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Abstract. We find the exact small deviation asymptotics for the L2-norm of various m-
times integrated Gaussian processes closely connected with the Wiener process and the
Ornstein – Uhlenbeck process. Using a general approach from the spectral theory of linear
differential operators we obtain the two-term spectral asymptotics of eigenvalues in corre-
sponding boundary value problems. This enables us to improve the recent results from [15]
on the small ball asymptotics for a class of m-times integrated Wiener processes. Moreover,
the exact small ball asymptotics for the m-times integrated Brownian bridge, the m-times
integrated Ornstein – Uhlenbeck process and similar processes appear as relatively simple
examples illustrating the developed general theory.

1. Introduction

The problem of small ball behavior for norms of Gaussian processes has obtained
much attention in recent years (see, for example, the reviews [1] and [2]). The easi-
est and most explored case is that of L2-norm. Suppose we have a Gaussian process
X(t), 0 ≤ t ≤ 1, with zero mean and covariance function σ(s, t) = EX(t)X(s)

for s, t ∈ [0, 1]. Let

||X||2 =



1∫

0

X2(t)dt




1/2

and consider

Q(X; ε) = P {||X||2 ≤ ε}.
The problem is to define the behavior of Q(X; ε) as ε → 0. Theoretically the

problem of small deviation asymptotics was solved in [3], but in an implicit way.
Therefore, the efforts of many scientists starting from [4]–[8] were aimed at the
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simplification of the expression for Q(X; ε) (see, e.g., the references in [2] and in
[9]).

By the well-known Karhunen-Loève expansion, we have in distribution

||X||22 =
1∫

0

X2(t)dt =
∞∑

n=1

λnξ
2
n , (1.1)

where ξn, n ∈ N, are independent standard normal r.v.’s and λn > 0, n ∈ N,∑
n

λn < ∞, are the eigenvalues of the integral equation

λf (t) =
1∫

0

σ(s, t)f (s)ds, 0 ≤ t ≤ 1. (1.2)

Observe that the substantial extension of (1.1) for general quadratic forms in Gauss-
ian variables was obtained in [10].

Thus we are led to the equivalent problem of studying the asymptotic behavior
as ε → 0 of P

{∑∞
n=1 λnξ

2
n ≤ ε2

}
. This problem is considered as solved when the

eigenvalues λn can be found explicitly. However, explicit formulas are known only
for a limited number of examples (see [2], [9], [11] and [12]).

Let W(t), 0 ≤ t ≤ 1, be the Wiener process and denote by Wm(t), 0 ≤ t ≤ 1,
m ≥ 1 the result of m-times integration of this process, namely

Wm(t) =
t∫

0

t1∫

0

...

tm−1∫

0

W(s) dsdtm−1...dt1.

The small ball behavior of this process was studied in several recent publications.
First step was made in [13], where it was proved for the one time integrated Wiener
process W1 that

lim
ε→0

ε2/3 ln P {||W1||2 ≤ ε} = −3/8.

The m-times integrated Wiener process Wm(t) for arbitrary integer m was con-
sidered later in [14]. It was shown there that, as ε → 0, one has

lim
ε→0

ε2/(2m+1) ln P {||Wm||2 ≤ ε} = −Dm,

where

Dm = 1

2
(2m + 1)

(
(2m + 2) sin

π

2m + 2

)− 2m+2
2m+1

. (1.3)

Next contribution was made in [15]. It was proved that for a class of processes
slightly generalizing the m-times integrated Wiener process one has as ε → 0

P {||Wm||2 ≤ ε} ∼ Cmε
1

2m+1 (1+k0(2m+2)) exp
(
−Dmε− 2

2m+1

)
, (1.4)
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where k0 is some indefinite integer and Cm is some unknown constant. This result
was obtained via refining the behavior of eigenvalues of the integral operator cor-
responding to the covariance of the m-times integrated process. It is worth noting
that the authors of [15] prove again the eigenvalue asymptotics for boundary value
problems (BVPs) which is well-known since the basic works of Birkhoff in 1908
– 1913, see [16] and the references therein.

In [17] the final result for the one-fold integrated Wiener process was obtained
among a series of similar asymptotics. Namely, it was proved that

P {||W1||2 ≤ ε} ∼ 1.414... · (8/
√

3π) ε1/3 exp(−(3/8)ε−2/3). (1.5)

Let underline that this formula refines the result in [15] for m = 1 as the constant
is written out explicitly.

In the present paper we obtain the further refinement of the asymptotics (1.4)
not only for the m-times integrated Wiener process, but for a larger class of inte-
grated Gaussian processes including, for example, the m-times integrated centered
Wiener process, the m-times integrated Brownian bridge and the m-times integrated
Ornstein – Uhlenbeck process. Let underline that the power term is given explicitly
and does not contain any indefinite number k0. Part of our results was obtained
independently in [18], [19].

The constant Cm in asymptotic expressions like (1.4) consists of two factors.
The first factor arises from analytic arguments (see Section 6) while the second one
which we call “distortion” constant can be evaluated numerically for any moder-
ate value of m using the well-known comparison theorems in [11], see also [20].
When the eigenfunctions of (1.2) can be expressed in terms of elementary or special
functions, e.g., for the process Wm and its conditional version Bm (see subsection
5.3), there exist explicit and rather unexpected sharp formulas for the distortion
constants. In particular, it turns out that the constant 1.414... in (1.5) is in fact

√
2

while the analogous constant for the conditional process B1 equals to π22−5/23−1/2.

The derivation of these formulas is given in [12], independently some of equivalent
results were obtained by a different method in [18], [19], where the constant Cm is
calculated directly.

However, we doubt that an explicit formula for these constants exists in the
general case.

The distinctive feature of this paper is that we develop a new approach dem-
onstrating the explicit connection between the BVP corresponding to the initial
Gaussian process X and the BVP for the m-times integrated process Xm, m ≥ 1.

Most crucial in our method is the application of a general point of view on the
problem of small L2–balls for a broad class of Gaussian processes based on spec-
tral theory of BVPs. In this context the m-times integrated Wiener process and
Brownian bridge, the m-times integrated Ornstein – Uhlenbeck process and other
similar processes appear as interesting but relatively simple examples.

