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Abstract. In order to obtain hitting time estimates for the asymmetric zero-range process
(AZRP) on Z

d , in dimensions d ≥ 3, we characterize the principal eigenvalue of the genera-
tor of the AZRP with Dirichlet boundary on special domains. We obtain a Donsker-Varadhan
variational representation and show that the corresponding eigenfunction is unique in a nat-
ural class of functions.

1. Introduction

The AZRP models the conservative evolution of charged particles interacting over
short range, in an electrical field. The process denoted by {ηt , t ≥ 0}, lives on
{η : η(i) ∈ N, i ∈ Z

d}, and evolves informally as follows. At time zero and at each
site i ∈ Z

d , we draw a number of particles η(i) ∈ N. To each particle we attach the
trajectory of an asymmetric random walk with transition kernel {p(i, j); i, j ∈ Z

d}.
Now, each site i ∈ Z

d has an independent exponential process, its clock, of inten-
sity g(ηt (i)) at time t , where g : N → [0,∞) is increasing. At each site i and at
each realization of its clock, say at time t , we choose a particle uniformly among
the ηt (i)-ones and we move it to its next position along its attached trajectory. The
conservation of the particles number imposes a one-parameter family of ergodic
time-invariant measures {νρ, ρ > 0}, which consists of product measures [1, 14].
The name zero-range is justified since only particles at the same site can interact
with each other. Note also that g(k) = k corresponds to independent random walks.

A problem motivated by physics is to estimate the times of occurrence of spots
with large densities of particles, say τ , when the gas is initially prepared with a
homogeneous density. Thus, we consider a stationary process with respect to νρ ,
and focus on hitting times of patterns of the type

A := {η :
∑

i∈S
η(i) > L}, (and τ := inf{t : ηt ∈ A}) (1.1)

where S, the support of A, is a finite subset of Z
d , and L a given integer.
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Though L is neither compact, irreducible, nor self-adjoint, its physical origin
endows crucial monotonicity properties. Thus, the partial order –η ≺ ζ meaning
η(i) ≤ ζ(i) for all i ∈ Z

d– is preserved under the evolution. A related feature is
that the invariant measures {νρ, ρ > 0} all satisfy FKG’s inequality, i.e. for f and
g increasing functions

∫
fgdνρ ≥

∫
f dνρ

∫
gdνρ. (1.2)

This was the setting of [2] whose relevant results we now recall. A simple sub-
additive argument yielded the asymptotical rough estimate

λ(ρ) = − lim
t→∞

1

t
log(Pνρ (τ > t)). (1.3)

When the drift,
∑
i ip(0, i), is nonzero, λ(ρ) is positive in any dimensions. Fur-

thermore, if we denote by L∗ the dual of L in L2(νρ), which corresponds to an
AZRP with reversed drift, then when d ≥ 3, there exist u, u∗ ∈ Lp(νρ) for any
p ≥ 1 in the domain of L and L∗ respectively, with

(i) 1AcL(u)+ λ(ρ)u = 0, and (ii) 1AcL∗(u∗)+ λ(ρ)u∗ = 0. (1.4)

However, and this was most unfortunate from a physical point of view, a link
with finite dimensional dynamics was missing, as well as a variational representa-
tion for λ(ρ). This is what we first establish in this paper. Then, we show uniqueness
for u in some class of functions, which in turn yields an asymptotical estimate for
the hitting time.

We have chosen to introduce some symbols intuitively so as to be able to state our
main results postponing definitions and notations as much as possible to Section 2.

A way of defining the AZRP with initial law νρ on Z
d is through a limit of irre-

ducible processes, where particles evolve on [−n, n]d as a zero-range process with
creation and annihilation at the boundary. Informally, if Fn is the σ -field generated
by {η(i), i ∈ [−n, n]d}, then we define

Lρn(ϕ) = Eνρ [L(ϕ)|Fn].

The generator Lρn will be shown to inherit the same property of monotonicity as
L and to have νρ as invariant measure. Thus, its principal Dirichlet eigenvalue
λn(ρ) is obtained as in (1.3). We show, in Section 3.4, that Lρn has a unique normal-
ized eigenfunction un ≥ 0 (in some cone), associated with λn(ρ). Then, our main
observation in Section 3.5 is the following.

Lemma 1.1. For λ(ρ) given by (1.3), and λn(ρ) corresponding to Lρn , we have
that {λn(ρ), n ∈ N} is a decreasing sequence with

lim
n→∞ λn(ρ) = λ(ρ). (1.5)

Moreover, we establish a link between finite and infinite volume eigenfunctions.

Theorem 1.2. When d ≥ 3, {un, n ∈ N} converges to a solution of (1.4(i)) in
weak-L2(νρ).
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In [2], a solution of (1.4(i)) was obtained through another sequence, say {ut , t ≥ 0}
in which ut was the density (w.r.t νρ) of the marginal law at time t of the time-
reversed process conditioned on {τ > t}. The functions {ut , t ≥ 0} where positive
and decreasing on Ac, and satisfied the following uniform bound: for site i large
enough, if εi is the probability that a random walk starting on i with transition
kernel {p(., .)} hits the support of A, then when d ≥ 3

0 ≤ ut (η)− ut (A
+
i η) ≤ εiut (η), (1.6)

where A+
i η is the configuration η with one more particle at site i.

We denote by Dρ the convex set of non-negative decreasing functions of finite
integral (w.r.t νρ), satisfying (1.6). We denote by D+

ρ the positive functions of Dρ .
Finally, we define a dual space of probability measures, Mρ , absolutely continuous
with respect to νρ , and whose density satisfies a condition similar to (1.6).

Intuitively, a Donsker-Varadhan’s type functional would read 
(ϕ,µ) =
“
∫ L(ϕ)/ϕdµ” for (ϕ, µ) ∈ D+

ρ × Mρ . One problem is that L cannot be de-
fined on D+

ρ as a convergent series. Thus, we define 
(ϕ,µ), in Proposition 4.3
of Section 4, as the limit of the Cauchy sequence {∫Lρn(ϕ)/ϕdµ, n ∈ N} taking
advantage of the gradient bounds (1.6) on ϕ and dµ/dνρ by an integration by parts
formula.

We obtain in Section 4.2 a Donsker-Varadhan variational formula for the prin-
cipal eigenvalue.

Theorem 1.3. When d ≥ 3, and A is increasing with bounded support, we have

λ(ρ) = − sup
µ∈Mρ

inf
ϕ∈D+

ρ


(ϕ, µ). (1.7)

Obtaining (1.7) is linked with the issue of uniqueness of the principal eigenfunction,
since the minimax theorem hidden behind Donsker-Varadhan’s formula requires a
convex functional h �→ 
(eh, µ) (over a convex set of functions regular enough).
Note that D+

ρ is all the more appropriate since when written for h = log(ϕ), with
ϕ ∈ D+

ρ , condition (1.6) reads

h(η) ≥ h(A+
i η) ≥ h(η)+ log(1 − εi) (when εi < 1), (1.8)

and defines a convex set. Now, the main uniqueness result is the following.

Theorem 1.4. When d ≥ 3, there is a unique normalized Dirichlet eigenfunction
in Dρ . This eigenfunction is positive νρ-a.s. on Ac.

The proofs of Theorem 1.4 and Theorem 1.2 are written in Section 5. We sketch
the simple intuitive steps behind the proof of uniqueness. Assume there exist u, ũ
solutions of (1.4(i)) in Dρ . Then, we show that they are positive (on Ac), and satisfy

∀µ ∈ Mρ, 
(u, µ) = 
(ũ, µ) = −λ(ρ). (1.9)

As already mentioned, if u, ũ ∈ Dρ and γ ∈]0, 1[, then uγ := uγ ũ1−γ ∈ Dρ .
Now, by convexity of h �→ 
(exp(h), µ)

∀µ ∈ Mρ, −λ(ρ) = γ
(u, µ)+ (1 − γ )
(ũ, µ) ≥ 
(uγ , µ) (1.10)
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We now choose a specialµ so that equality obtains in (1.10). The space Mρ is built
so that if u∗ is a positive solution of (1.4(ii)), then

dµ∗ := uγ u
∗

∫
uγ u∗dνρ

dνρ ∈ Mρ. (1.11)

Then, we show that it is legitimate to use the following formal duality


(uγ , µ
∗)=“

∫ L(uγ )
uγ

uγ u
∗

∫
uγ u∗dνρ

dνρ”=“
∫ L∗(u∗)

u∗
uγ u

∗
∫
uγ u∗dνρ

dνρ” = −λ(ρ).
(1.12)

Finally, the case of equality in (1.10) and the triviality of the σ -field of exchangeable
events under νρ imply that ũ/u is νρ-a.s. constant on Ac.

As a consequence of Theorem 1.4, we obtain an asymptotical estimate for the
hitting time of A. To link this last result with those of [2], we recall Corollary 2.8
of [2] which was based on Lp(νρ) estimates for u and u∗. When d ≥ 3, there is a
positive constant c such that for any t ≥ 0,

c ≤ exp(λ(ρ)t)Pνρ (τ > t) ≤ 1. (1.13)

As a corollary of the uniqueness of the principal eigenfunction in Dρ , we obtain
the following estimates whose proof makes up Section 6.

Theorem 1.5. When d ≥ 3, we have the following convergence in L1(νρ)

1

t

∫ t

0
eλ(ρ)sPη(τ > s)ds

t→∞−→ u(η)∫
uu∗dνρ

. (1.14)

Also, after integrating (1.14), we obtain the tail asymptotics

lim
t→∞

1

t

∫ t

0
eλ(ρ)sPνρ (τ > s)ds = 1∫

uu∗dνρ
. (1.15)

2. Notations and preliminaries

We first recall in Section 2.1, the hypotheses needed to define the AZRP on Z
d .

Then, in Section 2.2, we describe the class of patterns we consider here. Section 2.3
contains the definition of all function spaces we use.

2.1. The zero-range process

The transition kernel {p(i, j), i, j ∈ Z
d} is associated with a single-particle

trajectory and satisfies for all i, j in Z
d

(i) p(i, j) ≥ 0, p(i, i) = 0,
∑
i∈Zd

p(0, i) = 1.
(ii) p(i, j) = p(0, j − i) (translation invariance).

(iii) p(i, j) = 0 if |i − j | > R, for some fixed R (finite range).
(iv) If ps(i, j) = p(i, j)+ p(j, i),
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then ∀i ∈ Z
d , ∃n, p(n)s (0, i) > 0 (irreducibility).

(v)
∑
i∈Zd

ip(0, i) �= 0 (positive drift). (2.1)

Note that by (i) and (ii), the transition kernel is doubly stochastic. Thus, we can
introduce a dual transition kernel {p∗(i, j), i, j ∈ Z

d}, with p∗(i, j) = p(j, i).
We also need a particle dependent intensity g which satisfies

(i) g : N → [0,∞) is increasing.
(ii) g(0) = 0, g(1) = 1 (normalization).

(iii) � := sup
k

(g(k + 1)− g(k)) < ∞. (2.2)

For any γ ∈ [0, supk g(k)[, we define a probability θγ on N, by

θγ (0) = 1/Z(γ ), and when n �= 0, θγ (n) = 1

Z(γ )

γ n

g(1) . . . g(n)
, (2.3)

where Z(γ ) is the normalizing factor. If we set ρ(γ ) := ∑∞
n=1 nθγ (n), then ρ :

[0, supk g(k)[→ [0,∞[ is increasing. Let γ (.) be the inverse of ρ(.), and for a
constant density ρ > 0, let νρ be the product probability with marginal law θγ (ρ).
For notational simplicity, we call the intensity at site i ∈ Z

d , gi(η) := g(η(i)), and
we have

∀B ⊂ Z
d ,

∫ ∏

i∈B
η(i)dνρ = ρ|B|, and

∫
gi(η)ϕ(A

−
i η)dνρ(η) = γ (ρ)

∫
ϕdνρ, (2.4)

where A−
i η has one particle less than η at site i. Also, we will often use that

0 ≤ g(n) ≤ �n, (by (ii) and (iii) of (2.2)), and∫
g
p
i dνρ < ∞, for any p ∈ N. (2.5)

Following [9], (see also [1] and [14] Section 2), let

α(i)=
∞∑

n=0

2−npn(i, 0), and for η, ζ ∈ N
Z
d

, ||η − ζ ||=
∑

i∈Zd

|η(i)−ζ(i)|α(i).

