (6)

Since L ≤ n, it follows that τ2 ≤ nρ, thus it only remains to prove an upper bound
on ρ.

Analysis of the canonical path. For each directed edge e in �, we define an injec-
tion from canonical paths going through e in the specified direction, to configura-
tions on G. To a canonical path γ (σ, η) going through e, such that
e = (σ (k−1), σ (k)), we associate the configuration ϕ which has spin ηvi for ev-
ery vi s.t. i ≥ k and spin σvi for every vi s.t. i < k. To verify that this is an
injection, note that one can reconstruct σ and η by first identifying the unique k0
s.t. ω and ζ differ on vk0 and then taking (as in Figure 3)

σvk =





ωvk ωvk = ϕvk
ωvk k ≥ k0 and ωvk �= ϕvk
ϕvk k < k0 and ωvk �= ϕvk

and

ηvk =





ωvk ωvk = ϕvk
ϕvk k ≥ k0 and ωvk �= ϕvk
ωvk k < k0 and ωvk �= ϕvk .

By the property of our labeling,

µ[σ ]µ[η] ≤ µ[σ (k−1)]µ[ϕ]e4ξ(G)β . (7)

andK[σ (k−1)→σ (k)]≥exp(−2�β).Now a short calculation concludes the proof:
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ρ ≤ sup
e

∑

σ,η s.t. e∈γ (σ,η)

µ[σ ]µ[η]

µ[σ (k−1)]K[σ (k−1) → σ (k)]

≤ e4ξ(G)β sup
e

∑

ϕ

µ[σ (k−1)]µ[ϕ]

µ[σ (k−1)]K[σ (k−1) → σ (k)]
(8)

≤ e4ξ(G)βe2�β
∑

ϕ

µ[ϕ] ≤ e(4ξ(G)+2�)β . (9)

The last inequality follows from the fact that the map γ → ϕ is injective and
therefore

∑
ϕ µ[ϕ] ≤ 1. 
�

Proof of part 2 of Proposition 1.1. The previous argument does not directly extend
to coloring, because the configurations σ (k) along the path (as defined above) may
not be proper colorings. Assume that q ≥ � + 2 and let v1 < v2 · · · < vn be an
ordering of the vertices of G which achieves the cut-width. We construct a path
γ (σ, η) such that

|γ (σ, η)| ≤ (�+ 1)n. (10)

Moreover, for all τ ∈ γ (σ, η) there exists a k such that

τv =
{
ηv if v ≤ vk
σv if v > vk and v �∼{v, . . . , vk} (11)

The way to construct a path γ (σ, η) satisfying (10) and (11) is the following:
σ 0 = σ . Given σk , we proceed to create σk+1 as follows: Let i(k) = inf{j : σkvj �=
ηvj }. If

ρ =
{
σkv if v �= vi(k)
ηv if v = vi(k)

is a legal configuration, then σk+1 = ρ. otherwise, let

h(k) = inf{j : σkvj = ηvi(k) and vj ∼ vi(k)},
and let c be a color that is different from ηvi(k) and is legal for vh(k) under σk . Such
a color exists because q ≥ �+ 2. Then, we take

σk+1
v =

{
σkv if v �= vh(k)
c if v = vh(k)

It is easy to verify that the path satisfies (10) and (11). Since all legal configu-
rations have the same weight, (7) is replaced by

µ[σ ]µ[η] = µ[σ (k−1)]µ[ϕ] (12)

On the other hand, the map γ → ϕ is not injective. Instead, by (11), there are at
most (q−1)ξ(G) paths which are mapped to the same coloring. We therefore obtain
that for the coloring model ρ ≤ n(q − 1)ξ(G)+1 and therefore from (10) and (12),

τ2 ≤ (�+ 1)nq(q − 1)ξ(G).


�
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2.2. Hyperbolic graphs

In this subsection we show that balls in a hyperbolic tiling have logarithmic cut-
width. Let G = (V ,E) be an infinite planar graph and let o ∈ V . Let Gr be the
ball of radius r in G around o, with the induced edges. The following proposition
implies Propositions 1.2 and 1.3.

Proposition 2.3. 1. Suppose G has
• a positive Cheeger constant,
• degrees bounded by �,
• for all r , no cycle from Gr separates two vertices of G \Gr ,
then there exists constants α1 and α2 s.t. ξ(Gr) ≤ α1� log(|Gr |)+ α2�.

2. Assume that G has bounded degrees, bounded co-degrees, no cycle from Gr
separates two vertices ofG\Gr , and the following weak isoperimetric condition
holds:

|∂A| ≥ C log(|A|) (13)

for every finite A ⊆ G and for some constant C.
Then there exist β ′ < ∞ and δ > 0 s.t. for every β > β ′, for every r and for
every u, v inGr , the free Gibbs measure for the Ising model onGr with inverse
temperature β satisfies cov(σu, σv) ≥ δ.

Proof of part 1 of Proposition 2.3. Consider a planar embedding of G. Since no
cycle from Gr separates two vertices of G \ Gr , all vertices of G \ Gr are in the
same face ofGr , and without loss of generality we can assume that it is the infinite
face of our chosen embedding of Gr .