The problem of asymptotic behavior of eigenvalues and eigenfunctions of dif-
ferential operators has been solved in rather general case. Recently the results on
two-term spectral asymptotics in the multidimensional case were collected in [21].
However, we could not find in the literature corresponding results for the essen-
tially more simple one-dimensional case. For example, in classical monographs
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[16] and [22] the second term in the asymptotic expansion is given “up to con-
stant” (see Section 3) that is not sufficient for our aims. Moreover, it seems that
the proof of multidimensional results cannot be translated to the one-dimensional
case. Therefore we adduce the proofs of necessary statements.

The paper is organized as follows. In Section 2 we establish the basic connec-
tion between the integrated kernels and the boundary value problems. Section 3
contains a preliminary result on spectral asymptotics. We underline that this result
is well-known (see, e.g., [22], §4 and references therein, or [16], Ch.XIX, §4). For
reader’s convenience we derive only the concrete formula for the special case of
“separated” boundary conditions (we stress that any boundary condition in (3.3)
contains the values of derivatives of u in only one endpoint). We note also that
unknown constant n0 in Theorem 3.1 corresponds to constant k0 in (1.4). Then, in
Sections 4-5 we eliminate this constant and derive the exact formulas of two-term
spectral asymptotics for BVPs corresponding to some integral kernels of probabil-
ity interest. In Section 6 we obtain the exact small ball asymptotics. As far as we
get the precise asymptotics of spectrum, this result can be obtained after somewhat
tiresome calculations from [9]. Further generalizations are outlined in Section 7.

Let us recall some notations. The function G(s, t) is called Green function of
BVP for the differential operator L if it satisfies the equation LG = δ(s − t) in
the sense of distributions and satisfies the boundary conditions. The existence of
Green function is equivalent to the invertibility of operator L with given boundary
conditions, and G(s, t) is the kernel of the integral operator L−1.

The space Wm
p (0, 1) is the Banach space of functions u having continuous

derivatives up to (m − 1)-th order when u(m−1) is absolutely continuous on [0, 1]
and u(m) ∈ Lp(0, 1). If p = 2 it is a Hilbert space.

We refer to [23], [24] and [25] for the properties of self-adjoint operators and
their quadratic forms used later on.

2. The BVP corresponding to the integrated kernel

Consider the self-adjoint differential operator L of order 2m̂ defined on the space
D(L) of functions u ∈ W 2m̂

2 (0, 1) satisfying 2m̂ boundary conditions.

Theorem 2.1. Let the kernel G(x, y) be the Green function for the self-adjoint
BVP

Lu = µu on [0, 1], u ∈ D(L).

Then the m-times integrated kernel

Gm(x, y) =
x∫

0

x1∫

0

. . .

︸ ︷︷ ︸
m

y∫

0

y1∫

0

. . .

︸ ︷︷ ︸
m

G(s, t) dt . . . dy1 ds . . . dx1 (2.1)

is the Green function for the BVP

Lmu ≡ (−1)m
(
Lu(m)

)(m) = µu on [0, 1], u ∈ D(Lm), (2.2)
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where the space D(Lm) consists of functions u ∈ W
2(m+m̂)
2 (0, 1) satisfying follow-

ing boundary conditions:

u(0) = u′(0) = · · · = u(m−1)(0) = 0;
u(m) ∈ D(L);
Lu(m)(1) =

(
Lu(m)

)′
(1) = · · · =

(
Lu(m)

)(m−1)

(1) = 0. (2.3)

Proof. The kernel (2.1) can be rewritten as follows:

G(x, y) ≡ Gm(x, y) =
x∫

0

y∫

0

(x − s)m−1

(m − 1)!
· (y − t)m−1

(m − 1)!
· G(s, t) dsdt. (2.4)

Differentiating (2.4) with respect to x we derive for k ≤ m − 1

G(k)
x (x, y) =

x∫

0

y∫

0

(x − s)m−1−k

(m − 1 − k)!
· (y − t)m−1

(m − 1)!
· G(s, t) dsdt,

and the first row in (2.3) follows. Next,

G(m)
x (x, y) =

y∫

0

(y − t)m−1

(m − 1)!
· G(x, t) dt,

therefore G(m)
x ∈ D(L). Since LG(x, y) = δ(x − y) we have

LG(m)
x (x, y) = (y − x)m−1

+
(m − 1)!

,

and the last row in (2.3) follows. Finally,

(
LG(m)

x

)(m)

x
(x, y) = (−1)mδ(x − y),

and the statement is proved. 
�

Remark 1. The kernel (2.1) is the covariance function of the m-times integrated
Gaussian process

Xm(x) =
x∫

0

x1∫

0

. . .

︸ ︷︷ ︸
m

X(s) ds . . . dx1, (2.5)

where X is the Gaussian process with zero mean and covariance function G(s, t).
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If we replace, for example, the s-th integral in (2.5) by
1∫

xs−1

, then the s-th inte-

grals with respect to both variables in (2.1) are replaced similarly. The statement
of Theorem 2.1 for this kernel remains true. We must only replace in (2.3) the
corresponding pair of boundary conditions, namely

u(s−1)(0) =
(
Lu(m)

)(m−s)

(1) = 0 (2.6a)

by

u(s−1)(1) =
(
Lu(m)

)(m−s)

(0) = 0. (2.6b)

Later on we shall denote by ξ
[β1,...,βm]
m (x) (here any βj equals either zero or one)

the m-times integrated Gaussian process with s-th integration from βs . In particu-
lar, ξ

[0,0,...,0]
m (x) is the usual m-times integrated process (2.5) and ξ

[1,0,1,...]
m (x) is

the so-called Euler integrated process (see [15]). By ξm(x) we denote any m-times
integrated process ξ.

3. Spectral asymptotics “up to constant” for a differential operator
with “separated” boundary conditions

Let A be a differential operator of order 2�

Au ≡ (−1)�u(2�) + p2�−2u
(2�−2) + · · · + p0u (3.1)

(here pk ∈ C[0, 1], k = 0, . . . , 2� − 2). We consider the eigenvalue problem

Au = µu on [0, 1], u ∈ D(A), (3.2)

assuming that the space D(A) consists of the functions u ∈ W 2�
2 (0, 1) satisfying

following boundary conditions:

u(kj )(0) + ∑
k<kj

α0
jku

(k)(0) = 0,

u
(k′

j )
(1) + ∑

k<k′
j

α1
jku

(k)(1) = 0,




j = 1, . . . , � (3.3)

where αi
jk are some constants (possibly complex) and

0 ≤ k1 < · · · < k� ≤ 2� − 1; 0 ≤ k′
1 < · · · < k′

� ≤ 2� − 1. (3.4)

We are interested in the asymptotics of eigenvalues of (3.2) for large |µ|. Since
we do not suppose the problem (3.2) to be self-adjoint, the eigenvalues µ are not
necessary real.
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Theorem 3.1. Let µn, n ∈ N, be the eigenvalues of (3.2), and |µ1| ≤ |µ2| ≤ . . .