Since the transition kernel is finite range (by 2.1(iii)), another possible choice is
α(k) = exp(−(|k1| + · · · + |kd |)) for any site k = (k1, . . . , kd) (see [9]). Our state
space is � = {η : ||η|| < ∞}, and we call L the space of Lipshitz functions from
(�, ||.||) to (R, |.|), and Lb the subspace of L consisting of bounded functions. For
ϕ ∈ L, we call

L(ϕ) := sup{ |ϕ(η)− ϕ(ξ)|
||η − ξ || : ||η − ξ || > 0, η, ξ ∈ �}. (2.6)
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In [1], it is shown that a semi-group can be constructed on L with formal generator

Lϕ(η) :=
∑

i,j∈Zd

p(i, j)g(η(i))
(
ϕ(T ij η)− ϕ(η)

)
, (2.7)

where T ij η(k) = η(k) if k �∈ {i, j}, T ij η(i) = η(i)− 1, and T ij η(j) = η(j)+ 1. If

we set ∇i
j ϕ = ϕ ◦ T ij − ϕ, we will often use that on {η(i) > 0}

∇i
j ϕ = (ϕ ◦ A+

j − ϕ ◦ A+
i ) ◦ A−

i . (2.8)

Thus, if we set �ji ϕ = ϕ ◦ A+
j − ϕ ◦ A+

i , and use (2.5) and (2.8), we have the
following integration by parts formula

∫
gi∇i

j (ϕ)f dνρ = γρ

∫
�
j
i (ϕ) A+

i (f )dνρ. (2.9)

Also, for convenience, we often write A±
i ϕ for ϕ ◦ A±

i .
In [14] Section 2, L is extended to a generator, again called L for convenience,

on L2(νρ) for any ρ > 0. It is also shown that Lb is a core for L. Moreover,
{νρ, ρ > 0} are ergodic invariant measures for L. We denote by D(L, L2(νρ)) the
domain of L in L2(νρ), and by ||.||ν the L2(ν)-norm, for any probability measure
ν. Finally, we consider the adjoint (or time-reversed) of L in L2(νρ), acting on
Lipshitz functions ϕ and ψ by

∫
L∗(ϕ)ψdνρ :=

∫
ϕL(ψ)dνρ. (2.10)

With our hypothesis, L∗ is again the generator of a zero-range process with transi-
tion kernel p∗(., .), and with the same function g. We denote by {S∗

t } the associated
semi-group, and by P ∗

η the associated Markov process with initial configuration
η ∈ �.

2.2. Special patterns

We first recall that there is a partial order on �. For η, ξ ∈ �, we say that η ≺ ξ

if η(i) ≤ ξ(i) for all i ∈ Z
d . A function f : � → R is increasing if for η ≺ ξ ,

f (η) ≤ f (ξ). Also, we say that A ⊂ � is increasing if its indicator 1A is increas-
ing. Finally, for given probability measures ν, µ on �, we say that ν ≺ µ if∫
f dν ≤ ∫

f dµ for every increasing function f . The zero-range process is a
monotone process, i.e. there is a coupling such thatPη,ζ (ηt ≺ ζt ,∀t) = 1 whenever
η ≺ ζ .

We will be concerned with a pattern, A, with the following properties dubbed
(C−F) for connectedness and finiteness:

(i) A is non-empty, and its support S is bounded. Thus, νρ(A) > 0.
(ii) A is increasing, and 0S := {η : η(i) = 0,∀i ∈ S} �⊂ A. Thus, νρ(A) < 1.
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(iii) Its complement, Ac, is connected, and is partitioned into a finite number of
cylinders with bases in S, whose set we denote by �A. In other words, for
any cylinder θ ∈ �A, there is an integer n, a sequence θ0, . . . , θn ∈ �A, and
i1, . . . , in ∈ S such that

θ0 := 0S , θn = θ, and θk = A+
ik
θk−1 for k = 1, . . . , n.

A typical example of patterns satisfying (C−F) is given in (1.1). Note also that if
A satisfies (C−F), there is an integer L such that {η :

∑
S η(i) > L} ⊂ A.

We denote by L̄ := 1AcL and {S̄t , t ≥ 0}, respectively the generator and
associated semi-group for the process killed on A.

2.3. Function spaces

The topology on {η : η(i) ∈ N, i ∈ Z
d}, is the product of discrete topology, so

that {ηn, n ∈ N} converges to η, if for any site i ∈ Z
d , there is n0 such that for

n ≥ n0, ηn(i) = η(i).
Let HS := inf{t ≥ 0 : Xt ∈ S} for {Xt } a random walk with transition ker-

nel {p(i, j); i, j ∈ Z
d}. When the dimension d ≥ 3, εi := Pi (HS < ∞) → 0

as ||i|| → ∞, (as well as ε∗i corresponding to a reversed drift) and we have the
classical results

∑

i∈Zd

ε2
i + (ε∗i )

2 < ∞.

Let A satisfy (C−F). Choose n large enough so that S ⊂ �n := [−n, n]d , and set
�n = {η : �n → N}, and Fn := σ({η(i), i ∈ �n}). We often make the abuse of
considering functions on�n as defined also on�m form ≥ n, but depending only
on the sites of �n.

2.3.1. Functions on �n

Definition 2.1. A function ϕ on �n with ϕ|A ≡ 0 belongs to Dn when

(0) 0 ≤ ϕ,

(i) ∀η, ζ ∈ �n\A, if η ≺ ζ then ϕ(ζ ) ≤ ϕ(η),

(ii) ∀η ∈ �n\A, ∀i ∈ �n\S, ϕ(η)− ϕ(A+
i η) ≤ ϕ(η)εi,

(iii)
∫
ϕdνρ < ∞. (2.11)

When ε∗i replaces εi in (ii), we say that ϕ belong to D∗
n. Also, we set D+

n := Dn∩{ϕ
positive on Ac}.

Lemma 2.2. Dn is a convex subset of Lb. When d ≥ 3, if ϕ ∈ D+
n , then ϕ and

1Ac /ϕ are in Lp(νρ) for any p ≥ 1.
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Proof. If ϕ ∈ Dn, note that ϕ is bounded since 0 ≤ ϕ(η) ≤ ϕ(0�n), where 0�n is
the empty configuration of �n. Take η, ζ ∈ �n\A, and let ξ = η ∨ ζ − η ∧ ζ , and
set m = ∑

i ξ(i). Since ϕ is decreasing

|ϕ(η)− ϕ(ζ )| ≤ ϕ(η ∧ ζ )− ϕ(η ∨ ζ ).
Now, let {ηi, i = 0, . . . , m} be the ordered sequence with

η ∧ ζ = η0 ≺ η1 ≺ · · · ≺ ηm = η ∨ ζ, with ηi = A+
ji
ηi−1,

where {ji, i = 1, . . . , m} are the positions of the m particles of ξ . Then,

ϕ(η ∧ ζ )− ϕ(η ∨ ζ ) ≤
n−1∑

i=0

ϕ(ηi)− ϕ(ηi+1) ≤
n∑

i=1

ϕ(ηi−1)εji .

We use that ϕ(ηi) ≤ ϕ(0�n), and that
∑
i εji = ∑

k εkξ(k). Thus,

|ϕ(η)− ϕ(ζ )| ≤ ϕ(0�n)
∑

k∈�n
εkξ(k) ≤ ϕ(0�n) sup

k∈�n
(
εk

αk
)
∑

k∈�n
ξ(k)α(k).

(2.12)

Now, if η, ζ ∈ A, then (2.12) holds. Assume that η ∈ �n\A but ζ ∈ A. Inequality
(2.12) follows once we notice that ||η − ζ || ≥ infS α > 0. Thus, ϕ is a Lip-
shitz bounded function. Now, ϕ and 1Ac /ϕ are in Lp(νρ) for any integer p by
Lemmas 7.2 and 7.4 of the Appendix. ��
Definition 2.3. A function h belongs to En if it satisfies

(i) ∀η, ζ ∈ �n\A, if η ≺ ζ then h(ζ ) ≤ h(η),

(ii) ∀η ∈ �n\A, ∀i ∈ �n\S, h(A+
i η) ≥ h(η)+ log(1 − εi),

(iii)
∫

exp(h)dνρ < ∞. (2.13)

Note that for any ϕ ∈ D+
n , its logarithm (on Ac) belongs to En. A key and simple

observation is the following.

Lemma 2.4. En is convex.

Proof. Inequalities (2.13) (i) and (ii) are stable under convex combination. Also,
for γ ∈]0, 1[, and h1, h2 ∈ En by Hölder inequality

∫
exp(γ h1 + (1 − γ )h2)dνρ ≤

(∫
eh1dνρ

)γ (∫
eh2dνρ

)1−γ
< ∞.

(2.14)

��
We now define Mn a space of probability measures whose elements have a

density with respect to νρ , generically noted f satisfying: (i) f is decreasing on
Ac, f |A ≡ 0, and

(ii) ∀η ∈ �n\A, ∀i �∈ S f (η)− f (A+
i η) ≤ f (η)(εi + ε∗i ) (2.15)
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Lemma 2.5. Assume that d ≥ 3. Mn is convex and compact in the weak topology.

Proof. The convexity of Mn is obvious. Consider the compact decreasing set

KM = {η ∈ �n : η(i) ≤ M, ∀i ∈ �n}. (2.16)

Note that Mn is tight, that is

lim
M→∞

sup
µ∈Mn

µ(Kc
M) = 0.

Indeed, since dµ/dνρ is decreasing for any µ ∈ Mn, by FKG’s inequality

∀µ ∈ Mn, µ(Kc
M) =

∫
1KcM

dµ

dνρ
dνρ ≤ νρ(K

c
M)

M→∞−→ 0.

Let {µn, n ∈ N} be in Mn, with densities {fn := dµn/dνρ}. Let {µnk } a converg-
ing subsequence to µ. For any η ∈ �n, 1η is a bounded continuous function, so
that

fnk (η)νρ(η) =
∫

1ηdµnk
k→∞−→ µ(η) = f (η)νρ(η). (2.17)

Thus, fnk converges pointwise to f on �n. It is clear that f satisfies (2.15) so that
µ ∈ Mn. ��

An important feature of Mn is the following.