Let T be a shortest path tree from o inGr . In other words, T is a tree such that
for every vertex v, the path from o to v in T is a shortest path inGr . Let e1 ∈ T be
an edge adjacent to o. We perform a depth-first-search traversal of T , starting from
o = v0, traversing e1 to its end vertex v1, and continuing in counterclockwise order
around T . This defines a linear ordering v0 ≤ v1 ≤ · · · ≤ vn−1 of the vertices of
Gr .

Consider the induced ordering w1 ≤ w2 ≤ · · · ≤ wk on the vertices of Gr
which are at distance exactly r from o.

Fix i < j . We first consider edges between

Vij = {u ∈ Gr : wi < u < wj , u not ancestor of wj in T }
and Gr \ Vij . Note that Vij does not contain any vertex on the paths in T from o

to either wi or wj . Obviously, there can be edges from Vij to vertices on the paths
from o to wi or wj . Let e = {u, v} be an edge with one endpoint in Vij and the
other end in G \Gr but not on Path(wi) or Path(wj ), where Path(wj ) denote the
path in T from o to wj . Without loss of generality, assume that wi < u < wj < v.
The case where v < wi < u < wj is treated similarly.

The path from o to u in T , followed by the edge e, followed by the path from
v to o in T , defines a cycle Ce in Gr (see Figure 4). Since wi < u < wj < v, Ce
must enclose exactly one of wj and wi . Since the graph is embedded in the plane,
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Fig. 4. The cycle Ce defined by e

the ones among those cycles which enclose wj must form a nested sequence, and
therefore there is an outermost such cycle Ce∗ with an associated “outermost”
edge e∗ = {u∗, v∗}. Similarly, among the edges such that the corresponding cycle
encloses wi , there is an “outermost” edge f ∗ = {x∗, y∗}.

There can only be edges from Vij to the vertices enclosed by Ce∗ or by Cf ∗
(note that this includes the paths from o to wi and to wj ) . Since all the vertices of
G \Gr are in the infinite face ofGr , hence outside Ce∗ , the set of vertices enclosed
by Ce∗ is the same in G as in Gr . Let A denote the set of vertices enclosed by Ce∗
(including Ce∗ ). We have: |∂A| ≤ 2r + 1, hence |A| ≤ (2r + 1)/c, where c is
the Cheeger constant of G. Reasoning similarly for Cf ∗ , we obtain that the set of
vertices in Gr \ Vij adjacent to Vij has size at most (4r + 2)/c.

Let Bj = Vj−1,j for j ≥ 2, and B1 = {u ∈ Gr : u < w1 or u > wk, u

not an ancestor of w1 in T }. Let us bound the cardinality ofBj .As above, we define
Ce∗ and Cf ∗ . Let A denote the union of Bj , of the vertices enclosed by Ce∗ , and of
the vertices enclosed by Cf ∗ .

Since the vertices ofBj are at distance at most r−1 from o, they have no neigh-
bors in G \ Gr . Thus the neighborhood of A in G is such that ∂A ⊂ Ce∗ ∪ Cf ∗ ,
hence |∂A| ≤ 4r + 2, and so |Bj | ≤ |A| ≤ (4r + 2)/c.

Finally, to compute the cut-width, let S = {u : v0 ≤ u ≤ vi}, and let j be such
that wj−1 < vi ≤ wj . We have:

V1,j−1 ⊆ S ⊆ B1 ∪ V1,j−1 ∪ Bj ∪ Path(w1) ∪ Path(wj−1) ∪ Path(wj ).

Thus the set of edges between S andGr \ S has size at most�(4r + 2)/c+ (|B1 ∪
Bj |)�+ (3r + 1)�, which is at most (3r + 1 + (12r + 6)/c)�.

Since G has positive Cheeger constant,

|Gr | = |Gr−1 ∪ ∂Gr−1| ≥ |Gr−1|(1 + c),

and so |Gr | ≥ (1 + c)r , that is, r ≤ log |Gr |/ log(c + 1). Hence the set of edges
betweenS andG\S has size at most (3+12/c)(�/ log(c+1)) log |Gr |+(1+6/c)�.
This concludes the proof. 
�
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w
w

j

i

Fig. 5. The region between Path(Wi) and Path(Wj )

Proof of part 2 of Proposition 2.3. We use the Random Cluster representation of
the Ising model (see, e.g. [9]) and a standard Peierls path-counting argument. For
every u and v in Gr , cov(σu, σv) is the probability that u is connected to v in the
Random Cluster model. Fix p < 1. The exact value of p will be specified later.

Then, β is large enough, i.e., if (1−e−β)/e−β > 2p/(1−p), then the Random
Cluster model dominates percolation with parameter p. So, what we need to show
is that for a graph satisfying the requirements of part 2 of the proposition and p
high enough, there exists δ > 0 s.t. for every r and every u, v in Gr , we have
Pp(u ↔ v) ≥ δ. By the FKG inequality (see [10]),

Pp(u ↔ v) ≥ Pp(u ↔ o)Pp(v ↔ o)

where o is the center. Therefore we need to show that P(v ↔ o) is bounded away
from zero. To this end, we will pursue a standard path counting technique: in order
for o and v not to be connected, there needs to be a closed path in the dual graph
that separates o and v.

Claim 2.4. There exists M = M(G) s.t. for every r and v ∈ Gr there are at most
Mk paths of length k in the dual graph of Gr that separate o from v.

By Claim 2.4, if we take p > 1 − 1/(2M) and choose β accordingly then the
probability that there exists a closed path in the dual graph that separates o and v
is bounded away from 1. 
�
Proof of Claim 2.4. Here again, we consider an embedding ofGr such that all the
vertices of G \Gr lie on the infinite face F of Gr .