(any eigenvalue is counted according to its multiplicity). Then there exists n0 ∈ Z

such that

µn+n0 =
(
πn − πκ

2�
+ O(n−1)

)2�

, n → ∞, (3.5)

where κ =
�∑

j=1
(kj + k′

j ).

Proof. Using the asymptotics calculation algorithm given in [22], §4, Theorem 2,
one obtains for boundary conditions (3.3)

µn+n0 =
(
ζn + O(n−1)

)2�

, n → ∞. (3.6)

Here n0 ∈ Z, while ζn are the zeros of the equation

�(ζ) ≡ det(A1) det(B1) − det(A2) det(B2) = 0,

where

A1 =



(iz)k1 . . . (iz�−1)k1 ik1

. . . . . . . . . . . .

(iz)k� . . . (iz�−1)k� ik�


 ; A2 =




(iz)k1 . . . (iz�−1)k1 (−i)k1

. . . . . . . . . . . . . .

(iz)k� . . . (iz�−1)k� (−i)k�


 ;

B1 =



(−i)k
′
1 exp(−iζ ) (−iz)k

′
1 . . . (−iz�−1)k

′
1

. . . . . . . . . . . . . . . . . . . . .

(−i)k
′
� exp(−iζ ) (−iz)k

′
� . . . (−iz�−1)k

′
�


 ;

B2 =



ik
′
1 exp(iζ ) (−iz)k

′
1 . . . (−iz�−1)k

′
1

. . . . . . . . . . . . . . . . . .

ik
′
� exp(iζ ) (−iz)k

′
� . . . (−iz�−1)k

′
�


 ,

and z = exp(iπ/�).
Direct calculation yields

det(A1) det(B1) − det(A2) det(B2)

= (−1)� · i

�∑
j=1

kj

V(zk1 , . . . , zk�) · (−i)

�∑
j=1

k′
j

V(zk′
1 , . . . , zk′

� )·
·(exp(−iζ ) − zκ exp(iζ )), (3.7)

where V(...) is the Vandermonde determinant.
The conditions (3.4) imply zki �= zkj and zk′

i �= z
k′
j for i �= j . Hence both

Vandermonde determinants are not equal to zero, and the formula (3.5) follows
immediately from (3.6) and (3.7). 
�

Later on we apply the result of this theorem to the operators of the type con-
sidered in Theorem 2.1, with natural replacement � = m + m̂.
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Remark 2. We suppose that p2�−1 ≡ 0 in (3.1). The general case can be reduced
to this one by transformation of the function u (see, e.g., [22], §4). If the main
term of the operator A in (3.1) has the form (−1)�p2�(x)u(2�) with p2� ∈ C[0, 1],
p2�(x) > 0, then one can reduce this problem to the case p2� ≡ 1 by transforma-
tion of the variable x (see [22], §4). In this case one has to divide the expression in

braces in (3.5) by
1∫

0
p

−1/(2�)
2� (x) dx.

4. Two-term spectral asymptotics for Lm

Let the self-adjoint operator L have “separated” boundary conditions. Integrating
its Green function G(x, y) m times from various endpoints we obtain kernels corre-
sponding (in general) to 2m various BVPs similar to (2.2) – (2.3). One can see from

Remark 1 that the parameter κ =
m+m̂∑
j=1

(kj + k′
j ) is the same for all these 2m BVPs

and hence by Theorem 3.1 these problems have the same spectral asymptotics “up
to constant”. However, due to self-adjointness we can refine this result.

Theorem 4.1. Let the Green functions of operators L(1)
m and L(2)

m be obtained from
the Green function of the self-adjoint operator L with “separated” boundary con-
ditions by m-repeated integration (with various endpoints). Then the eigenvalues
of operators L(1)

m and L(2)
m have the same two-term asymptotics, i.e. there exists

n0 ∈ Z such that

µ
(1)
n+n0

=
(

πn − πκ

2(m + m̂)
+ O(n−1)

)2(m+m̂)

,

µ
(2)
n+n0

=
(

πn − πκ

2(m + m̂)
+ O(n−1)

)2(m+m̂)

,




n → ∞.

Proof. Consider, for example, the operator L(1)
m with boundary conditions (2.3) and

the operator L(2)
m with one replaced pair of boundary conditions (2.6). Other cases

can be considered similarly.
The quadratic forms QL(1)

m
and QL(2)

m
of these operators have the same formal

expression 〈Lu(m), u(m)〉 (in the sense of distributions) but different domains:

D(QL(1)
m

) = {u ∈ Wm+m̂
2 (0, 1) :

u(i−1)(0) = 0, 1 ≤ i ≤ m; u(m) ∈ D(QL)};

D(QL(2)
m

) = {u ∈ Wm+m̂
2 (0, 1) : u(s−1)(1) = 0;

u(i−1)(0) = 0, 1 ≤ i ≤ m, i �= s; u(m) ∈ D(QL)}.
Now consider the auxiliary quadratic form QL(3)

m
with the same formal expression

and the domain

D(QL(3)
m

) = D(QL(1)
m

) ∩ D(QL(2)
m

) = {u ∈ Wm+m̂
2 (0, 1) : u(s−1)(1) = 0,

u(i−1)(0) = 0, 1 ≤ i ≤ m − 1; u(m) ∈ D(QL)}.
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According to [25], Sec.10.2, the counting function of eigenvalues of self-adjoint
operator L can be expressed in terms of its quadratic form as follows:

NL(µ) ≡ #(j : µj (L) ≤ µ)

= sup dim{H ⊂ D(QL) : QL(u, u) ≤ µ‖u‖2 on H}. (4.1)