Lemma 2.6. Assume that d ≥ 3. If ϕ ∈ D+
n and ϕ∗ ∈ (D∗

n)
+, then

dµ = ϕϕ∗dνρ∫
ϕϕ∗dνρ

∈ Mn. (2.18)

Proof. First, by Lemma 7.2,
∫
ϕϕ∗dνρ < ∞. Also, note that ϕ, ϕ∗ > 0 on Ac so

that
∫
ϕϕ∗dνρ > 0. Thus, µ given in (2.18) is well defined. Now, since ϕ and ϕ∗

are decreasing on Ac and positive, dµ/dνρ is decreasing on Ac. Now, if ζ = A+
i η,

for i �∈ S
ϕ(η)ϕ∗(η)− ϕ(ζ )ϕ∗(ζ ) = ϕ∗(η)(ϕ(η)− ϕ(ζ ))+ ϕ(ζ )(ϕ∗(η)− ϕ∗(ζ ))

≤ ϕ(η)ϕ∗(η)(εi + ε∗i ). (2.19)

Thus, µ satisfies (i) and (ii) of (2.15). ��

2.3.2. Functions on �

We define Dρ as the natural extention of Dn to functions ofL2(νρ). Thus, functions
in Dρ satisfy the inequalities in (2.11(0)-(iii)) but almost surely with respect to νρ .
Also, D+

ρ denotes the functions of Dρ positive νρ-a.s. on Ac. Similarly, we extend
Mn into Mρ , the space of probability measures absolutely continuous with respect
to νρ , whose densities satisfy νρ-a.s. the same conditions as functions of Mn, but
extended on the whole of Z

d . Note that by linearity of the conditional expectation,
for ϕ ∈ Dρ , Eνρ [ϕ|Fn] ∈ Dn, and similarly if µ ∈ Mρ with density f , then the
probability measure Eνρ [f |Fn]dνρ ∈ Mn.
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Lemma 2.7. Mρ is compact in the weak topology.

Proof. First, by Remark 7.3 of the Appendix, there is a constant C(ρ, 2) > 0 such
that

sup
µ∈Mρ

∫
(
dµ

dνρ
)2dνρ ≤ C(ρ, 2).

Recall that by Banach-Alaoglu Theorem, {dµ/dνρ, µ ∈ Mρ} is weak-L2(νρ)

compact in L2(νρ). Secondly, recall that for any µ ∈ Mρ and integer n,

dµ(n) := Eνρ [
dµ

dνρ

∣∣Fn]dνρ ∈ Mn.

Now, let {µk, k ∈ N} be in Mρ , and let µ∞ be a weak-L2(νρ) limit along
a subsequence, say {nk}. Note that for each integer n, the following convergence
holds in weak-L2(νρ)

f (n)nk
:= Eνρ [

dµnk

dνρ

∣∣Fn]
k→∞−→ f (n)∞ := Eνρ [

dµ∞
dνρ

∣∣Fn].

Moreover, f (n)∞ dνρ ∈ Mn, since Mn is compact by Lemma 2.5. Finally, the

sequence {f (n)∞ , n ∈ N} is a positive martingale which, by the martingale conver-
gence Theorem, converges νρ-a.s. to f∞. Clearly, inequality (2.15) holds νρ-a.s.
for f∞. ��
Remark 2.8. With the same arguments, we obtain that Dρ ∩ {ϕ :

∫
ϕdνρ ≤ c} is

weak-L2(νρ) compact, for any constant c > 0.

Remark 2.9. We give now more details on how a solution u to (1.4(i)) was obtained
in [2], and why u belongs to Dρ . We recall that for any probability µ, �(µ) intro-
duced in [8] was the invariant measure of the renewal process corresponding to
{ηt } started afresh from measure µ each time it hits A. Also, for any integer k, the
map �(k) was the k-th iterates of �. It is shown in Theorem 2.4 of [2], that the
densities of the Cesaro weak-L2(νρ) limits of {�(k)(νρ), k ∈ N} are solutions of
(1.4(i)). There is actually a simple expression for �(k). Since λ(ρ) > 0, we have∫∞

0 Pνρ (τ > t)tkdt < ∞, and the following probability dmk(t) on {t ≥ 0} is well
defined

dmk(t) = Pνρ (τ > t)tkdt
∫∞

0 Pνρ (τ > t)tkdt
and

d�(k)(νρ)

dνρ
(η) =

∫ ∞

0
ut (η)dmk(t),

(2.20)

where ut is mentioned in the paragraph preceding (1.6). Since, ut ∈ Dρ , it is clear
that for any integer k,d�(k)(νρ)/dνρ belongs to Dρ as well as its Cesaro mean, since
Dρ is convex. Now, since {�(k)(νρ), k ∈ N} are probability measures, Remark 2.8
implies that all their Cesaro limits are in Dρ . Thus, there exists a solution of (1.4(i))
in Dρ : we denote it by u. Notice also that our uniqueness result, Theorem 1.4,
implies that (�(1)(νρ)+ · · · +�(n)(νρ))/n converges to u, thus strengthening the
results of [2].
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3. From finite domains to Z
d

3.1. Irreducible dynamics on �n

Following the approach of [11], as in [1], we first consider, for any integers k and
m, a finite-state Markov generator Lk(m) on the hyper-surface

�k(m) := {η ∈ N
�m :

∑

i∈�m
η(i) = k}.

For this purpose we introduce, for any integer n and for i, j ∈ �n

pn(i, j) :=
{
p(i, j) if i �= j∑
k �∈�n p(i, k) if i = j

, and

p∗
n(i, j) :=

{
p∗(i, j) if i �= j∑
k �∈�n p

∗(i, k) if i = j.
(3.1)

Note that {pn(i, j)} is not doubly stochastic. We now can define

Lk(m)(ϕ)(η) =
∑

i,j∈�m
pm(i, j)gi(η)(ϕ(T

i
j η)− ϕ(η)), ∀η ∈ �k(m). (3.2)

Now, we take n < m−R, where R is the range of the transition kernel p(., .), and
for ϕ ∈ Dn, we define

Lρn(ϕ) = lim
K→∞

K∑

k=0

Eνρ [1�k
(m)

Lk(m)(ϕ)|Fn]. (3.3)

This limit is well define since Dn ⊂ Lb, and

pm(i, j)gi(η)(ϕ(T
i
j η)− ϕ(η)) ≤ L(ϕ)pm(i, j)gi(η)(α(i)+ α(j)),

so that by Lemma 2.1 of [14], we have that

∑

k≥0

∫ (
Lk(m)(ϕ)

)2
1�k

(m)
dνρ < ∞.

Also, the expression Lk(m)(ϕ), and the limit (3.3) are independent of m when m >

n+R, and we called the latter Eνρ [L(ϕ)|Fn] in the Introduction. Since {Lk(m), k ∈
N} have the same expression, we henceforth drop the index k, as well as ρ in Lρn
since we work with a fixed density ρ > 0. Finally, a simple computation gives an
expression for Ln
Ln(ϕ) = L(n)(ϕ)+

∑

i∈�n
p∗
n(i, i)γρ(ϕ ◦ A+

i − ϕ)+
∑

i∈�n
pn(i, i)gi(ϕ ◦ A−

i − ϕ).

(3.4)
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Note that by definition of Ln, the product of measures θγ (ρ) over sites of�n, which

we denote either by ν�nρ or simply by νρ , is the invariant measure for Ln. Also,
we have L∗

n(ϕ) = Eνρ [L∗(ϕ)|Fn]. Finally, we omit the simple proof that Ln is a
monotone irreducible process.

We denote by Enη (resp. E(n)η ) the law of the Markov process generated by

Ln (resp. L(n)) with initial configuration η. We denote by L̄n := 1AcLn (resp.

L̄(n) := 1AcL(n)) the process killed on A, and by S̄nt (resp. S̄(n)t ) the associated
semi-group. Note that for ϕ|A ≡ 0

S̄nt (ϕ)(η) = Enη [ϕ(ηt∧τ )] = Enη [ϕ(ηt )1τ>t ].

3.2. Approximating the killed process

The main approximation result is the following.

Lemma 3.1. For any ϕ ∈ Lb with ϕ|A ≡ 0, we have

∀t > 0, lim
n→∞

∫
|S̄nt (ϕ)− S̄t (ϕ)|dνρ = 0.

Proof. We first approximate {τ > t} by {η(ti) �∈ A, i = 0, . . . , k} where {ti} is a
regular subdivision of [0, t] of mesh t/k; we denote the latter event {τ k > t}. Thus,
we show in Step 1 that for each k > 0, and ϕ ∈ Lb with ϕ|A ≡ 0

lim
n→∞

∫
|Enη [1{τ k>t}ϕ(ηt )] − E(n)η [1{τ k>t}ϕ(ηt )]|dνρ = 0. (3.5)

Since by Lemmas 2.3 and 2.6 of [1], we have the pointwise convergence

E(n)η [1{τ k>t}ϕ(ηt )]=S(n)t1
(

1AcS
(n)
t2

(
1Ac . . . S

(n)
tk+1
(ϕ)
))
(η)

n→∞−→ Eη[1{τ k>t}ϕ(ηt )],
(3.6)

we would conclude that

lim
n→∞

∫
|Enη [1{τ k>t}ϕ(ηt )] − Eη[1{τ k>t}ϕ(ηt )]|dνρ = 0. (3.7)

In Step 2, we show that there is a constant C independent of n such that

∫
|Enη [1{τ k>t}ϕ(ηt )] − Enη [1{τ>t}ϕ(ηt )]|dνρ ≤ C

t

k
, (3.8)

and,

lim
k→∞

Eη[1{τ k>t}ϕ(ηt )] = Eη[1{τ>t}ϕ(ηt )]. (3.9)

The proof follows once we combine (3.7), (3.8) and (3.9).
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Step 1.
First, we show by induction on k (the number of points in the subdivision of

[0, t]) that there are two constants Ck,C′
k such that for η �∈ A if we set δn(i) =

(pn(i, i)+ p∗
n(i, i))α(i)

|Enη [1{τ k>t}ϕ(ηt )] − E(n)η [1{τ k>t}ϕ(ηt )]|

≤ Ck
∑

i∈�n
δn(i)

k−1∑

j=0

∫ t

0
Enη [ηs+sj (i)+ C′

k]ds, (3.10)

where s0 = 0 and sj = t1 + · · · + tj .
For k = 1, we have t0 = 0 and t1 = t , so that (3.10) reduces to show that for

η �∈ A, there are C1, C
′
1 such that

|Snt ϕ(η)− S
(n)
t ϕ(η)| ≤ C1

∑

i∈�n
δn(i)

∫ t

0
Enη [ηs(i)+ C′

1]ds, (3.11)

To obtain (3.11), we use an integration by parts formula

Snt ϕ(η)− S
(n)
t ϕ(η) =

∫ t

0
Snt−s(Ln − L(n))S(n)s ϕ(η)ds.

Since ϕ ∈ Lb, Lemma 2.2 of [1] implies that for some constant C

L(S(n)s ϕ) ≤ eCsL(ϕ).

From (3.4) it is enough to bound terms of the form

|A±
i S

(n)
s ϕ(η)− S(n)s ϕ(η)| ≤ L(S(n)s ϕ)α(i) ≤ L(ϕ)eCsα(i). (3.12)

Thus,

|Snt ϕ(η)− S
(n)
t ϕ(η)| ≤ L(ϕ)

∑

i∈�n
δn(i)

∫ t

0

(
Sns (gi)(η)+ γρ

)
ds.

(3.11) follows after recalling that gi(η) ≤ �η(i).
The induction step from k to k + 1 follows with exactly the same arguments.

First, we recall (3.6) and write similarly

Enη [1{τ k>t}ϕ(ηt )] = Snt1

(
1AcSnt2

(
1Ac . . . Sntk+1

(ϕ)
))
.

We call ψ2 := S
(n)
t2
(1AcS

(n)
t3
(1Ac . . . )), and recall that ψ2 ∈ Lb by Lemma 2.3 of

[1]. We now show that 1Acψ2 ∈ Lb. Indeed, for η, ζ ∈ �
|ψ2(η)1η∈Ac − ψ2(ζ )1ζ∈Ac | ≤ 1η,ζ∈Ac |ψ2(η)− ψ2(ζ )| + 1B(η, ζ )|ψ2|∞.