Let γ be a shortest path connecting v to o in Gr . Every dual path separating v
from omust intersect γ . For an edge e let�k(e) be the set of dual pathsψ of length
k separating o from v such that ψ intersects e. If �̂ is the maximal co-degree in G
then |�k(e)| ≤ �̂k for every e.

Let e ∈ γ be such that d(e, o) > exp(k/C)+ k�̂, d(e, v) > exp(k/C)+ k�̂,
and d(e, F ) > k�̂. We will now show that |�k(e)| = 0. Assume, for a contradic-
tion, thatψ ∈ �k(e). Sinceψ has length k and d(e, F ) > �̂k,ψ does not touch the
outer face F , and so the area enclosed by ψ inGr equals the area enclosed by ψ in
G. The dual path ψ encloses either v or o. Without loss of generality, assume that
it encloses o. Let e′ be the edge of γ closest to o which ψ intersects. Since ψ has
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length k, we get that d(e′, o) > exp(k/C), and so at least 1 + exp(k/C) vertices
of γ are enclosed by ψ . By (13) this implies that ψ has length strictly greater than
k, a contradiction.

Thus, the total number of paths of length k separating o from v is at most

∑

e:|�k(e)|�=0

|�k(e)| ≤ [2(exp(k/C)+ k�̂)+ �̂k]�̂k.


�

Remark. An isoperimetric inequality of the type of (13) is necessary. An example
where all other conditions of part 2 of Proposition 2.3 are satisfied and yet the
conclusion does not hold can be found in Figure 6.

2.3. A polynomial upper bound for trees

In this subsection we give an improved bound on relaxation time for the tree.
LetA be a finite set, and let αvw : A×A → R+ be a weight function. LetG be

a graph. Let the Glauber dynamics be as defined above, and let L = L(A, α,G) be
its generator. We say that the Glauber dynamics on (A, α,G) is ergodic if for every
two legal configurations σ1 and σ2, we have (exp(L))σ1σ2

> 0. We will prove the
following proposition:

Proposition 2.5. Let b ≥ 2, and let T denote the infinite b-ary tree, and let Tn be
the b-ary tree with n levels. If the Glauber dynamics on (A, α, Tn) is ergodic for
every n then

lim sup
n→∞

1

n
log (τ2 (L (A, α, Tn))) < ∞.

Fig. 6. An example of a planar graph s.t. for all temperatures, correlations decay exponen-
tially with distance
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Conjecture 2.6. Let b ≥ 2, T denote the infinite b-ary tree, and let Tn be the b-ary
tree with n levels. If the Glauber dynamics on (A, α, T ) is ergodic then there exists
0 ≤ τ < ∞ s.t.

lim
n→∞

1

n
log (τ2 (L (A, α, Tn))) = τ. (14)

We prove a special case of Conjecture 2.6:

Proposition 2.7. If the interactions are soft, i.e. αvw(a, b) > 0 for all v,w, a and
b, then (14) holds.

The main tool we use for proving Propositions 2.5 and 2.7 is block dynamics
(see e.g. [25]). For a spin (or a color) a ∈ A, we denote by L(a, α, n) the Glauber
dynamics on the b-ary tree of depth n, under the interaction matrix α and with
the boundary condition that the root has a parent colored a. With a slight abuse of
notations, we say that τ2(a, α, n) is the relaxation time for L(a, α, n).

Lemma 2.8. Let

τ̂2(α, n) = sup
a∈A

τ2(a, α, n)

Then, for all m and n,

τ̂2(α, n+m) ≤ τ̂2(α, n)τ̂2(α,m).

Proof. Let l = n+m. Partition the tree Tl into disjoint sets V1, ..., Vk to be speci-
fied below. We call V1, ..., Vk blocks, and consider the following block dynamics:
Each block Vi has a (rate 1) Poisson clock, and whenever it rings, Vi updates
according to its Gibbs measure determined by the boundary conditions given by
the configurations of T (b)l −Vi and by the external boundary conditions. We denote
by LB = LB(V1, ..., Vk) the generator for the block dynamics, and let LBa be the
generator for the block dynamics with the boundary condition that the parent of the
root has color a.

By [25][Proposition 3.4, page 119],

τ̂2(α, l) ≤ sup
i

τ̂2(α, Vi) · sup
a∈A

τ2(LBa )

We now define the partition to blocks. For every vertex v up to depth n, the singleton
{v} is a block, and for every vertexw at depth n, the full subtree of depthm starting
at w is a block (see Figure 7). All we need now to finish the proof is the following
easy claim:

Claim 2.9.

sup
a∈A

τ2(LBa ) = τ̂2(α, n).
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Fig. 7. Partition of a tree to blocks

Proof. We use the following fact (that could also serve as a definition of the
relaxation time). Given the dynamics L we define the Dirichlet form E[g, g] =
1
2

∑
σ,τ µ[σ ]K[σ → τ ](g(σ )− g(τ))2. Then

τ2 = sup

{
µ[g2]

E[g, g]
: µ[g] = 0

}

. (15)

Clearly, the expression in (15) evaluated for f and LBa is equal to the one evaluated
for g and L(a, α, n), if

g(η) = f (σ) for all η and σ s.t. η
∣
∣
Tn = σ. (16)