As dim D(QL(1)
m

)\D(QL(3)
m

) = dim D(QL(2)
m

)\D(QL(3)
m

) = 1, one can easily de-
duce from (4.1) that

µ(1)
n ≤ µ(3)

n ≤ µ
(1)
n+1 and µ(2)

n ≤ µ(3)
n ≤ µ

(2)
n+1. (4.2)

By Theorem 3.1 there exist such n
(1)
0 , n

(2)
0 , n

(3)
0 ∈ Z that as n → ∞

µ
(j)

n+n
(j)
0

=
(

πn − πκ
(j)

2(m + m̂)
+ O(n−1)

)2(m+m̂)

, j = 1, 2, 3 (4.3)

(here κ
(j) stands for the parameter κ of operator L(j)

m ).
But the operator L(3)

m differs from L(1)
m and L(2)

m only by one of boundary con-
ditions (2.6): u(s−1)(0) = u(s−1)(1) = 0. Hence

κ
(1) = κ

(2) = κ
(3) + 2(m + m̂ − s) + 1. (4.4)

Substituting (4.4) and (4.3) into (4.2) we obtain

0 ≤ n
(3)
0 − n

(1)
0 + 2s − 1

2(m + m̂)
+ O(n−1) ≤ 1,

0 ≤ n
(3)
0 − n

(2)
0 + 2s − 1

2(m + m̂)
+ O(n−1) ≤ 1.

Since 1 ≤ s ≤ m, we have n
(1)
0 = n

(3)
0 = n

(2)
0 , and the statement follows. 
�

5. Examples

5.1. Integrated Wiener process

The covariance function of Wiener process GW(s, t) = s ∧ t is the Green function
of the Sturm – Liouville problem

LWu ≡ −u′′ = µu on [0, 1], u(0) = u′(1) = 0.

The BVPs corresponding to m-times integrated Wiener process were derived
in [15]. In the same paper the spectral asymptotics “up to constant” was obtained
for these problems and it was conjectured that the form of two-term asymptotics
is independent of the integration endpoints. Now, we see that this conjecture is a
corollary of Theorem 4.1.
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Proposition 5.1. The operator LWm corresponding to m-times integrated Wiener
process has two-term spectral asymptotics

µ(Wm)
n =

(
πn − π

2
+ O(n−1)

)2(m+1)

, n → ∞. (5.1)

Proof. By Theorem 4.1, all 2m operators corresponding to m-times integrated Wie-
ner processes (with various endpoints) have the same two-term spectral asymptot-
ics. But one of these operators, namely, corresponding to Euler integrated Wiener
process, coincides with (LW )m+1 (for m even) or with R(LW )m+1R (for m odd),
where R is the reflection of [0, 1] with respect to the point x = 1/2. Hence the ei-
genvalues of this operator are exactly (πn−π/2)2(m+1) (in [26] these eigenvalues
were calculated in a different way), and the statement follows. 
�

5.2. Integrated Brownian bridge

The covariance function of Brownian bridge GB(s, t) = s ∧ t − st is the Green
function of the Sturm – Liouville problem

LBu ≡ −u′′ = µu on [0, 1], u(0) = u(1) = 0. (5.2)

The Brownian bridge m-times integrated from zero was investigated in [27] and
[28].

Proposition 5.2. The operator LBm corresponding to m-times integrated Brown-
ian bridge has two-term spectral asymptotics

µ(Bm)
n =

(
πn − πm

2(m + 1)
+ O(n−1)

)2(m+1)

, n → ∞. (5.3)

Proof. By Theorem 4.1, all 2m operators corresponding to m-times integrated
Brownian bridges (with various endpoints) have the same two-term spectral as-
ymptotics. Consider, for example, the process B

[0,0,...,0]
m (x). By Theorem 2.1, the

corresponding operator LBm can be written as follows:

LBmu ≡ (−1)m+1u(2m+2) on [0, 1];
D(LBm) = {u ∈ W

2(m+1)
2 (0, 1) : u(m)(0) = u(m)(1) = 0;

u(i)(0) = u(2m+1−i)(0) = 0, 0 ≤ i ≤ m − 1}.
Therefore, the parameter κ equals (m + 1)(2m + 1) − 1, and the formula (3.5)
gives for an integer n̄0

µ
(Bm)
n+n̄0

=
(

πn − πm

2(m + 1)
+ O(n−1)

)2(m+1)

, n → ∞.

Next, the operator LBm differs from LWm only in one of boundary conditions.
Comparing the quadratic form of LBm with that of LWm we get as in the proof of
Theorem 4.1

µ(Wm)
n ≤ µ(Bm)

n ≤ µ
(Wm)
n+1 ,

and in view of Proposition 5.1 the statement follows. 
�
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We note that due to symmetry of the problem (5.2) with respect to the point
x = 1/2, any operator LBm coincides with RL̃BmR where the operator L̃Bm corre-
sponds to Brownian bridge integrated “symmetrically". So, the operators LBm and
L̃Bm have the same eigenvalues.

5.3. “Bridged” integrated Wiener process

In an interesting paper [28] it was established that the conditional integrated Wiener
process

Bm(t) = (Wm(t)

∣∣∣ Wj(1) = 0, 0 ≤ j ≤ m)

has the covariance function

G
Bm

(s, t) = (st)2n+1

(n!)2

1/(s∨t)−1∫

0

(1

s
− 1 − z

)n(1

t
− 1 − z

)n

dz

that is the Green function of the BVP

L
Bm

u ≡ (−1)m+1u(2m+2) = µu on [0, 1];
D(L

Bm
) = {u ∈ W

2(m+1)
2 (0, 1) : u(i)(0) = u(i)(1) = 0, 0 ≤ i ≤ m}.