(3.13)

where we set B := A × Ac ∪ Ac × A. Now, (η, ζ ) ∈ B implies that
∑

S |η(i)−
ζ(i)| ≥ 1. Thus,
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1B(η, ζ ) ≤
∑

S
|η(i)− ζ(i)| ≤

∑
S |η(i)− ζ(i)|α(i)

infS α(i)
≤ C||η − ζ ||. (3.14)

Thus, combining (3.14) and (3.13) we obtain that 1Acψ ∈ Lb. Now,

Enη [1{τ k>t}ϕ(ηt )] − E(n)η [1{τ k>t}ϕ(ηt )] =
(
Snt1(1Acψ2)− S

(n)
t1
(1Acψ2)

)

− Snt1

(
1Ac

(
ψ2 − Snt2(1AcSnt3(1Ac . . . ))

))

(3.15)

To the first term on the r.h.s we apply the estimates of the step k = 1 of the induction.
For the second term, the difference ψ2 − Snt2(1AcSnt3(1Ac . . . )) has k subdivision
times, and we use our induction hypothesis to obtain (3.10) at order k; since Snt1 is
positive preserving, the inequality is preserved after applying Snt1 and we obtain the
desired (3.10) at order k + 1. Now, to obtain (3.6), note that

∑

i∈�n
δn(i) ≤ C

∑

i∈�n\�n−R
α(i)

n→∞−→ 0 (since
∑

i∈Zd

α(i) < ∞).

Step 2. Let σS be the first time a particle inside S escapes S, and let θt be the
time-translation by t . By the strong Markov property, for η �∈ A and ε = t/k

|Pnη (τ > t)− Pnη (τ
k > t)| ≤ Pnη




⋃

i≤k
{τ ∈]ti−1, ti[, σS ◦ θτ < ε}





=
k∑

i=1

Enη [1τ∈]ti−1,ti [P
n
ητ
(σS < ε)]. (3.16)

We need now the uniform estimate Pnητ (σS < ε) ≤ Cε. By the hypotheses made
on A, we know that at time τ , there is a bounded number of particles in S. For
the zero range process, it is routine to couple, from time τ onward, the motion
of the particle inside S (at time τ ) with a process containing only particles in S
distributed as those of ητ . Now, for this new process, at any site, the rate of jump is
bounded (uniformly in ητ , since the number of particles is uniformly bounded), and
the probability of having a jump before time ε is smaller than 1 − exp(−c̄ε) ≤ c̄ε.
The limit (3.9) follows for the same reasons. This concludes Step 2. ��

3.3. Donsker-Varadhan functionals in �n

If ϕ ∈ D+
n , note that Ln(ϕ)/ϕ is a finite sum of terms belonging to L2(νρ) by (2.5)

and Lemma 2.2. Thus, for (ϕ, µ) ∈ D+
n × Mn, the following expression is well

defined


n(ϕ, µ) :=
∫ Lnϕ

ϕ
dµ. (3.17)

The functional 
n(ϕ, µ) is useful if it has some regularity in µ and convexity in
log(ϕ).
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Lemma 3.2. Assume d ≥ 3. (i) For any ϕ ∈ Dn, 
n(ϕ, .) : Mn → R is con-
tinuous. (ii) For any µ ∈ Mn, the map 
̃n(., µ) := 
n(exp(.), µ) : En → R is
convex.

Proof. Since Ln(ϕ)/ϕ is not bounded, point (i) is not obvious. Let {µk, k ∈ N} be
in Mn converging weakly toµ. We show that for any ϕ ∈ Dn, 
n(ϕ, µk) converges
to 
n(ϕ, µ) as k tends to infinity. We recall the notation ∇i

j = T ij − 1,


n(ϕ, µk) :=
∑

i,j∈�n
p(i, j)

∫
gi

∇i
j ϕ

ϕ
dµk +

∑

i∈�n

∫
(p∗
n(i, i)γρ

A+
i ϕ − ϕ

ϕ

+ pn(i, i)gi
A−
i ϕ − ϕ

ϕ
)dµk. (3.18)

Let KM be the compact set defined in (2.16). When integrating over KM , the inte-
grals on the r.h.s of (3.18) pose no problem since the integrand overKM is bounded.
When integrating overKc

M , we recall first that for any integerp,ϕ, 1Ac /ϕ ∈ Lp(νρ)
by Lemma 2.2, gi ∈ Lp(νρ) by (2.5) and {fk := dµk/dνρ, k ∈ N} are uniformely
bounded in Lp(νρ) by Remark 7.3. By Hölder’s inequality for p = 5

∫

KcM

gi
T ij ϕ

ϕ
dµk ≤

∫

KcM

gi
ϕ ◦ A−

i

ϕ
fkdνρ

≤
(∫

giϕ
p ◦ A−

i dνρ

∫
1Ac

ϕp
dνρ

∫
f
p
k dνρ

∫
g
p−1
i dνρνρ(K

c
M)

)1/p

≤
(
γρ

∫
ϕpdνρ

∫
1Ac

ϕp
dνρ

∫
f
p
k dνρ

∫
gp−1dνρ

)1/p

νρ(K
c
M)

1/p

≤ Cνρ(K
c
M)

1/p M→∞−→ 0. (3.19)

The other terms of (3.18) are dealt with in the same way. To establish (ii), first note
that by Lemma 2.4, En is convex. Then


n(e
h, µ) =

∑

i,j∈�n
p(i, j)

∫
gi(e

∇ij h − 1)dµ

+
∑

i∈�n
p∗
n(i, i)γρ

∫
(eh◦A+

i −h − 1)+ pn(i, i)

∫
gi(e

h◦A−
i −h − 1)dµ.

(3.20)

The convexity follows from the convexity of the exponential. ��
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3.4. A variational formula for λn(ρ)

Lemma 3.3. For d ≥ 1, there is un ∈ Dn and λn(ρ) > 0 such that

1AcLn(un)+ λn(ρ)un = 0. (3.21)

Moreover un is positive on Ac.
Similarly, when d ≥ 1, there is u∗

n ∈ D∗
n, positive on Ac, which satisfies

1AcL∗
nu

∗
n + λn(ρ)u

∗
n = 0, and

−λn(ρ) = lim
t→∞

1

t
log(P nνρ (τ > t)). (3.22)

Proof. The proof follows the same lines as that of [2] (see also [8] and Remark 2.9).
This is expected since Ln is a monotone operator with the same features as L. Thus,
(3.22) follows as simply as (1.3) by a subadditivity argument. Now, for η ∈ �n,
we denote

ut,n(η) = Pnη (τ > t)

P nνρ (τ > t)
= et1AcLn(1Ac )(η)

P nνρ (τ > t)
, and u∗

t,n(η) = et1AcL∗
n(1Ac )(η)

P nνρ (τ > t)

(3.23)

and as in Step 1 of the proof of Lemma 2.6 of [2], ut,n ∈ Dn and u∗
t,n ∈ D∗

n. We
focus now on ut,n, though similar properties will hold for u∗

t,n. First, by Lemma 1.1,
λn(ρ) ≥ λ(ρ) > 0. Thus, for any k,

∫∞
0 Pnνρ (τ > t)tkdt < ∞, and as in Remark 2.9

we define

dmk(t) =
Pnνρ (τ > t)tkdt

∫∞
0 Pnνρ (τ > t)tkdt

and
d�

(k)
n (νρ)

dνρ
(η) =

∫ ∞

0
ut,n(η)dmk(t).

With identical arguments as in the proof of Theorem 2.4 of [2], the Cesaro weak-
L2(νρ) limits of {�(k)n (νρ), k ∈ N} are solutions of (3.21). Now, it is clear that

d�
(k)
n (νρ)/dνρ ∈ Dn. Also, in the weak-L2(νρ) topology Dn is compact by Re-

mark 2.8, and contain all the Cesaro weak limits of {�(k)n (νρ), k ∈ N}. Thus, there
is a solution of (3.21) in Dn: we denote it by un.

We now show that un > 0 on Ac. By contradiction assume that for η ∈ �n\A,
un(η) = 0. Then (3.22) implies that Ln(un)(η) = 0. This, in turn, implies that

(i) For all i, j ∈ �n with p(i, j) > 0, we have un(T ij η) = 0.

(ii) For all i ∈ �n with p∗
n(i, i) > 0, we have un(A

+
i η) = 0.

(iii) For all i ∈ �n with η(i)pn(i, i) > 0, we have un(A
−
i η) = 0.

To conclude that un ≡ 0 on Ac, it is enough to note that by the hypotheses (C−F)
on Ac, each η ∈ Ac can be transformed into O�n by a succession of actions {A−

i }
with i ∈ �n, and {T ij } with i, j ∈ �n. The reverse operation is made through a

succession of {A+
i } with i ∈ �n, and {T ij } with i, j ∈ �n. ��

We now establish the Donsker-Varadhan representation for λn(ρ).
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Lemma 3.4. Assume d ≥ 3. If A satisfies (C−F) of Section 2.2, then λn(ρ) is given
by

−λn(ρ) = sup
µ∈Mn

inf
ϕ∈D+

n

∫ Lnϕ
ϕ
dµ. (3.24)

Proof. Let us call γn the right hand side of (3.24). From Lemma 3.3, there is
un ∈ D+

n such that L̄nun + λn(ρ)un = 0. This implies that γn ≤ −λn(ρ). We can
use a classical minimax theorem [7], since we have that (i) for any fixed µ ∈ Mn,
h �→ 
̃n(h, µ) is convex (by Lemma 3.2) on the convex set En (by Lemma 2.4),
(ii) for any fixed h ∈ En, µ �→ 
̃n(h, µ) is continuous (by Lemma 3.2) on the
compact set Mn. Thus,

γn = inf
ϕ∈D+

n

sup
µ∈Mn

∫ Lnϕ
ϕ
dµ. (3.25)

Now, for any ϕ ∈ D+
n , 0 <

∫
ϕu∗

ndνρ < ∞, and we can define

dµ∗ = ϕu∗
ndνρ∫

ϕu∗
ndνρ

∈ Mn (by Lemma 2.6).

Then, by duality
∫ Ln(ϕ)

ϕ
dµ∗ =

∫ Ln(ϕ)
ϕ

ϕu∗
n∫

ϕu∗
ndνρ

dνρ =
∫

ϕ∫
ϕu∗

ndνρ
L∗
n(u

∗
n)dνρ = −λn(ρ).

By (3.25), γn ≥ −λn(ρ), and the proof is concluded. ��
In the following lemma, we establish the uniqueness of the principal Dirichlet

eigenfunction.

Lemma 3.5. Assume d ≥ 3. There is a unique non-negative eigenfunctionun ∈ Dn

of 1AcLn which satisfies
∫
undνρ = 1.

Proof. We know from Lemma 3.3 that there exists a positive eigenfunction un.
Assume that ũ is a non-negative Dirichlet eigenfunction with

∫
ũdνρ = 1 and cor-

responding eigenvalue λ̃. By the same argument as in the proof of Lemma 3.3, we
have that ũ is positive on Ac.

First, we show that λ̃ = λn. Letu∗
n be the dual eigenfunction given in Lemma 3.3.

We multiply equality (3.21) by u∗
n, integrate over νρ and use duality

∫
u∗
nLn(ũ)dνρ = −λ̃

∫
u∗
nũdνρ �⇒ (λn(ρ)− λ̃)

∫
u∗
nũdνρ = 0. (3.26)

Now, since u∗
n and ũ are positive on Ac we conclude that λ̃ = λn(ρ).