Therefore, we need to show that the maximum in (15) for the dynamics LBa is
obtained at a function that satisfies (16). The maximum in (15) is obtained at an
eigenfunction of LBa . Moreover for every function g, LBa (g) satisfies (16) with
some function f . It now follows that the maximum is obtained at a function
that satisfies (16). 
�


�
Proof of Proposition 2.5. From Lemma 2.8 and the sub-additivity lemma, we learn
that

lim sup
n→∞

1

n
log

(
τ̂2 (L (A, α, Tn))

)
< ∞

By another application of Matinelli’s block dynamics lemma, we get that

τ2 (L (A, α, Tn)) ≤ τ2 (L (A, α, T1)) · τ̂2 (L (A, α, Tn−1)) (17)

and the proposition follows. 
�
Proof of proposition 2.7. From Lemma 2.8 and the sub-additivity lemma, we learn
that there exists 0 ≤ τ < ∞ s.t.

lim
n→∞

1

n
log

(
τ̂2 (L (A, α, Tn))

) = τ.

For every a, let µa be the Gibbs measure for the tree of depth n with the boundary
condition that the parent of the root has color a. Note that µa is the stationary dis-
tribution of L(a, α, n). Since the interactions are soft, there exists 0 < C < ∞ s.t.
for every a, every n, and every two configurations σ and η on the tree of depth n,
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1

C
µ(σ) ≤ µa(σ ) ≤ Cµ(σ),

and

1

C
L(α, n)σ,η ≤ L(a, α, n)σ,η ≤ CL(α, n)σ,η.

Therefore, by (15),

1

C3 τ2 (L (A, α, Tn)) ≤ τ̂2 (L (A, α, Tn)) ≤ C3τ2 (L (A, α, Tn))

and the proposition follows. 
�

3. Lower bounds

Proof of Theorem 1.4, part 2a. Theorem 1.4 part 2a is a direct consequence of the
extremal characterization of τ2 given in (15), applied to the particular test function
g which sums the spins on the boundary of the tree. It is easy to see that µ[g] = 0
and that

E[g, g] ≤
∑

σ,τ

µ[σ ]K[σ → τ ] = O(nr).

We repeat the variance calculation from [8]. When b(1 − 2ε)2 > 1:

µ[g2] =
∑

w∈∂T

µ[σ 2
w] +

∑

w∈∂T

∑

v∈∂T
v �=w

µ[σwσv]

= br ·
(

1 +
r∑

i=1

(b − 1)bi−1(1 − 2ε)2i
)

= br
(

1 +�
((
b(1 − 2ε)2

)r))

= �
(
n

1+logb(b(1−2ε)2)
r

)
.

It now follows by (15) that if b(1 − 2ε)2 > 1 then

τ2 = �
(
n

logb(b(1−2ε)2)
r

)
,

as needed. Repeating the calculation for the case b(1 − 2ε)2 = 1 yields that

τ2 = �(log nr).

The proof follows. 
�
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Fig. 8. The recursive majority function

Remark. Suppose that µ admits a Markovian representation where the conditional
distribution of σu given its parent σv is given by an |A|×|A| mutation matrixP . Let
λ2(P ) be the second eigen-value of P (in absolute value), and x the corresponding
eigen-vector, so that Pxt = λ2(P )x

t and |x|2 = 1.
Let g be the test function g = cnx

t , where cn(i) is the number of boundary
nodes that are labeled by i. It is then easy to see once again that E[g, g] = O(nr).
Repeating the calculation from [29] it follows that if b|λ2(P )|2 > 1, then

Var[g] = �
(
n

1+logb(b|λ2(P )|2)
r

)
.

Thus in this case,

τ2 = �
(
n

logb(b|λ2(P )|2)
r

)
.

In order to prove the lower bound on the relaxation time for very low temper-
atures stated in Theorem 1.4 part 2b, we apply (15) to the test function g which is
obtained by applying recursive majority to the boundary spins; see [28] for back-
ground regarding the recursive-majority function for the Ising model on the tree.
For simplicity we consider first the ternary tree T , see Figure 5. Recursive majority
is defined on the configuration space as follows. Given a configuration σ , first label
each boundary vertex v by its spin σv . Next, inductively label each interior vertex
w with the label of the majority of the children of w. The value of the recursive
majority function g is then the label of the root. We write σv for the spin at v and
mv for the recursive majority value at v.

Lemma 3.1. If u and w are children of the same parent v, then P[mu �= mw] ≤
2ε + 8ε2.

Proof.

P[mu �= mw] ≤ P[σu �= mu] + P[σw �= mw] + P[σu �= σv] + P[σw �= σv].

We will show that recursive majority is highly correlated with spin, i.e. if ε is small
enough (say ε < 0.01), then P[mv �= σv] ≤ 4ε2.

The proof is by induction on the distance � from v to the boundary of the tree.
For a vertex v at distance � from the boundary of the tree, write p� = P[mv �= σv].
By definition p0 = 0 ≤ 4ε2.

For the induction step, note that if σv �= mv then one of the following events
hold:

• At least 2 of the children of v, have different σ value than that of σv , or
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• One of the children of v has a spin different from the spin at v, and for some
other child w we have mw �= σw, or

• For at least 2 of the children of v, we have σw �= mw.