Proposition 5.3. The operator L
Bm

corresponding to “bridged” m-times integra-
ted Wiener process has two-term spectral asymptotics

µ(Bm)
n =

(
πn + π

m

2
+ O(n−1)

)2(m+1)

, n → ∞. (5.4)

Proof. As in Proposition 5.2, we can “lower” step by step all the boundary condi-
tions at the endpoint one that gives (5.4). 
�

5.4. Integrated centered Wiener process

The covariance function of (once) integrated centered Wiener process

W 1(t) =
∫ t

0
(W(s) −

∫ 1

0
W(u)du)ds

(see, e.g., [29]) reads

GW 1
(s, t) = 1

2
(s ∧ t)st − 1

6
(s ∧ t)3 + st

6

(
s2 + t2 − 3(s + t) + 2

)

and is the Green function of the BVP

LW 1
u ≡ uIV = µu on [0, 1], u(0) = u(1) = u′′(0) = u′′(1) = 0. (5.5)
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Proposition 5.4. The operator LWm
corresponding to m-times integrated centered

Wiener process has two-term spectral asymptotics

µ(Wm)
n =

(
πn − π(m − 1)

2(m + 1)
+ O(n−1)

)2(m+1)

, n → ∞. (5.6)

Proof. Due to symmetry of the problem (5.5) with respect to the point x = 1/2 the

operator corresponding to W
[0,β2,...,βm]
m coincides with the operator corresponding

to W
[1,β2,...,βm]
m . By Theorem 4.1, all 2m−1 pairs of these operators have the same

two-term spectral asymptotics. Consider, for example, the process W
[0,0,...,0]
m (x).

By Theorem 2.1, the corresponding operator LWm
can be written as follows:

LWm
u ≡ (−1)m+1u(2m+2) on [0, 1];
D(LWm

) = {u ∈ W
2(m+1)
2 (0, 1) : u(m−1)(0) = u(m−1)(1) = 0;

u(m+1)(0) = u(m+1)(1) = 0; u(i)(0) = u(2m+1−i)(1) = 0, 0 ≤ i ≤ m − 2}.
Therefore, the parameter κ equals (m + 1)(2m + 1) − 2, and formula (3.5)

gives for an integer n̄0

µ
(Wm)
n+n̄0

=
(

πn − π(m − 1)

2(m + 1)
+ O(n−1)

)2(m+1)

, n → ∞.

Now, consider the auxiliary operator L:

Lu ≡ (−1)m+1u(2m+2) on [0, 1],

D(L) = {u ∈ W
2(m+1)
2 (0, 1) : u(m−1)(0) = u(m−1)(1) = 0;

u(m)(0) = u(m+1)(1) = 0; u(i)(0) = u(2m+1−i)(1) = 0, 0 ≤ i ≤ m − 2}.
The parameter κ for L equals (m+1)(2m+1)−3, and the formula (3.5) gives

for an integer n̂0

µ
(L)
n+n̂0

=
(

πn − π(m − 2)

2(m + 1)
+ O(n−1)

)2(m+1)

, n → ∞.

But the operator L differs from LWm and LWm
only in one of boundary conditions.

Comparing the quadratic form of L with those of LWm and LWm
we get as in the

proof of Theorem 4.1

µ(Wm)
n ≤ µ(L)

n ≤ µ
(Wm)
n+1 , µ(Wm)

n ≤ µ(L)
n ≤ µ

(Wm)
n+1 ,

whence n̂0 = n̄0 = 0, and the statement follows. 
�
As in subsection 5.2, any operator LWm

coincides also with RL̃Wm
R, where the

operator L̃Wm
corresponds to centered Wiener process integrated “symmetrically".

So, the operators LWm
and L̃Wm

have the same eigenvalues.

Remark 3. Since all considered operators have no lower order terms, one can easily
deduce from the proof of Theorem 2, §4 in [22], see also [15], that the remainder
term estimate in (5.1), (5.3), (5.4), (5.6) is in fact O(exp(−nπ sin π

m+1 )).
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5.5. Integrated Ornstein – Uhlenbeck process

It is easy to check that the covariance function GU(s, t) = exp(−|s − t |) of the
Ornstein – Uhlenbeck process U is the Green function of the BVP

LUu ≡ 1

2
(−u′′ + u) = µu on [0, 1], (u′ − u)(0) = (u′ + u)(1) = 0.

(5.7)

Proposition 5.5. The operator LUm corresponding to m-times integrated Ornstein
– Uhlenbeck process has the two-term spectral asymptotics

µ(Um)
n = 1

2

(
πn − π(m + 2)

2(m + 1)
+ O(n−1)

)2(m+1)

, n → ∞.

Proof. By Theorem 4.1, all 2m operators corresponding to m-times integrated Orn-
stein – Uhlenbeck processes (with various endpoints) have the same two-term spec-
tral asymptotics. Consider, for example, the Euler integrated process U

[1,0,1,...]
m (x).

By Theorem 2.1, the corresponding operator LUm can be written as follows:

2LUmu ≡ (−1)m(−u(2m+2) + u(2m)) on [0, 1];
D(LUm) = {u ∈ W

2(m+1)
2 (0, 1) :

u(i−1)(0) = u(i)(1) = 0, i = m − 1, m − 3, . . . ;
(u(m+1) − u(m))(0) = (u(m+1) + u(m))(1) = 0;

(u(i+2) − u(i))(0) = (u(i+3) − u(i+1))(1) = 0, i = m, m + 2, . . . }.
Therefore, the parameter κ equals (m + 1)(2m + 1) + 1, and the formula (3.5)
gives for an integer n̄0

2µ
(Um)
n+n̄0

=
(

πn − π(m + 2)

2(m + 1)
+ O(n−1)

)2(m+1)

, n → ∞. (5.8)

Integrating by parts we obtain

2QLUm
(u, u) =

1∫

0

(
(u(m+1))2 + (u(m))2

)
dx +

(
u(m)(0)

)2 +
(
u(m)(1)

)2 ;

D(QLUm
) = {u ∈ Wm+1

2 (0, 1) :

u(i−1)(0) = u(i)(1) = 0, i = m − 1, m − 3, . . . }.
Now consider the auxiliary quadratic forms QLj

, j = 2, 3, 4, with the same
formal expression

QLj
(u, u) =

1∫

0

(
(u(m+1))2 + (u(m))2

)
dx, j = 2, 3, 4,
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but different domains:

D(QL2) = {u ∈ D(QLUm
) : u(m)(0) = 0};

D(QL3) = D(QLUm
);

D(QL4) = {u ∈ D(QLUm
) : u(m)(0) = u(m)(1) = 0}.