Second, we show that ũ = un. Set h := log(un) and h̃ := log(ũ), on Ac. For
any µ ∈ Mn and any γ ∈]0, 1[, by the convexity of 
̃n

γ 
̃n(h, µ)+ (1 − γ )
̃n(h̃, µ) ≥ 
̃n(γ h+ (1 − γ )h̃, µ). (3.27)
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Since un and ũ are solution of (3.21), the left hand side of (3.27) is −λn(ρ). We
define hγ = γ h + (1 − γ )h̃ ∈ En and we note that 0 <

∫
exp(hγ )u∗

ndνρ < ∞.
Now,

dµγ = ehγ u∗
ndνρ∫

ehγ u∗
ndνρ

∈ Mn, and is such that


̃n(hγ , µγ ) = 
n(u
∗
n, µγ ) = −λn(ρ).

Thus, we have equality in (3.27) with µγ . Since µγ gives a positive weight to
any η ∈ �n\A, the following three conditions hold: (i) for all i, j ∈ �n with
gi(η)p(i, j) > 0, we have ∇i

j h̃ = ∇i
j h; (ii) for all j ∈ �n with p∗

n(j, j) > 0, we

have (A+
j − 1)h̃ = (A+

j − 1)h; (iii) for all j ∈ �n with g(η(j))pn(j, j) > 0, we

have (A−
j − 1)h̃ = (A−

j − 1)h.
Since un is positive on Ac, we form f = ũ/un, and rewrite the conditions

(i)-(iii) for f .

(i) For all η ∈ Ac and i, j ∈ �n with η(i)p(i, j) > 0, we have f (T ij η) = f (η).

(ii) For all i ∈ �n with p∗
n(i, i) > 0, and A+

i η ∈ Ac, we have f (A+
i η) = f (η).

(iii) For all η ∈ Ac and i ∈ �n with η(i)pn(i, i) > 0, we have f (A−
i η) = f (η).

As in the proof of Lemma 3.3, we conclude that ũ = un. ��
3.5. Approximating the principal eigenvalue

With an abuse of notations, we define for any finite domainU , LU(ϕ) = Eνρ [L(ϕ)|
FU ]. We mean by LU an expression like (3.4) where U replaces �n: thus, a zero-
range process on U with creations and annihilations on the boundaries of U . We
denote by SUt the semi-group associated with LU and by PUν the corresponding
Markov process with initial measure ν.We denote by S̄Ut the semi-group killed onA.

We first state an obvious corollary of Lemma 3.1 applied to ϕ = 1Ac .

Corollary 3.6. When the pattern satisfies (C−F), we have

lim
n→∞P

n
νρ
(τ > t) = Pνρ (τ > t).

Proof of Lemma 1.1. We divide the proof in two steps.
Step 1. We show that n �→ Pnνρ (τ > t) is increasing.

Let U be a finite subset, i �∈ U , and set Ũ = U ∪ {i}. Thus, it is enough to
show that

∫
(S̄Ũt 1Ac − S̄Ut 1Ac )dνρ ≥ 0. Step 1 follows then by induction. Note

that for ϕ FU -measurable and j ∈ U , we have ϕ ◦ T ij = ϕ ◦ A+
j , ϕ ◦ T ji = ϕ ◦ A−

j ,

ϕ ◦ A+
i = ϕ and ϕ ◦ A−

i = ϕ so that

(L̄
Ũ

− L̄U)ϕ = 1Ac

∑

j∈U

(
p(j, i)gj (ϕ ◦ T ji − ϕ)+ p(i, j)gi(ϕ ◦ T ij − ϕ)

)

− 1Ac

∑

j∈U

(
p(j, i)gj (ϕ ◦ A−

j − ϕ)+ p(i, j)γρ(ϕ ◦ A+
j − ϕ)

)

= 1Ac

∑

j∈U
p(i, j)(gi − γρ)

(
ϕ ◦ A+

j − ϕ
)
. (3.28)
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Now, we set ϕs := S̄Us (1Ac ) and ψs := (S̄Ũs )
∗(1Ac ), and we use an integration by

parts formula
∫
S̄Ũt (1Ac )dνρ −

∫
S̄Ut (1Ac )dνρ

=
∫ ∫ t

0
S̄Ũt−s(L̄Ũ − L̄U)S̄Us (1Ac )dsdνρ

=
∫ ∫ t

0
(L̄
Ũ

− L̄U)(ϕs)ψt−sdsdνρ. (3.29)

Thus, by (3.28)

P Ũνρ (τ > t)− PUνρ (τ > t)

=
∑

j∈U
p(i, j)

∫ ∫ t

0
(A+
j ϕs − ϕs)(gi − γρ)ψt−sdsdνŨρ

=
∑

j∈U
p(i, j)

∫ ∫ t

0
(A+
j ϕs − ϕs)

∫
(gi − γρ)ψt−sdν{i}

ρ dsdν
U
ρ .

(3.30)

Note that for any s, η �→ ψs(η) and η �→ ϕs(η) is decreasing positive, whereas
η �→ gi(η) is increasing and

∫
gidνρ = γρ . Thus, by FKG inequality

∫
(gi − γρ)ψt−sdν{i}

ρ ≤
∫
(gi − γρ)dν

{i}
ρ

∫
ψt−sdν{i}

ρ = 0. (3.31)

Thus, asϕs ◦A+
j −ϕs ≤ 0, the first step concludes. We call λ∞(ρ) the limit of λn(ρ).

Step 2. We show the following Lemma which allows us to conclude the proof of
Lemma 1.1 readily.

Lemma 3.7. Any subsequence of {un} has a further subsequence converging, in
weak-L2(νρ), to a solution u of (1.4(i)), and u ∈ Dρ . Moreover, λ∞(ρ) = λ(ρ).

Proof. For notational convenience, we write the proof for {u∗
n}. Recall that D∗

ρ∩{ϕ :∫
ϕdνρ = 1} is compact in weak-L2(νρ) by Remark 2.8. Let u∗ ∈ D∗

ρ be a (weak-
L2(νρ)) limit point of {u∗

n} along a subsequence which for simplicity we still call
{u∗
n}. For any ϕ ∈ Lb, and any integer n

∫
S̄nt (ϕ)u

∗
ndνρ = e−λn(ρ)t

∫
ϕu∗

ndνρ. (3.32)

Then,
∣∣∣∣
∫
S̄nt (ϕ)u

∗
ndνρ −

∫
S̄t (ϕ)u

∗dνρ
∣∣∣∣

=
∣∣∣∣
∫ (

S̄nt (ϕ)− S̄t (ϕ)
)
u∗
ndνρ

∣∣∣∣+
∣∣∣∣
∫
S̄t (ϕ)(u

∗
n − u∗)dνρ

∣∣∣∣

≤ sup
n

||u∗
n||νρ ||S̄nt (ϕ)− S̄t (ϕ)||νρ +

∣∣∣∣
∫
S̄t (ϕ)(u

∗
n − u∗)dνρ

∣∣∣∣ .

(3.33)
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The L2(νρ) convergence of S̄nt (ϕ)− S̄t (ϕ) is equivalent to an L1(νρ) convergence,
since ϕ is bounded and S̄t , S̄nt are contractions (in L∞). Recalling Lemma 3.1,
(3.32) and Step 1, and taking the limit n to infinity, we obtain

∫
S̄t (ϕ)u

∗dνρ = e−λ∞(ρ)t
∫
ϕu∗dνρ. (3.34)

Now, since Lb is a dense set in L2(νρ), this implies that u∗ ∈ D(L̄∗, L2(νρ)), and
that (3.34) holds for any ϕ ∈ L2(νρ). Take ϕ = u ∈ Dρ ⊂ L2(νρ) solution of
(1.4(i)), and use that

S̄t (u) = e−λ(ρ)tu, νρ − a.s. �⇒ (e−λ∞(ρ)t − e−λ(ρ)t )
∫
uu∗dνρ = 0.

Now, since u and u∗ are decreasing, and in L2(νρ), we have

∞ > ||u||νρ ||u∗||νρ ≥
∫
uu∗dνρ

FKG≥
∫
udνρ

∫
u∗dνρ = 1.

Thus, λ∞(ρ) = λ(ρ), and u∗ satisfies (1.4(ii)). ��

4. Donsker-Varadhan functionals on Z
d

The main problem is that L(ϕ) does not make sense as a pointwise convergent
series when ϕ ∈ Dρ . Indeed, even if ϕ were bounded, the naive bound |∇i

j ϕ| ≤
|ϕ|∞(εi + εj ) would be useless since

∑
k εk = ∞. Thus, we show in this section

how to properly define 
(ϕ,µ).

4.1. Technical prerequisites

We first define a family of functionals, {
n, n ∈ N}, on D+
ρ × Mρ , whose limit

when n tends to infinity is shown to exist.

Lemma 4.1. Assume d ≥ 3. For ϕ ∈ D+
ρ and µ ∈ Mρ , and any integer n,

the functional 
n(ϕ, µ) := ∫ Ln(ϕ)/ϕdµ is well defined. If we call 
̃n(h, µ) :=

n(exp(h), µ), then for anyµ, the map h �→ 
̃n(h, µ) is convex on the convex set Eρ .

Proof. The formal full expression of 
n(ϕ, µ) is


n(ϕ, µ) =
∑

i,j∈�n
p(i, j)

∫
gi

∇i
j ϕ

ϕ
dµ

+
∑

i∈�n

(
γρp

∗
n(i, i)

∫ ∇+
i ϕ

ϕ
dµ+ pn(i, i)

∫
gi

∇−
i ϕ

ϕ
dµ

)
. (4.1)

Note that as ϕ ∈ D+
ρ , T ij ϕ ≤ A−

i ϕ. Thus, (4.1) is defined if we bound
∫
giA

−
i (ϕ)/ϕ

dµ for each site i ∈ �n. This is done as in (3.19).
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From (4.1), an expression for 
̃n(h, µ) is as follows


̃n(h, µ) =
∑

i,j∈�n
p(i, j)

∫
gi

(
e
∇ij h − 1

)
dµ

+
∑

i∈�n

(
γρp

∗
n(i, i)

∫
(e∇

+
i h − 1)dµ+ pn(i, i)

∫
gi(e

∇−
i h − 1)dµ

)
.

(4.2)

The convexity of h �→ 
̃n(h, µ) follows from the convexity of the exponential. ��

We now express 
̃n(h, µ) in terms of gradients of h and µ.

Lemma 4.2. For h ∈ Eρ and µ ∈ Mρ , we have with f := dµ/dνρ


̃n(h, µ) =
∑

i,j∈�n
γρpn(i, j)

(∫ (
e�

j
i h − 1

)
∇+
i f dνρ +

∫ (
e�

j
i h − 1 −�

j
i h
)
dµ

)
+ Rn(h, µ),

(4.3)

with,

lim
n→∞ sup

h∈Eρ
sup
µ∈Mρ

|Rn(h, µ)| = 0. (4.4)

Note also that
∫

Ln(ϕ)dµ =
∑

i,j∈�n
γρpn(i, j)

∫
�
j
i ϕ∇+

i f dνρ

−
∑

i∈�n
γρpn(i, i)

∫
∇+
i ϕ∇+

i f dνρ. (4.5)

Proof. First, we apply the integration by parts formula (2.9) to (4.2):


̃n(h, µ) =
∑

i,j∈�n
i �=j

p(i, j)

∫
giA

−
i

(
e�

j
i h − 1

)
dµ

+
∑

i∈�n

(
p∗
n(i, i)γρ

∫
(e∇

+
i h − 1)dµ+ pn(i, i)

∫
giA

−
i (e

−∇+
i h − 1)dµ

)

= γρ
∑

i,j∈�n
pn(i, j)

(∫ (
e�

j
i h − 1

)
∇+
i f dνρ +

∫ (
e�

j
i h − 1 −�

j
i h
)
dµ

)

+ Rn(h, µ)+N(h,µ), (4.6)
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with

Rn(h, µ) :=
∑

i∈�n
γρpn(i, i)

∫
(e−∇+

i h − 1)∇+
i (f )dνρ

+γρ
∑

i∈�n
p∗
n(i, i)

∫
(e∇

+
i h − 1 − ∇+

i h)dµ

+γρ
∑

i∈�n
pn(i, i)

∫
(e−∇+

i h − 1 + ∇+
i h)dµ, (4.7)

and,

N(h,µ) :=
∑

i,j∈�n
γρp(i, j)

∫
�
j
i hdµ+

∑

i∈�n
γρ(p

∗
n(i, i)− pn(i, i))

∫
(∇+

i h)dµ.