Summing up the probabilities of these events, we see that p� ≤ 3ε2 + 6εp�−1 +
3p2

�−1. It follows that p� ≤ 4ε2, hence the Lemma. 
�
Proof of Theorem 1.4 part 2b. Let m be the recursive majority function. Then by
symmetry E[m] = 0, and E[m2] = 1. By pluggingm in definition (15), we see that

τ2 ≥



∑

σ,τ :m[σ ]=1,m[τ ]=−1

µ[σ ]P[σ → τ ]





−1

. (18)

Observe that if σ, τ are adjacent configurations (i.e., P[σ → τ ] > 0) such that
m(σ) = 1 and m(τ) = −1, then there is a unique vertex vr on the boundary
of the tree where σ and τ differ. Moreover, if ρ = v1, . . . , vr is the path from
ρ to vr , then for σ we have m(v1) = . . . = m(vr) = 1 while for τ we have
m(v1) = . . . = m(vr) = −1. Writingui, wi for the two siblings of vi for 2 ≤ i ≤ k,
we see that for all i, for both σ and τ we havem(ui) �= m(vi). Note that these events
are independent for different values of i. We therefore obtain that the probability
that v1, . . . , vr is such a path is bounded by (2ε+ 8ε2)r−1. Since there are 3r such
paths and since P[σ → τ ] ≤ 3−r we obtain that the right term of (18) is bounded
below by

(2ε + 8ε2)1−r ≥ n�(β) .


�
Note that the proof above easily extends to the d-regular tree for d ≥ 3. A similar
proof also applies to the binary tree T , where g is now defined as follows. Look at Tk
for even k. For the boundary vertices definemv = σv . For each vertex v at distance
2 from the boundary, choose three leaves on the boundary below it v1, v2, v3 and
let mv be the majority of the values mvi . Now continue recursively.

Repeating the above proof, and letting p� = P [mv �= σv] for a vertex at dis-
tance 2�, we derive the following recursion: p� ≤ 3(2ε)2 + 6(2ε)p�−1 + 3p2

�−1.
We then continue in exactly the same way as for the ternary tree.

4. High temperatures

Proof of Theorem 1.4 part 3. Our analysis uses a comparison to block dynamics.

Block dynamics. We view our tree T = T
(b)
r as a part of a larger b-ary tree T∗ of

height r + 2h, where the root ρ of T is at level h in T∗. For each vertex v of T∗,
consider the subtree of height h rooted at v. A block is by definition the intersection
of T with such a subtree. Each block has a rate 1 Poisson clock and whenever the
clock rings we erase all the spins of vertices belonging to the block, and put new
spins in, according to the Gibbs distribution conditional on the spins in the rest of T .
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Discrete dynamics. In order to be consistent with [4], we will first analyze the
corresponding discrete time dynamics: at each step of the block dynamics, pick a
block at random, erase all the spins of vertices belonging to the block, and put new
spins in, according to the Gibbs distribution conditional on the spins in the rest of T .

A coupling analysis. We use a weighted Hamming metric on configurations,

d(σ, η) =
∑

v

λ|v|1(σv �= ηv),

where |v| denotes the distance from vertex v to the root. Let θ = 1 − 2ε and
λ = 1/

√
b. Note that bλθ < 1 and θ < λ. Starting from two distinct configurations

σ and η, our coupling always picks the same block in σ and in η and chooses the
coupling between the two block moves which minimizes d(σ ′, η′).

We use path-coupling [4], i.e., we will prove that for every pair of configurations
which differ by a single spin, applying one step of the block dynamics will reduce
the expected distance between the two configurations.

Let v be the single vertex, such that σv �= ηv . Then d(σ, η) = λ|v|. Let B
denote the chosen block, and σ ′, η′ be the configurations after the move. In order
to understand (σ ′, η′), we will need the following Lemma.

Lemma 4.1. Let T be a finite tree and let v �= w be vertices in T . Let {βe ≥
0}e∈E(T ) be the (ferromagnetic) interactions on T , and let {−∞ < H(u) <

∞}u∈V (T ) be an external field on the vertices of T . we consider the following
conditional Gibbs measures:
µ+,H : The Gibbs measure with external field H conditioned on σv = 1.
µ−,H : The Gibbs measure with external field H conditioned on σv = −1.
Then, the function µ+,H [σw] − µ+,H [σw] achieves its maximum at H ≡ 0.

Before proving the Lemma, we utilize it to prove Theorem 1.4, part 3. There
are four situations to consider.
Case 1. ifB contains neitherv nor any vertex adjacent tov, thend(σ ′, η′) = d(σ, η).
Case 2. If B contains v, then σ ′ = η′ and d(σ ′, η′) = 0 = d(σ, η) − λ|v|. There
are h such blocks, corresponding to the h ancestors of v at 1, 2, . . . , h generations
above v. (Note that this holds even when v is the root of T or a leaf of T , because
of our definition of blocks).
Case 3. IfB is rooted at one of v’s children, then the conditional probabilities given
the outer boundaries of B are not the same since one block has +1 above it and
the other block has −1 above it. However both blocks have their leaves adjacent to
the same boundary configuration. When considering the process on the block, the
influence of the boundary configuration can be counted as altering the external field.
Since σ and η have the same external fields and the same boundary configuration
on all of the boundary vertices except v, by Lemma 4.1, conditioning on this lower
boundary can only reduce d(σ ′, η′). Therefore, we bound d(σ ′, η′) by studying the
case where one block is conditioned to having a +1 adjacent to the root, the other
block is conditioned to having a −1 adjacent to the root, and no external field or
boundary conditions. Then the block is simply filled in a top-down manner, every
edge is faithful (i.e. the spin of the current vertex equals the spin of its parent) with
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probability θ and cuts information (the spin of the current vertex is a new random
spin) with probability 1 − θ . Coupling these choices for corresponding edges for
σ and for η, we see that the distance between σ ′ and η′ will be equal to the weight
of the cluster containing v, in expectation