Integrating by parts we obtain that corresponding operators Lj , j = 2, 3, 4,
have the same differential expression as 2LUm but different domains:

D(L2) = {u ∈ W
2(m+1)
2 (0, 1) : u(i)(0) = u(i+1)(1) = 0, i − m even};

D(L3) = {u ∈ W
2(m+1)
2 (0, 1) :

u(i−1)(0) = u(i)(1) = 0, i = m − 1, m − 3, . . . ;
u(i)(1) = u(i+1)(0) = 0, i = m + 3, m + 5, . . . ;

u(m+1)(0) = u(m+1)(1) = (u(m+2) − u(m))(0) = 0};

D(L4) = {u ∈ W
2(m+1)
2 (0, 1) :

u(i−1)(0) = u(i)(1) = 0, i = m − 1, m − 3, . . . ;
u(i)(0) = u(i+1)(1) = 0, i = m + 4, m + 6, . . . ;
u(m)(0) = u(m)(1) = u(m+2)(0) = (u(m+3) − u(m+1))(1) = 0}.

It is easy to see that the operator (LW )m+1 + (LW )m coincides with L2 (for m

even) or RL2R (for m odd). Hence

µ(L2)
n =

(
πn − π

2

)2(m+1) +
(
πn − π

2

)2m =
(
πn − π

2
+ O(n−1)

)2(m+1)

.

The operators L3 and L4 differ from L2 only in one of boundary conditions.
Comparing the quadratic form QL2 with QL3 and QL4 we get as in the proof of
Theorem 4.1

µ(L2)
n ≤ µ(L4)

n ≤ µ
(L2)
n+1 , µ(L3)

n ≤ µ(L2)
n ≤ µ

(L3)
n+1 . (5.9)

Next, the parameter κ for L3 and L4 is equal to (m + 1)(2m + 1) + 1 and to
(m + 1)(2m + 1) − 1 correspondingly, and by (3.5) and (5.9) we have as n → ∞

µ(L3)
n =

(
πn − π(m + 2)

2(m + 1)
+ O(n−1)

)2(m+1)

µ(L4)
n =

(
πn − πm

2(m + 1)
+ O(n−1)

)2(m+1)

, (5.10)

Now let compare the quadratic form of 2LUm with those of L3 and L4. It is
easy to see that 2QLUm

(u, u) ≥ QL3(u, u). On the other hand, 2QLUm
(u, u) =

QL4(u, u) for u ∈ D(QL4). By minimax principle (see [25], Sec.10.2) we have

µ(L3)
n ≤ 2µ(Um)

n ≤ µ(L4)
n ,

and in view of (5.8) and (5.10) the statement follows. 
�
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As in subsections 5.2 and 5.4, due to symmetry of the problem (5.7) with respect
to the point x = 1/2, any operator LUm coincides with RL̃UmR where the operator
L̃Um corresponds to Ornstein – Uhlenbeck process m-times integrated “symmetri-
cally". Hence the operators LUm and L̃Um have the same eigenvalues.

5.6. Stochastic integral with the time-varying upper limit

Let f be a function from L2(0, 1). Then the process

Z(t) =
t∫

0

f (s)dW(s), 0 ≤ t ≤ 1

is a Gaussian process with zero mean and covariance function

GZ(s, t) =
s∧t∫

0

f 2(u)du, 0 ≤ s, t ≤ 1, (5.11)

see, e.g. [30], p.143.
Denote by Zm the m-times integrated process Z. The exact small ball asympt-

otics of this process in L2-norm is an interesting unsolved problem. Our theory
enables to obtain this asymptotics under some natural conditions on f. Suppose
f �= 0 and consider the BVP equivalent to the integral equation with the kernel
(5.11). It reads

LZu ≡ −(u′/f 2)′ = µu on [0, 1]; u(0) = (u′/f 2)(1) = 0.

Proposition 5.6. Let non-vanishing function f belong to Wm+1∞ (0, 1). Then the
operator LZm corresponding to the m-times integrated process Zm has the two-
term spectral asymptotics

µ(Zm)
n =

(
πn − π/2∫ 1

0 |f (x)|1/(m+1) dx
+ O(n−1)

)2(m+1)

, n → ∞.

Proof. By Theorem 4.1, all 2m operators corresponding to m-times integrated pro-
cess Z (with various endpoints) have the same two-term spectral asymptotics. Con-
sider the Euler integrated process Z

[1,0,1,...]
m (x) as an example. By Theorem 2.1, the

corresponding operator LZm can be written as follows:

LZmu ≡ (−1)m+1(u(m+1)/f 2)(m+1) on [0, 1];
D(LZm) = {u ∈ W

2(m+1)
2 (0, 1) : u(i)(0) = u(i−1)(1) = 0, i = m, m − 2, . . .

(u(m+1)/f 2)(i)(0) = (u(m+1)/f 2)(i−1)(1) = 0, i = 1, 3, . . . }.
For simplicity we deal only with the case m = 1; the general case can be considered
similarly. Without loss of generality we can suppose f > 0.
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Remark 2 gives for an integer n̄0

µ
(Z1)
n+n̄0

=
(

πn − π/2∫ 1
0 f (x)1/2 dx

+ O(n−1)

)4

, n → ∞.

Now consider the auxiliary operator L5:

L5u ≡ −(u′/f )′ on [0, 1]; u(1) = (u′/f )(0) = 0.

It is well-known (see, e.g., [31], Vol.IV, Ch.IV, §188) that

µ(L5)
n =

(
πn − π/2∫ 1

0 f (x)1/2 dx
+ O(n−1)

)2

.

Integrating by parts we have

QL6(u, u) ≡ QLZ1
(u, u) + u′2(1)

f (1)

[
1

f

]′
(1)

= QL2
5
(u, u) +

1∫

0

u′2(t)
f (t)

[
1

f (t)

]′′
dt. (5.12)

Denote c1 = sup
t∈[0,1]

|(1/f (t))′′| and consider a pair of auxiliary operators L±
7 =

L2
5 ± c1L5. Then (5.12) yields

QL−
7
(u, u) ≤ QL6(u, u) ≤ QL+

7
(u, u).

Therefore, as n → ∞,

µ(L6)
n =

(
µ(L5)

n

)2 + O(n2) =
(

πn − π/2∫ 1
0 f (x)1/2 dx

+ O(n−1)

)4

.

Finally, consider the auxiliary quadratic form QL8 with the same formal expres-
sion as QLZ1

and the domain

D(QL8) = {u ∈ W 2
2 (0, 1) : u(1) = u′(0) = u′(1) = 0}.