(4.8)

To show that N(h,µ) vanishes, first write

∑

i,j∈�n
p(i, j)

∫
(∇+

j h)dµ =
∑

j∈�n




∑

i∈�n
p(i, j)




∫
(∇+

j h)dµ

=
∑

j∈�n



1 −
∑

i �∈�n
p(i, j)




∫
(∇+

j h)dµ

=
∑

j∈�n
(1 − p∗

n(j, j))

∫
(∇+

j h)dµ, (4.9)

and similarly,

∑

i,j∈�n
p(i, j)

∫
(∇+

i h)dµ =
∑

i∈�n
(1 − pn(i, i))

∫
(∇+

i h)dµ.

It is thus clear that N(h,µ) = 0.
We now show (4.4). Note that for i �∈ S, εi < 1. Also, for n large enough, if we

define ∂R�n := �n\�n−R , then ∂R�n ∩ S = ∅. Also, by (2.1) (iii), pn(i, i) = 0
when i �∈ ∂R�n. Thus, there is a constant c0 > 0 such that for i ∈ ∂R�n, |∇+

i h| ≤
− log(1 − εi) ≤ c0εi , νρ-a.s., and |∇+

i f | ≤ (εi + ε∗i )f , νρ-a.s. .Thus, there is a
constant c1 > 0 such that

pn(i, i)|
∫ (

e−∇+
i h − 1

)
∇+
i f dνρ | ≤

∫
(exp(c0εi)− 1)(εi + ε∗i )dµ

≤ c1εi(εi + ε∗i ), (4.10)

and by expanding to second order in ∇+
i h

p∗
n(i, i)|

∫
(e∇

+
i h − 1 − ∇+

i h)dµ| ≤ c1ε
2
i , and

pn(i, i)|
∫
(e−∇+

i h − 1 + ∇+
i h)dµ| ≤ c1ε

2
i , (4.11)
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Combining (4.10) and (4.11), and summing over i ∈ ∂R�n, we obtain the desired
asymptotics (4.4), since for dimension d ≥ 3,

∑
ε2
i < ∞.

We obtain (4.5) from (4.3) by setting h = εϕ and expanding 
̃n(h, µ) to first
order in ε. ��

We are now ready for the key technical lemma of this section.

Proposition 4.3. For (ϕ, µ) ∈ D+
ρ ×Mρ , {
n(ϕ, µ), n ∈ N} is a Cauchy sequence

whose limit we denote by 
(ϕ,µ). We have the following properties.

(i) For h ∈ Eρ , h �→ 
̃(h, µ) := 
(eh, µ) is convex.
(ii) The Cauchy sequence is uniform in the following sense

lim
n→∞ sup

ϕ∈D+
ρ

sup
µ∈Mρ

|
n(ϕ, µ)− 
(ϕ,µ)| = 0. (4.12)

(iii) For any integer n, and any µ ∈ Mρ we denote by µn the measure of Mn of
density fn := Eνρ [dµ/dνρ |Fn]. Then,

lim
n→∞ sup

µ∈Mρ

sup
ϕn∈Dn

|
(ϕn, µn)− 
(ϕn, µ)| = 0. (4.13)

(iv) For ϕn ∈ D+
n and µn ∈ Mn, we have 
(ϕn, µn) = 
n(ϕn, µn).

Proof. Step 1: We show that {
n(ϕ, µ), n ∈ N} is a Cauchy sequence and (4.12)
holds.

By using the expression (4.3) of Lemma 4.2, we have for m > n


̃m(h, µ)− 
̃n(h, µ) = Rm(h,µ)− Rn(h, µ)

+
∑

(i,j)∈�2
m\�2

n
i �=j

γρp(i, j)

(∫
(e�

j
i h − 1)∇+

i f dνρ +
∫
(e�

j
i h − 1 −�

j
i h)dµ

)

(4.14)

Since p(i, j) = 0 when |i − j | > R, we can assume n and m so large that if
(i, j) ∈ �2

m\�2
n with p(i, j) > 0, then i, j �∈ S. Thus, there is a positive constant

c0 such that νρ-a.s.

∀(i, j) ∈ �2
m\�2

n with p(i, j) > 0, |∇+
i h| ≤ − log(1 − εi) ≤ c0εi, and

|∇+
i f | ≤ (εi + ε∗i )f. (4.15)

Also, there is a positive constant c1 such that

p(i, j)|
∫
(e�

j
i h − 1)∇+

i f dνρ | ≤
∫
(ec0(εi+εj ) − 1)(εi + ε∗i )f dνρ

≤ c1(εi + εj )(εi + ε∗i ). (4.16)

Now, recalling that for i �∈ S,
∑
j p(i, j)εj = εi , and

∑
j p(i, j) = 1, we have

∑

(i,j)∈�2
m\�2

n

c1p(i, j)(εi + εj )(εi + ε∗i ) ≤ 2c1

∑

i∈�cn∪∂R�n
εi(εi + ε∗i )

n→∞−→ 0,

(4.17)
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since
∑
i ε

2
i = ∑

i (ε
∗
i )

2 < ∞ when d ≥ 3. Similarly, the second integral in (4.14)
will go to 0, after we perform a second order expansion and use (4.15). Now, from
Lemma 4.2, |Rm(h,µ)− Rn(h, µ)| converges to 0 uniformly in Eρ and Mρ .
Step 2: The limit h �→ 
̃(h, µ) is convex, since it is a pointwise limit of convex
functions.
Step 3: We prove (4.13).

Let ϕn be in Dn, and set hn = log(ϕn). Note that for i �∈ �n, ∇+
i hn = 0. Also,

for any function ψ , A+
i Eνρ [ψ |Fn] = Eνρ [A+

i ψ |Fn]. Thus, for m > R + n


̃m(hn, µ) = 
̃n(hn, µ)+ Rm(hn, µ)− Rn(hn, µ)

+
∑

i∈�m\�n
j∈�n

γρp(i, j)

∫ [
(e

∇+
j hn − 1)∇+

i f + (e
∇+
j hn − ∇+

j hn − 1)f
]
dνρ

+
∑

j∈�m\�n
i∈�n

γρp(i, j)

∫ [
(e−∇+

i hn − 1)∇+
i f + (e−∇+

i hn + ∇+
i hn − 1)f

]
dνρ.

(4.18)

By observing that 
̃n(hn, µ) = 
̃n(hn, µn), and thatRm(hn, µ) = 0 form > n+R,
we have


̃m(hn, µ)− 
̃n(hn, µn) =
∑

i∈�m\�n
j∈∂R�n

γρp(i, j)

∫
(e

∇+
j hn − 1)∇+

i f dνρ

∑

j∈∂R�n
γρpn(j, j)

(∫
(e

−∇+
j hn − 1)∇+

j (f )dνρ +
∫
(e

−∇+
j hn + ∇+

j hn − 1)f dνρ

)

∑

j∈∂R�n
γρp

∗
n(j, j)

∫
(e

∇+
j hn − ∇+

j hn − 1)f dνρ − Rn(hn, µ). (4.19)

Now, using again that for j ∈ ∂R�n, |∇+
j hn| ≤ c0εj , and for i ∈ ∂R�n ∪ �cn,

|∇+
i f | ≤ (εi + ε∗i )f , we have a constant C1 such that

|
̃m(hn, µ)− 
̃n(hn, µn)| = |Rn(hn, µ)| + C1

∑

i∈�m\�n
j∈�n

∂(i, j)εj (εi + ε∗i )

+ 2C1

∑

j∈∂R�n
ε2
j + C1

∑

j∈∂R�n
εj (εj + ε∗j )

≤ |Rn(hn, µ)| + 2C1

∑

i �∈�n
ε2
i + (ε∗i )

2

+ C1

∑

j∈∂R�n
(4ε2

j + (ε∗j )
2) (4.20)

Equation (4.13) follows after we take the limit m to infinity in (4.20) and use (4.4)
of Lemma 4.2.
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Step 4: We show that 
(ϕn, µn) = 
n(ϕn, µn). Indeed, form > R+n, L(m)(ϕn) =
L(ϕn) so that


m(ϕn, µn) =
∫
Eνρ

[L(m)(ϕn)
ϕn

fn

∣∣∣Fm
]
dνρ

=
∫
Eνρ [L(m)(ϕn)|Fn]

ϕn
fndνρ = 
n(ϕn, µn). (4.21)

��
Now, a minimax theorem for 
 will be a corollary of Lemma 2.7.

Proposition 4.4. A minimax theorem holds for 
. In other words,

sup
µ∈Mρ

inf
ϕ∈Dρ


(ϕ, µ) = inf
ϕ∈Dρ

sup
µ∈Mρ


(ϕ, µ). (4.22)

Proof. We need to check that for any ϕ ∈ Dρ , the mapµ �→ 
(ϕ,µ) on Mρ is con-
tinuous on the compact space Mρ . Let {µk, k ∈ N} be in Mρ , converging weakly
to µ ∈ Mρ . By Lemma 7.2, all densities fk = dµk/dνρ are uniformly bounded
in L2(νρ). Thus fk converges in weak-L2(νρ) to dµ/dνρ . Now, for ϕ ∈ D+

ρ , as in

(3.19), gi(ϕ ◦ T ij )/ϕ ∈ L2(νρ), so that for i, j ∈ �n
∫
gi
ϕ ◦ T ij
ϕ

dµk
k→∞−→

∫
gi
ϕ ◦ T ij
ϕ

dµ.

Thus, 
n(ϕ, µk) → 
n(ϕ, µ) as k → ∞. Now, the uniform Cauchy property (4.12)
implies that 
(ϕ,µk) → 
(ϕ,µ) as k → ∞. ��

4.2. Proof of Theorem 1.3

If un is the principal normalized eigenfunction of Ln, then for any n and any
µn ∈ Mn, we have by Proposition 4.3 (iv)


(un, µn) = −λn(ρ). (4.23)

Now, by (4.13) of Proposition 4.3, for any ε > 0, there is n0 such that for any
n ≥ n0

sup
µ∈Mρ

|
(un, µ)− 
(un, µn)| ≤ ε, where dµn := E[
dµ

dνρ
|Fn]dνρ. (4.24)

Thus, for any µ ∈ Mρ and n ≥ n0


(un, µ) ≤ −λn(ρ)+ ε �⇒ inf
ϕ∈Dρ


(ϕ, µ) ≤ −λn(ρ)+ ε (since Dn ⊂ Dρ).