∑
j λ

|v|+j bj θj ≤ λ|v|/(1 − bλθ). There
are b such blocks, corresponding to the b children of v.
Case 4. If B is rooted at v’s ancestor exactly h + 1 generations above v, then the
conditional probabilities are not the same since one block has a leaf v adjacent to a
+1 and the other block has a leaf adjacent to a −1. There is exactly one such block.
Again we appeal to Lemma 4.1 to show that the expected distance is dominated
by the size of the θ cluster of w. The expected weight of v’s cluster is bounded by
summing over the ancestors w of v:

∑

w

θ |v|−|w|∑

j

λ|w|+j bj θj =
∑
w λ

|w|θ |v|−|w|

1 − bλθ

= λ|v|

(1 − θλ−1)(1 − bλθ)
.

Overall, the expected change in distance is

E(d(σ ′, η′)− d(σ, η))

≤
(

bλ|v|

1 − bλθ
+ λ|v|

(1 − θλ−1)(1 − bλθ)
− hλ|v|

)
1

n+ h− 1
.

If the block height h is a sufficiently large constant, we get that for some positive
constant c,

E(d(σ ′, η′)− d(σ, η)) ≤ −cλ|v|

n
≤ −c

n
d(σ, η). (19)

Note that max d(σ, η) = ∑
j≤r bjλj ≤ √

n. Therefore, by a path-coupling
argument (see [4]) we obtain a mixing time of at most O(n log n) for the blocks
dynamics.

Spectral gap of discrete time block dynamics. The (1 − c/n) contraction at
each step of the coupling implies, by an argument from [5] which we now recall,
that the spectral gap of the block dynamics is at least c/n. Indeed, let λ2 be the
second largest eigenvalue in absolute value, and f an eigenvector for λ2. Let
M = supσ,η |f (σ)− f (η)|/d(σ, η) and denote by P the transition operator. Then
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|λ2|M = sup
σ,η

|Pf (σ)− Pf (η)|
d(σ, η)

since f eigenvector for λ2

≤ sup
σ,η

∑

σ ′,η′
P[(σ, η) → (σ ′, η′)]

|f (σ ′)− f (η′)|
d(σ ′, η′)

d(σ ′, η′)
d(σ, η)

≤ sup
σ,η

∑

σ ′,η′
P[(σ, η) → (σ ′, η′)]M

d(σ ′, η′)
d(σ, η)

= M sup
σ,η

E[d(σ ′, η′)]
d(σ, η)

≤ (1 − c/n)M by (19).

Thus |λ2|M ≤ (1 − c/n)M , whence the (discrete time) block dynamics has relax-
ation time at most O(n).

Relaxation time for continuous time block dynamics. The continuous time
dynamics is n times faster than the discrete time dynamics. This is true because
the transition matrix for the discrete dynamics is M = I + 1

n
L where I is the

2n-dimensional unit matrix. Therefore

τ2(block dynamics) = O(1).

Relaxation time for single-site dynamics. Since each block update can be simu-
lated by doing a constant number of single-site updates inside the block, and each
tree vertex only belongs to a bounded number of blocks, it follows from proposition
3.4 of [25] that the relaxation time of the single-site Glauber dynamics is alsoO(1).


�

Proof of Lemma 4.1. Reduction from trees to paths. We first claim that it suffices
to prove the lemma when the tree T consists of a path v = v1, . . . , vk = w. (see
Figure 9). To see this, let T1, T2, . . . , Tk be the connected components of T when
the edges in the path v1, v2, . . . , vk are erased, s.t. vi ∈ Ti for i = 1, 2, . . . , k. Let
σ be a configuration on v1, . . . , vk , and for a subgraph J let S(J ) be the space of
configurations on J . The probability of a configuration σ on v1, . . . , vk is

1

Z
exp

(
k−1∑

i=1

β{vi ,vi+1}σvi σvi+1

)

·
k∏

i=1




∑

τ∈S(Ti−{vi })
exp

(H(τ ∪ σvi )
)




= 1

Z′ exp

(
k−1∑

i=1

β{vi ,vi+1}σvi σvi+1 +
k∑

i=1

H ′
vi
σvi

)

for some external field {H ′
u} depending only on {Hu} and {βe}, where Z and Z′ are

partition functions and H(·) denotes the Hamiltonian.
We will now prove the lemma by induction on the length of the path v1, . . . , vk .
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Fig. 9. Reduction from trees to paths

Paths of length 2. Assume k = 2. Writingβ for the strength of (v1, v2) interaction,
H for external field at w = v2. Then,

µ+,τ [σw] − µ−,τ [σw] = eβ+H − e−β−H

eβ+H + e−β−H − e−β+H − eβ−H

e−β+H + eβ−H
= tanh(β +H)− tanh(H − β).