Obviously, one has QLZ1
(u, u) = QL6(u, u) = QL8(u, u) for u ∈ D(QL8). As

dim D(QLZ1
)\D(QL8) = 1, we have as in the proof of Theorem 4.1

µ(Z1)
n ≤ µ(L8)

n ≤ µ
(Z1)
n+1 and µ(L6)

n ≤ µ(L8)
n ≤ µ

(L6)
n+1 ,

therefore n̄0 = 0, and the statement follows. 
�
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6. Exact small ball asymptotics

The results of previous sections give rather precise information on the asymptotics
of eigenvalues in our boundary problems. Therefore we are able to get the exact
small ball behavior of processes under consideration.

For any zero mean Gaussian process X(t), 0 ≤ t ≤ 1, with covariance GX(s, t)

denote by λ
(X)
n , n ≥ 1 the eigenvalues of the integral equation (1.2) with the kernel

GX(s, t). The results obtained above give for these eigenvalues in all considered
cases the asymptotics of the type

λn = λ(X)
n =

(
ϑ(n + δ + O(n−1))

)−d

, n → ∞, (6.1)

where ϑ, d > 0 and δ > −1 are some constants, possibly depending on m.
Denote by 
n = 


(X)
n , n ≥ 1 the approximate eigenvalues of integral equation

(1.1) given by (6.1) without the remainder O(n−1). By the comparison princi-
ple of Li [11] the exact small deviation asymptotics of two infinite random forms∑∞

j=1 λj ξ
2
j and

∑∞
j=1 
jξ

2
j differs only in a distortion constant

Cdist(X) ≡
∞∏

n=1

(

n

λn

)1/2

. (6.2)

As the relative error of our approximaton is O(n−2) this infinite product con-
verges. For any fixed moderate value of m we can calculate some first values of λ

(X)
n

and find numerically the value of distortion constant. Due to this we shall consider
in this section only the form

∑∞
j=1 
jξ

2
j with relatively simple “approximate”

eigenvalues.
Next step is using the results of [9] to get the desired exact small ball as-

ymptotics. This technique was already used in [17] for various one time integrated
processes. Temporarily let assume that in (6.1) ϑ = 1, later we will incorporate the
influence of ϑ in the final formula.

The following result is a concretization of Corollary 3.2 from [9] within the
framework of our conditions. Note that with our choice of φ and f all regularity
conditions assumed in [9] are fulfilled.

Lemma 6.1. Denote, for t, u ≥ 0, d > 1 and δ > −1

φ(t) = (t + δ)−d , f (t) = (1 + 2t)−1/2,

I0(u) =
∞∫

1

ln f (uφ(t))dt, I1(u) =
∞∫

1

uφ(t)(ln f )
′
(uφ(t))dt,

I2(u) =
∞∫

1

(uφ(t))2(ln f )
′′
(uφ(t))dt, Cφ = 1

2

∞∑
j=1

1∫

0

ln
φ(j)φ(j + 1)

φ2(t + j)
dt.
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Then as r → 0,

P




∞∑
j=1

φ(j)ξ2
j ≤ r


 ∼

√
f (uφ(1))

2πI2(u)
exp(I0(u) + ur − Cφ/2), (6.3)

where u = u(r) is any function satisfying

lim
r→0

I1(u) + ur√
I2(u)

= 0. (6.4)

We begin by the asymptotic analysis of Is(u), s = 0, 1, 2, as u → ∞. Using [32],
formulas 3.241.2 and 3.241.5 we have

I0(u) ∼ (1 + δ)

2
ln

2u

(1 + δ)d
− π(2u)1/d

2 sin π
d

+ d(1 + δ)/2.

I1(u) = −u

∞∫

1+δ

dt

2u + td
∼ −π(2u)1/d

2d sin π
d

,

I2(u) = 2u2

∞∫

1+δ

dt

(2u + td )2 ∼ (d − 1)π(2u)1/d

2d2 sin π
d

.

Now, if we choose u in such a way that

u = 1

2

(
πr−1

d sin π
d

) d
d−1

,

then u satisfies condition (6.4). It remains to calculate the constant Cφ . Consider
the integral (see [32], formula 3.427.4)

I (q)=
∞∫

0

(
1

et − 1
+ 1

2
− 1

t

)
e−qt

t
dt = ln �(q) − (q − 1

2
) ln q + q − 1

2
ln(2π)

defined for any complex q with Re q > 0. We have after some simplifications

Cφ = d

∞∑
j=1

[
(j + 1/2 + δ) ln

j + 1 + δ

j + δ
− 1

]

= d

∞∑
j=1

[I (j + δ) − I (j + 1 + δ)] = d · I (1 + δ)

= d · [ln �(1 + δ) − (1/2 + δ) ln(1 + δ) + 1 + δ − 1

2
ln(2π)].

Now we can obtain the exact asymptotics for P
{∑∞

j=1 φ(j)ξ2
j ≤ ε2

}
.The pas-

sage to the probability P
{∑∞

j=1 
jξ
2
j ≤ ε2

}
is simple rescaling because 
j =

ϑ−dφ(j), j ≥ 1. Finally we arrive to the following result.
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Theorem 6.2. Consider the form
∑∞

j=1 
jξ
2
j with


j = (ϑ(j + δ))−d ,

where ϑ > 0, δ > −1 and d > 1 are some constants. Then as ε → 0 it holds

P




∞∑
j=1


jξ
2
j ≤ ε2




∼ C(ϑ, d, δ) · εγ exp

(
− d − 1

2

(
π/d

ϑ sin(π/d)

) d
d−1

ε− 2
d−1

)
, (6.5)

where

γ = 2 − d − 2δd

2(d − 1)
,

while the constant C(ϑ, d, δ) is given by the following expression:

C(ϑ, d, δ) = (2π)d/4ϑdγ/2(sin(π/d))
1+γ

2

(d − 1)1/2(π/d)1+ γ
2 �d/2(1 + δ)

. (6.6)

Theorem 6.2 generalizes the Corollary 4.2 in [9], where the case ϑ = 1 and
δ = 0 was considered, as well as the formula (3.4) in [11] covering the case
δ > −1, d = 2. This Theorem opens the possibility to write out the exact small
ball asymptotics in Examples 5.1 – 5.6.