(4.25)

Recalling Lemma 1.1, and taking the limit n → ∞, we obtain

sup
µ∈Mρ

inf
ϕ∈Dρ


(ϕ, µ) ≤ −λ(ρ). (4.26)
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Conversely, if hn = Eνρ [h|Fn] for h ∈ Eρ , we show by a convexity argument that

∀µn ∈ Mn, 
̃(h, µn) ≥ 
̃(hn, µn)− εn with lim
n→∞ εn = 0. (4.27)

Indeed, take m > n and in expression (4.3), we break down the gradient ∇+
i fn so

as to obtain


̃m(h, µn) =
∑

i,j∈�m
γρp(i, j)

∫ [
(e�

j
i h − 1)A+

i fn − (�
j
i h)fn

]
dνρ + Rm(h,µn),

(4.28)

where Rm(h,µn) is given in (4.7). We further divide the sum over �m into a sum
over �n and a small remainder

∑

i,j∈�n
γρp(i, j)

∫ [
(e�

j
i h − 1)A+

i fn −�
j
i h)fn

]
dνρ +Qm

n (h, µn). (4.29)

Indeed, sinceQm
n (h, µn) contains the sum over (i, j) ∈ �2

m\�2
n, estimates similar

to those showing that Rn(h, µ) goes to 0 when n tends to infinity uniformly in h
and µ, in the proof of Proposition 4.3, establish that Qm

n (h, µ) vanishes as n and
m tend to infinity. Using that for any function ψ and i ∈ �n, A+

i Eνρ [ψ |Fn] =
Eνρ [A+

i ψ |Fn], we have by Jensen’s inequality for the conditional expectation


̃m(h, µn) =
∑

i,j∈�n
γρp(i, j)

∫
Eνρ [e�

j
i h − 1|Fn]A+

i fn − Eνρ [�ji h|Fn]fndνρ

+ Qm
n (h, µn)+ Rm(h,µn)

≥
∑

i,j∈�n
γρp(i, j)

∫
(e�

j
i hn − 1)A+

i fn −�
j
i (hn)fndνρ +Qm

n (h, µn)

+ Rm(h,µn)

≥ 
̃n(hn, µn)− Rn(hn, µn)+ Rm(h,µn)+Qm
n (h, µn)

= 
̃(hn, µn)− Rn(hn, µn)+ Rm(h,µn)+Qm
n (h, µn). (4.30)

Thus, by taking the limit as m tends to infinity, we obtain (4.27) with

εn := lim
m→∞ sup

h,µ

(|Qm
n (h, µ)| + |Rn(hn, µn)| + |Rm(h,µn)|) n→∞−→ 0. (4.31)

Now, for any h ∈ Eρ , hn := E[h|Fn] ∈ En and ∞ >
∫

exp(hn)u∗
ndνρ > 0, so that

we can define

dµ∗
n

dνρ
= ehnu∗

n∫
ehnu∗

ndνρ
.

Thus, by duality 
̃n(hn, µ∗
n) = 
∗

n (u
∗
n, µ

∗
n) = −λn(ρ). and,

sup
µ∈Mρ


̃(h, µ) ≥ 
̃(h, µ∗
n) ≥ 
̃(hn, µ

∗
n)− εn = −λn(ρ)− εn. (4.32)
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Thus, by taking the limit n to infinity, and using Lemma 1.1, we obtain

sup
µ∈Mρ


(eh, µ) ≥ −λ(ρ) �⇒ inf
ϕ∈D+

ρ

sup
µ∈Mρ


(ϕ, µ) ≥ −λ(ρ). (4.33)

Now, since by Proposition 4.4, the minimax Theorem holds for 
 the proof con-
cludes.

5. Uniqueness: Proofs of Theorems 1.4 and 1.2

The proofs of Theorem 1.4 and Theorem 1.2 will follow from three observations,
which we have written as separate lemmas. First, any limit point of {un} solves
(1.4(i)) and belongs to D+

ρ : this is shown in Lemmas 3.7 and 5.1. Second, solutions
of (1.4(i)) in D+

ρ satisfy 
(u,µ) + λ(ρ) = 0 for any µ ∈ Mρ : this is shown in
Lemma 5.2. Third, by convexity of h �→ 
(exp(h), µ) shown in Proposition 4.3,
there is a unique solution of 
(u,µ) + λ(ρ) = 0 for any µ ∈ Mρ : this is shown
in Lemma 5.3.

Lemma 5.1. If u ∈ Dρ ,
∫
udνρ = 1, and u satisfies (1.4(i)), then u is positive

νρ-a.s. on Ac.

Proof. We denote by B := {η : u(η) = 0}. Since u ∈ Dρ , we have for i �∈ S and
η νρ-a.s.,

u(η) ≥ u(A+
i η) and u(A+

i η) ≥ 1

1 − εi
u(η).

Thus, for i �∈ S, B = (A+
i )

−1(B) νρ-a.s. . For any cylinder θ with base in N
S\A, we

will consider Bθ := B ∩ θ . If T i,j denotes the exchange operator at site i, j ∈ Z
d ,

then

Bθ νρ−a.s= (A+
i )

−1(Bθ ), ∀i �∈ S �⇒ Bθ νρ−a.s= (T i,j )−1(Bθ ), ∀i, j �∈ S.
Indeed,

Bθ νρ−a.s=
⋃

k,l∈N

Bθ ∩ {η(i) = k, η(j) = l},

so that we can go from

Bθ ∩ {η(i) = k, η(j) = l} to Bθ ∩ {η(i) = l, η(j) = k} = (T i,j )−1

(Bθ ∩ {η(i) = k, η(j) = l}
by a finite succession of creation and annihilation of particles. Now, by Hewitt-
Savage 0-1 law on the lattice Z

d\S, we conclude that νρ(Bθ ) ∈ {0, 1}. Assume that
for some cylinder θ0, νρ(Bθ0) = 1. Since u satisfies (1.4(i)) and 1θ0 ∈ Lb, we have
∫
uL∗(1θ0)dνρ = 0 �⇒

∑

i,j∈Zd

p∗(i, j)
∫
gi(η)u(η)1θ0(T

i
j η)dνρ = 0. (5.1)
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Now,

(T ij )
−1(θ0) =






T
j
i (θ0) if θ0(j) > 0, and ∅ if θ0(j) = 0 when i, j ∈ S

A+
i (θ0) when i ∈ S, j �∈ S

A−
j (θ0) if θ0(j) > 0, and ∅ if θ0(j)=0 when i �∈ S, j ∈ S
θ0 when i, j �∈ S

(5.2)

Since the moves on the right hand side generates all cylinders with base in N
S\A,

we obtain

∀θ ∈ N
S\A,

∫

θ

udνρ = 0, (5.3)

which is absurd since
∫
udνρ = 1. Thus, νρ(B) = 0 and the proof is concluded.

��
Lemma 5.2. If u ∈ Dρ satisfies (1.4(i)) then 
(u,µ) = −λ(ρ), for any µ ∈ Mρ .

Proof. Let u satisfies (1.4(i)). By Lemma 5.1, u ∈ D+
ρ . For any ϕn ∈ Lb with ϕn

Fn-measurable, we write (1.4(i)) as
∫

L∗(ϕn)udνρ + λ(ρ)

∫
ϕnudνρ = 0. (5.4)

We make the standard integration by parts and use cancellations as in (4.8) to obtain
∫

L∗(ϕn)udνρ =
∑

i,j∈�n
γρp

∗(i, j)
∫
�
j
i ϕnA

+
i udνρ

−
∑

i∈�n

∑

j �∈�n
γρp

∗(i, j)
∫

∇+
i ϕnA

+
i udνρ

+
∑

i �∈�n

∑

j∈�n
γρp

∗(i, j)
∫

∇+
j ϕnA

+
i udνρ

=
∑

i,j∈�n
γρp

∗(i, j)
∫
�
j
i (ϕn)∇+

i (u)dνρ + R̃n(ϕn), (5.5)

where

R̃n(ϕn) = −
∑

i∈�n
γρp

∗
n(i, i)

∫
∇+
i ϕn∇+

i udνρ

+
∑

i �∈�n

∑

j∈�n
γρpn(j, i)

∫
∇+
j ϕn∇+

i udνρ. (5.6)

Now, for any µ ∈ Mρ with density f , it is easy to note that for a fix large integer
M ,

ϕ(M)n := Eνρ [
f

u
∧M|Fn] ∈ Lb,
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and if we set ϕ = f/u and ϕ(M) = (f/u)∧M , then both ϕ(M) and ϕ are in Lp(νρ)
for any integer p, and are such that for i large enough |∇+

i (ψ)| ≤ 2ψ(εi + ε∗i ).
Indeed, for i �∈ S

u ≥ A+
i u ≥ u(1 − εi), and f ≥ A+

i f ≥ f (1 − εi − ε∗i ). (5.7)

Thus, if i is such that 1 − εi − ε∗i > 0,

f

u
(1 − εi − ε∗i − 1) ≤ ∇+

i (
f

u
) ≤ f

u
(

1

1 − εi
− 1). (5.8)

Thus, for i large enough |∇+
i (ϕ)| ≤ 2ϕ(εi + ε∗i ). Also, since f ∈ Lp(νρ) and

1Ac /u ∈ Lp(νρ) for any integer p by Lemma 7.2, we obtain that ϕ ∈ Lp(νρ) for
any p. The same is true for ϕ(M) after a simple algebra.

By a reasoning by now standard, since ϕ(M)n satisfies a bound like (5.8)

|R̃n(ϕ(M)n )| ≤ c1

∑

i∈∂R�n
(ε2
i + (ε∗i )

2)

∫
ϕ(M)n udνρ

≤ c1||ϕ||νρ ||u||νρ
∑

i∈∂R�n
ε2
i + (ε∗i )

2 n→∞−→ 0. (5.9)

Now, since ϕ(M) ∈ L2(νρ), and {ϕ(M)n , n ∈ N} is a positive martingale, we have

that {ϕ(M)n } converges toϕ(M) inL2(νρ) and a.s. .Also, since for i ∈ �n, A+
i ϕ

(M)
n =

Eνρ [A+
i ϕ

(M)|Fn], we have for any ψ ∈ L2(νρ), and i, j ∈ �n

lim
n→∞

∫
ϕ(M)n ψdνρ =

∫
ϕ(M)ψdνρ, and lim

n→∞

∫
∇+
j ϕ

(M)
n ∇+

i ψdνρ

=
∫

∇+
j ϕ

(M)∇+
i ψdνρ. (5.10)

Thus, combining (5.5), (5.9) and (5.10) we obtain (the series being absolutely con-
vergent)

∑

i,j∈Zd

γρp
∗(i, j)

∫
�
j
i (
f

u
∧M)∇+

i udνρ + λ(ρ)

∫
(
f

u
∧M)udνρ = 0. (5.11)

An identical expression to (5.11) is also valid for f/u as we take the limit M to
infinity.
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We will now show that 
(u,µ) has the same expression as the first term of
(5.11). Now, by taking the limit n to infinity in expression (4.5), we obtain

lim
n→∞

∫
Ln(u)f

u
dνρ =

∑

i,j∈Zd

γρp
∗(i, j)

∫
�
j
i

f

u
∇+
i udνρ. (5.12)

Indeed, (4.5) only requires thatf/u ∈ Lp(νρ) and that for i large enough |∇+
i (

f
u
)| ≤

2 f
u
(εi+ε∗i ). Finally, since
(u,µ) = limn→∞ 
n(u, µ), (5.12) concludes the proof.

��
Lemma 5.3. If u, ũ ∈ D+

ρ , and for any µ ∈ Mρ , 
(u,µ) = 
(ũ, µ) = −λ(ρ),
and

∫
udνρ = ∫

ũdνρ , then u = ũ νρ-a.s. .