It therefore suffices to prove that for β > 0, the function

H �→ g(β,H) = tanh(H + β)− tanh(H − β)

has a unique maximum at H = 0. Consider the partial derivative,

gH (β,H) = cosh−2(H + β)− cosh−2(H − β). (20)

Therefore, if β > 0 and H > 0 then gH (β,H) < 0 and if β > 0 and H < 0
then gH (β,H) > 0. Thus H = 0 is the unique maximum and the claim for k = 2
follows.

Induction step. We assume that the claim is true for k − 1 and prove it for k. We
denote v′ = vk−1, µ

′
+,H = µH [·|σv′ = 1] and similarly µ′

−,H . Now,

µ+,H [σw] − µ−,H [σw]

= (
µ+,H [σv′ = 1]µ′

+,H [σw] + µ+,H [σv′ = −1]µ′
−,H [σw]

)

− (µ−,H [σv′ = 1]µ′
+,H [σw] + µ−,H [σv′ = −1]µ′

−,H [σw]
)

= 1

2
(µ+,H − µ−,H )[σv′ ](µ′

+,H − µ′
−,H )[σw]. (21)

Since by the induction hypothesis both multipliers in (21) achieve their maximums
atH ≡ 0, we get thatµ+,H [σw] − µ−,H [σw] also achieves its maximum atH ≡ 0.


�

5. Proof of Theorem 1.5

Recall that we denoted by σr the configuration on all vertices at distance exactly r
from ρ. Also recall that µ is the Gibbs measure which is stationary for the Glauber
dynamics. We abbreviate

∫
f dµ as µ(f ).
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Mutual information and L2 estimates. For Markov chains such as {σr}, it is gen-
erally known [36] that (5) follows from (4), which itself, is a consequence of the
following stronger statement:

There exists c∗ > 0 such that for any vertex set A ⊂ Gr/2 and any functions
f, g with µ(f ) = µ(g) = 0, we have

µ(fg) ≤ e−c∗r (µ(f 2)µ(g2))1/2 , (22)

provided that f (σ) depends only on σA and g(σ ) depends only on σr . (22) will
follow from a more general proposition below. For a set A of vertices in a graph
G we write ∂iA for the set of vertices v in A for which there exists an edge (v, u)
with u /∈ A.

Proposition 5.1. LetG be a finite graph, and let A and B be sets of vertices inG.
Let d be the distance betweenA and B and let� be the maximum degree inG. For
0 < c < 1, let

I (c) = c − log c − 1. (23)

Let c∗ be the unique 0 < c < 1 satisfying I (c) = log� and for 0 < c < c∗, let

C(c,�) =
(

1 − elog�−I (c)
)−1/2

. (24)

Further, let λ2 be the absolute value of the second eigenvalue of the generator
of the Glauber dynamics on G, i.e. λ2 = 1

τ2
. Let f = f (σ) depend only on the

values of the configuration in A and g = g(σ ) depend only on the values of the
configuration in B. If µ(f ) = µ(g) = 0, then

µ(fg) ≤
(

e−cdλ2 + 2C(c,�)
√

|∂iA| ed(log�−I (c))
)

‖f ‖2‖g‖2. (25)

In particular (by letting c = e− log�−γ−2) for γ ≥ 0,

µ(fg) ≤
(
e−dλ2 exp(− log�−γ−2) + 4

√
exp(−(γ + 1)d) |∂iA|

)
‖f ‖2‖g‖2. (26)

Proof of Theorem 1.5. Note that |∂iA| ≤ |A| ≤ �r/2. Therefore, to prove (22) we
use (26) with B={v : d(v, o) = r}, d = r/2 and γ s.t. eγ > �. 
�
Proof of Proposition 5.1. We use a coupling argument. Let µ be the Gibbs mea-
sure onG, and letX0 be chosen according toµ. LetXt and Yt be defined as follows:
Set Y0 = X0. For t > 0, let Xt and Yt evolve according to the dynamics with the
following graphical representation: Each v ∈ G has a Poisson clock. Assume the
clock at v rang at time t , and letXt− and Yt− be the configurations just before time
t . At time t we do the following:

1. If v ∈ B then Xv updates according to the Gibbs measure, and Yv does not
change.

2. If v �∈ B and Xt−(w) = Yt−(w) for every neighbor w of v, then both X and Y
update according to the Gibbs measure so that Xt(v) = Yt (v).
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3. If v �∈ B and there exists a neighbor w of v s.t. Xt−(w) �= Yt−(w) then both X
and Y update according to the Gibbs measure, but this time independently of
each other.

For a vertex v ∈ B we define tv to be the first time the Poisson clock at v rang.
For any v ∈ G \B, we define tv to be the first time the Poisson clock at v rang after
min(w,v)∈EG tw. Note that Xt(v) = Yt (v) at any time t < tv , and that tv depends
only on the Poisson clocks, and is independent of the initial configuration X0. We
let tA = minv∈A tv .

Let Ft denote the (σ -algebra of the) Poisson clocks at the vertices up to time t .
Let (P tf )(σ ) = E[f (Xt )|X0 = σ,Ft ] and let (Qtf )(σ ) = E[f (Yt )|X0 = σ,Ft ].
Also, let (P̃ tf )(σ ) = E[f (Xt )|X0 = σ ] and (Q̃tf )(σ ) = E[f (Yt )|X0 = σ ].
Since for all t the process Yt is at the stationary distribution and Yt |B = X0|B for
all t , we get

µ[gf ] = E[g(Yt )f (Yt )] = E[g(X0)f (Y
t )] = E[gQ̃tf ]. (27)

If t < tA, then clearly Xt = Yt on A. Therefore, ‖(Qtf − P tf ) · 1t<tA‖2
2 = 0.

On the other hand, ‖Qtf ‖2 ≤ ‖f ‖2 Ft − a.s. and ‖P tf ‖2 ≤ ‖f ‖2 Ft − a.s.
This is because the operators f → Qt(f ) and f → P t(f ) given Ft are Markov
operators and hence contractions. Therefore

‖Q̃tf − P̃ tf ‖2
2

= E
(

[Q̃tf (X0)− P̃ tf (X0)]
2
)

≤ E
(

[Qtf (X0)− P tf (X0)]
2
)

= P(t ≤ tA)

∫

dµ(σ)E
(

[Qtf (σ )− P tf (σ )]2|t ≤ tA

)

+P(t > tA)

∫

dµ(σ)E
(

[Qtf (σ )− P tf (σ )]2|t > tA,X0 = σ
)

≤ 4P[tA ≤ t]‖f ‖2
2

where the first inequality is because Q̃tf (X0)− Q̃tf (X0) is a conditional expec-
tation of Qtf (X0) − P tf (X0), and the second inequality is because {t > tA} is
Ft -measurable. Therefore, by the Cauchy-Schwartz inequality,

E[(Q̃tf − P̃ tf )g] ≤ 2
√

P[tA ≤ t]‖f ‖2 ‖g‖2 . (28)

Since

E[gP̃ tf ] ≤ e−λ2t‖f ‖2‖g‖2,

We infer that from (28) and (27) that

µ[fg] ≤
(
e−λ2t + 2

√
P[tA ≤ t]

)
‖f ‖2‖g‖2 . (29)

It remains to bound the two terms in the right-hand side of (29).
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For 0 < c < c∗, we take t = cd. We obtain that the first term is e−cdλ2 , as
desired. It remains to bound P[tA ≤ t]. We note that tA ≤ t only if there is some self-
avoiding path (sometimes referred to as “path of disagreement") between theA and
B along which the discrepancy between the two distributions has been conveyed
in time less than t .

Time-reversing the process, this means that first-passage-percolation with rate-1
exponential passage times starting at A needs to arrive at distance d within time
cd . There are at most |∂iA|�k paths of length k for the first-passage-percolation
for each k ≥ d. Let τ(v,w) be the time needed to cross the edge (v,w). For each
path v1, v2, . . . , vk ,

P (τ (v1, v2)+ τ(v2, v3)+ . . . τ (vk−1, vk) < cd) < e−kI (c)

where I (c) = c− log c− 1 is the large deviation rate function for the exponential
distribution. Therefore,

P(tA ≤ t) ≤ |∂iA|
∞∑

k=d
exp

[
k(−I (c′)+ log�)

]

≤ C2(c,�) |∂iA| ed(log�−I (c))


�

Plugging this bound into (29), we obtain (25) as needed.

6. Open problems

In this section we specify some relevant problems that are still open.

Problem 1. What is the relaxation time τ2(n, b, b
−1/2) of the Glauber dynamics of

the Ising model on the b-ary tree of depth n at the critical temperature 1−2ε = 1√
b

?

Using the sum of spins as a test function, we learn that �(log n) is a lower bound
for τ2(n, b, b

−1/2). We conjecture that the relaxation time is of order �(log n). A
weaker conjecture is that

lim
n→∞

log(τ2(n, b, b
−1/2))

n
= 0.

Problem 2. Fix b, and let

τ2(β) = lim
n→∞

log(τ2(n, b, β))

n
.

Theorem 1.4 part 1 tells us that τ2(β) exists and is finite for all β. Show that τ2(β) is
a monotone function of β. This question is a special case of a more general mono-
tonicity conjecture due to the fourth author, described in [30]. See [30] where a
monotonicity result is proven for the Ising model on the cycle.
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Problem 3. For the Ising model (with free boundary conditions and no external
field) on a general graph of bounded degree, does the converse of Theorem 1.5
hold, i.e., does uniform exponential decay of point-to-set correlations imply a uni-
form spectral gap?
(As pointed out by F. Martinelli (personal communication), the converse fails in
certain lattices if plus boundary conditions are allowed).

Problem 4. Recall the general upper bound ne(4ξ(G)+2�)β on the relaxation time
of Glauber dynamics in terms of cut-width from proposition 1.1. For which graphs
does a similar lower bound of the form τ2 ≥ ecξ(G)β (for some constant c > 0)
hold at low temperature?

Such a lower bound is known to hold for boxes in a Euclidean lattice, our results
imply its validity for regular trees, and we can also verify it for expander graphs. A
specific class of graphs which could be considered here are the metric balls around
a specific vertex in an infinite graph � that has critical probability pc(�) < 1 for
bond percolation.

Remark. After the results presented here were described in the extended abstract
[19], striking further results on this topic were obtained by F. Martinelli, A. Sin-
clair, and D. Weitz [26]. For the Ising model on regular trees, in the temperatures
where we show the Glauber dynamics has a uniform spectral gap, they show it sat-
isfies a uniform log-Sobolev inequality; moreover, they study in depth the effects
of external fields and boundary conditions.

Acknowledgements. We are grateful to David Aldous, David Levin, Laurent Saloff-Coste
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