Proof. We can define

h := log(u), and h̃ := log(ũ), with h, h̃ ∈ Eρ.
Now, for γ ∈]0, 1[, we form hγ = γ h+ (1 − γ )h̃, and by convexity of 
̃n, for any
µ ∈ Mρ ,

0 ≤ an(µ) :=γ 
̃n(h, µ)+ (1 − γ )
̃n(h̃, µ)− 
̃n(hγ , µ)
n→∞−→ −λ(ρ)− 
̃(hγ , µ),

(5.13)

where we used Lemma 5.2. Now, Lemma 5.2 is also valid for any u∗ limit point of
u∗
n, the principal eigenfunction of L∗

n. Note that since u, ũ ∈ L2(νρ), we have that
exp(hγ ) ∈ L2(νρ) and

∫
exp(hγ )u∗dνρ < ∞. Finally, Lemma 5.1 implies that

u∗|Ac > 0 νρ-a.s. , so that
∫
u∗ exp(hγ )dνρ > 0, and we can define

dµ∗ := ehγ u∗dνρ∫
ehγ u∗dνρ

∈ Mρ. (5.14)

Now, by duality, and Lemma 5.2 applied to L∗


̃n(hγ , µ
∗) =

∫ L∗
n(u

∗)
u∗ dµ∗ = 
∗

n (u
∗, µ∗) n→∞−→ −λ(ρ) = 
̃(hγ , µ

∗). (5.15)

Thus, an(µ∗) vanishes as n tends to ∞. However, for any i, j ∈ Z
d and n large

enough

an(µ
∗) ≥ p(i, j)

∫
giAi,j dµ

∗, with 0 ≤ Ai,j := γ e
∇ij h + (1 − γ )e

∇ij h̃

− e
(γ∇ij h+(1−γ )∇ij h̃). (5.16)

Now an(µ∗) → 0, ehγ u∗ > 0 νρ-a.s. on Ac, and (5.16) imply that p(i, j)giAi,j =
0 νρ-a.s. on Ac. This in turn, implies that for η(i)p(i, j) > 0, νρ-a.s., we have
∇i
j h = ∇i

j h̃ in Ac. Let us denote f := ũ/u on Ac. Since, p(., .) is irreducible, we
obtain

∀i, j with η(i)p(i, j) > 0 f (T ij η) = f (η), νρ − a.s. . (5.17)
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This in turn, implies that for i, j �∈ S, f (T i,j η) = f (η) νρ-a.s. , so that by Hewitt-
Savage 0-1 law for exchangeable events, we conclude that f is νρ-a.s. constant on
each cylinder θ with base in N

S\A, say cθ := f |θ .
We now show that the constants {cθ } are the same. Assume θ, θ ′ ∈ N

S\A with
T ij θ = θ ′. If we denote Xθ := f−1({cθ }), then

θ ⊂ Xθ, θ ′ = T ij θ ⊂ (T
j
i )

−1(Xθ ), and by (5.17) (T
j
i )

−1(Xθ )
νρa.s= Xθ .

(5.18)

This yields cθ = cθ ′ . Assume now that for j ∈ S with
∑

i �∈S
p(i, j) > 0, we have θ ′ = A+

j θ.

Take i �∈ S with p(i, j) > 0, and note that

θ ′ = A+
j θ ⊂ (T

j
i )

−1(Xθ )
νρa.s= Xθ [by (5.17)] (5.19)

Thus, cθ = cθ ′ in this case also. Now, we have assumed that N
S\A was a connected

set containing 0S . Thus, by a succession of moves T ji and A+
j applied to 0S , we

cover all of N
S\A, and conclude that f is constant νρ-a.s. . ��

6. Hitting time: Proof of Theorem 1.5

Let u (resp. u∗) be the principal Dirichlet eigenfunction of L (resp. L∗) in Dρ (resp.
D∗
ρ). By Lemma 5.1, u and u∗ are νρ-a.s. positive on Ac. Thus, we define a Markov

semi-group on Ac, (known as the h-process, see e.g. Chapter 4.1 of [13])

∀η ∈ Ac, Sut (ϕ)(η) := eλ(ρ)t
S̄t (uϕ)

u(η)
. (6.1)

This semi-group is stationary with respect to

dµ̂ρ = uu∗dνρ∫
uu∗dνρ

. (6.2)

Note that since 1Ac /u ∈ L2(µ̂ρ) by Lemma 7.4, we have by definition, for all
η ∈ Ac,

Sut (
1Ac

u
)(η) = ct

ut (η)

u(η)
with ct = eλ(ρ)tPνρ (τ > t), and ut := Pη(τ > t)

Pνρ (τ > t)
.

(6.3)

From (1.13), ct ∈ [c, 1], whereas ut ∈ Dρ from inequality (4.7) of [2]. It is then
easy to check directly, using the convexity of Dρ , that for any t > 0

uSut (
1Ac

u
) ∈ Dρ �⇒ if ψt := 1

t

∫ t

0
Sus (

1Ac

u
)ds, then uψt ∈ Dρ. (6.4)
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Now, by Jensen’s inequality, {Sut , t > 0} is a contraction semi-group onL2(Ac, µ̂ρ).
Thus, by von Neumann’s mean ergodic theorem in Hilbert space (see e.g. [12] Th.1.2
page 24), we obtain

ψt
t→∞−→ ψ in L2(µ̂ρ), and for any t ≥ 0 Sut (ψ) = ψ, µ̂ρ − a.s.. (6.5)

If {ψt } converges to ψ in L2(µ̂ρ), then {ψtu} converges in L1(νρ) towards ψu.
Indeed,

∫
|u(ψt − ψ)|dνρ ≤

(∫
uu∗dνρ

)
|| 1

u∗ ||µ̂ρ ||ψt − ψ ||µ̂ρ

≤
(∫

uu∗dνρ
∫
u

u∗ dνρ
)1/2

||ψt − ψ ||µ̂ρ . (6.6)

It remains now to show thatψ is contant νρ-a.s. . Since
∫
ψtudνρ = ∫ t

0 csds/t ≤ 1,
the Remark 2.8 yields that uψ ∈ Dρ . Finally, since µ̂ρ and νρ are equivalent in
Ac, (6.5) implies that for any t ≥ 0,

S̄t (ψu) = e−λ(ρ)tψu on Ac νρ − a.s.. (6.7)

Thus, by differentiating (6.7) at t = 0, we obtain that ψu is a Dirichlet principal
eigenfunction in D+

ρ , with c ≤ ∫
uψdνρ ≤ 1. By Theorem 1.4, this means that ψ

is constant. To find the value of ψ , integrate (6.5) against 1Ac .

ψ ≡
∫
ψdµ̂ρ = lim

t→∞

∫
1

t

∫ t

0
Sus (

1

u
)ds dµ̂ρ =

∫
1

u
dµ̂ρ = 1∫

uu∗dνρ
. (6.8)

This concludes the proof. ��

7. Appendix

We have often used Lemma 7.2 below to obtain regularity of probability densities
satisfying a gradient bound (1.6) [3, 5, 2, 4]. For ease of reading, we recall its simple
proof. Then, in Lemma 7.4, we show how related arguments yield the regularity of
1Ac /ϕ for ϕ ∈ D+

ρ .
We recall that {θ ∈ �A} is a partition of A into cylinders with bases in S. Also,

recalling the notations used in the definition of νρ (see (2.3)), let νε be the product
measure

dνε(η) =
∏

i∈S
dθγ (ρ)(ηi)

∏

i /∈S
dθ(1−εi )γ (ρ)(ηi) .

We showed in [2] that when d ≥ 3, νε is absolutely continuous with respect to νρ ,
and that if ψε := dνε/dνρ , then for any integer p

∫
ψpε dνρ < ∞, and

∫
1

ψ
p
ε

dνρ < ∞. (7.1)



94 A. Asselah

Remark 7.1. The purpose of introducing ψε was that for any i �∈ S, A+
i ψε =

(1 − εi)ψε . Thus, if ϕ ∈ Dρ , then ϕ/ψε is increasing outside S. Indeed, using
(2.11)(ii),

∀i �∈ S, A+
i (ϕ/ψε) ≥ ϕ/ψε.

Lemma 7.2. We assume that d ≥ 3. For any integer n, any θ ∈ �A and ϕ ∈ Dρ

∫

θ

ϕndνρ ≤
(∫

θ
ϕdνρ

νε(θ)

)n ∫

θ

ψnε dνρ. (7.2)

Also,

∫
ϕndνρ ≤ Cn

(∫
ϕdνρ

)n
with Cn :=

∫
ψnε dνρ

νε(0S)n+1 < ∞. (7.3)

Proof. We define the measure dµ = ϕdνρ , and for θ ∈ �A, we define two prob-
ability measures dµθ = 1θ dµ/µ(θ) and dνθ = 1θ dνε/νε(θ). Note that on θ , the
probability measure νε satisfies Holley’s condition (see Theorem 2.9, p.75 in [10])
which implies that it satisfies FKG’s inequality.
Step 1. We first show that for any φ decreasing on θ ,

∫
φdµθ ≤

∫
φdνθ . (7.4)

By the Remark 7.1, dµθ/dνθ is increasing in θ . We apply FKG’s inequality on θ

∫
φdµθ =

∫
φ
dµθ

dνθ
dνθ ≤

∫
φdνθ . (7.5)

Step 2. First, note that ϕ and ψε = dνε/dνρ are non-negative decreasing on θ . So

is ϕiψjε for any integers i, j . We apply (7.4) to φ := ϕiψ
j
ε and obtain

∫

θ

ϕi+1ψjε
dνρ

µ(θ)
=
∫
ϕiψjε dµθ ≤

∫
ϕiψjε dνθ =

∫

θ

ϕiψj+1
ε

dνρ

νε(θ)
. (7.6)

By induction, we obtain (7.2) for any integer n. Now, (7.3) obtains after taking
θ = 0S and using FKG’s inequality once more. Indeed, since ϕ and 10S are both
decreasing

∫
ϕndνρ ≤

∫
ϕn10Sdνρ
νρ(0S)

. (7.7)

��

Remark 7.3. Actually if µ ∈ Mρ , then its density f := dµ/dνρ satisfies an
inequality like (7.3) but with U := {i : (εi + ε∗i ) ≥ 1} replacing S which was the
domain where εi = 1. SinceU is bounded, νε(0U) > 0 will replace νε(0S) in (7.3).
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Lemma 7.4. We assume that d ≥ 3. Let ϕ ∈ D+
ρ and θ ∈ �A. Then, for any

integer n
∫

θ

ϕndνρ

∫

θ

1

ϕn
dνρ ≤

∫

θ

ψnε dνρ

∫

θ

1

ψnε
dνρ. (7.8)

Furthermore,
∫

Ac

1

ϕn
dνρ ≤ cϕ,n

∫
ψnε dνρ

∫

Ac

1

ψnε
dνρ, with

cϕ,n := sup
θ∈�A

{νρ(θ)
(∫

θ

ϕ
dνρ

νρ(θ)

)−n
} < ∞. (7.9)

Proof. Recall that ϕ/ψε is increasing on Ac whereas for any integer n, ϕn is
decreasing. Thus, for any cylinder θ ∈ �A, if we denote dν̃ρ = 1θ dνρ/νρ(θ),
then, by FKG’s inequality

∫

θ

1

ψnε
dν̃ρ =

∫

θ

(
ϕ

ψε

)n 1

ϕn
dν̃ρ ≥

∫

θ

(
ϕ

ψε

)n
dν̃ρ

∫

θ

1

ϕn
dν̃ρ. (7.10)

Also, since ψnε is decreasing

∫

θ

(
ϕ

ψε

)n
dν̃ρ

∫

θ

ψnε dν̃ρ ≥
∫

θ

(
ϕ

ψε

)n
ψnε dν̃ρ =

∫

θ

ϕndν̃ρ (7.11)

Multiplying (7.10) by
∫
θ
ψnε dν̃ρ , using (7.11), and simplifying by

∫
θ
(ϕ/ψε)

ndν̃ρ >

0, (since ϕ > 0 νρ-a.s.) we obtain (7.8). Note that cϕ,n < ∞ since there is a finite
number of elements in�A, on each of which

∫
θ
ϕdνρ > 0. Finally, (7.9) is obtained

by summing over all θ ∈ �A, and applying Hölder’s inequality to
∫
ϕndν̃ρ . ��
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