To get the final result (6.3) we should multiply (6.5) by the distortion constant
(6.2) which can be calculated analytically or numerically. We underline that the
“particularity” of a process consists in the constants ϑ , δ and d appearing in the
formula (6.5) and the distortion constant Cdist.

Now we apply the “abstract” Theorem 6.2 to the examples 5.1 – 5.6. We recall
that in the considered examples m is the number of successive integrations.

Proposition 6.3. The exact small ball asymptotics for the processes considered in
Section 5 are as follows:

P {||X||2 ≤ ε} ∼ Cdist(X) · C(ϑ, d, δ) · εγ exp(−DXε− 2
2m+1 ), (6.7)

where d = 2m+2, while the constants Cdist(X) and C(ϑ, d, δ) are defined in (6.2)
and (6.6) correspondingly. Other parameters in (6.7) are collected in Table 1 (here
Im(f ) = ∫ 1

0 |f (x)|1/(m+1) dx, and Dm is the constant defined in (1.3)).

Let us examine briefly the power of ε. In the case of m-times integrated Wiener
process this power is equal to 1

2m+1 for any m. This refines the result of [15]. It is
curious to note that this power is equal to 0 for any m-times integrated Brownian
bridge while in other cases this power depends on m.

The exact small ball asymptotics for the integrated Ornstein – Uhlenbeck pro-
cess is obtained for the first time. This result is new even for the rough asymptotics
and the simplest case m = 1 when the constant in the exponent changes from 3/8
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Table 1. Parameters for the exact small ball asymptotics

X ϑ δ γ DX

Wm π − 1
2

1
2m+1 Dm

Bm π − m

2m+2 0 Dm

Bm π m

2 −m(m+2)

2m+1 Dm

Wm π − m−1
2m+2 − 1

2m+1 Dm

Um π2− 1
2m+2 − m+2

2m+2
2

2m+1 Dm2
1

2m+1

Zm π/Im(f ) − 1
2

1
2m+1 Dm(Im(f ))

2m+2
2m+1

(which was typical for different forms of integrated Wiener process and Brownian
bridge) to 3/28/3.

The exact small ball asymptotics of the process Zm from subsection 5.6 is also
obtained for the first time. Previously only the logarithmic small deviation asympt-
otics for the process Z was known which follows from more general results in [11],
namely

lim
ε→0

ε2 ln P {||Z||2 ≤ ε} = −1

8




1∫

0

|f (s)|ds




2

.

Note that our formulas in Proposition 6.3 hold true also in the non-integra-
ted case m = 0. The matter is that the ordinary (non-integrated) centered Wiener
process W is exceptional (corresponding BVP is not of the form described in sub-
section 5.4). Happily it was shown in [33] that ||W ||2 = ||B||2 in distribution,
another proof can be found in [17]. Therefore we can use the well-known small
ball asymptotics for the Brownian bridge, namely as ε → 0

P {||W ||2 ≤ ε} = P {||B||2 ≤ ε} ∼ 2
√

2√
π

exp

(
− 1

8ε2

)
. (6.8)

The non-integrated Ornstein – Uhlenbeck process is distinguished for another
reason. In fact, according to Proposition 5.5 this process corresponds to δ = −1,
and the general formula (6.5) is not applicable. This case is degenerate from the
point of view of our approach (
1 = ∞). However we can surmount this obstacle
using some appropriate (though delicate) passage to the limit as δ → −1.

An alternative direct variant of proof is as follows. Take as an approximate
system of eigenvalues the set 
1 = 1, 
n = 2(π(n − 1))−2, n ≥ 2. Then the
comparison principle of Li [11] and Theorem 6.2 imply

P




∞∑
j=1

λ
(U)
j ξ2

j ≤ ε2


 ∼

(
1/λ

(U)
1

)1/2 ∞∏
n=2

(
2(π(n − 1))−2

λ
(U)
n

)1/2

·

· P


ξ2

0 + 2
∞∑

j=1

(πj)−2ξ2
j ≤ ε2


 ,
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where ξ0 is a standard Gaussian variable independent from {ξn}, n ∈ N. The prob-
ability in the right-hand side is a convolution of two distribution functions with
known behavior near zero. In fact as r → 0 one has

d

dr
P {ξ2

0 < r} = d

dr
[2�(

√
r) − 1] ∼ 1√

2πr
,

and using (6.8) we get

P


ξ2

0 + 2
∞∑

j=1

λj ξ
2
j ≤ ε2


 ∼ 2

π

∫ ε2

0

1√
x

exp

(
− 1

4(ε2 − x)

)
dx.

The integrand is close to zero and its point of maximum is of order O(ε4),
hence we can linearize the function in the exponent near zero, replacing it by
−1/(4ε2) − x/(4ε4). But

∫ ε2

0

1√
x

exp
(
− x

4ε4

)
dx ∼ 2�(1/2) ε2, ε → 0,

so that we arrive to

Proposition 6.4. The exact small ball asymptotics for the ordinary Ornstein –
Uhlenbeck process is

P {||U ||2 ≤ ε} ∼ C̃dist(U) · 4π−1/2ε2 exp

(
−1

4
ε−2

)
,

where

C̃dist(U) =
(

1

λ
(U)
1

)1/2 ∞∏
n=2

1

π(n − 1)

(
2

λ
(U)
n

)1/2

.

This proposition refines Theorem 5 from [11], see also [34], where it was shown
that

lim
ε→0

ε2 ln P {||U ||2 ≤ ε} = −1

4
.

7. Further generalizations

We present now the general formula of two-term spectral asymptotics for self-
adjoint operator with “separated” boundary conditions.

Theorem 7.1. Let A be a self-adjoint operator of order 2�

Au ≡ (−1)�
(
p2�u

(�)
)(�) +

(
p2�−2u

(�−1)
)(�−1) + · · · + p0u (7.1)
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with “separated” boundary conditions. Let p2k ∈ L1(0, 1), k = 0, . . . , � − 2;
p2�−2 ∈ L∞(0, 1); p2� ∈ W�∞(0, 1); p2�(x) > 0. Then the eigenvalues of opera-
tor A have two-term asymptotics

µn =




π ·
[
n + � − 1 − κ

2�

]

1∫
0

p
−1/(2�)
2� (x) dx

+ O(n−1)




2�

, n → ∞, (7.2)

where parameter κ is defined in Section 3

Proof. The way to derive (7.2) is similar to ideas considered in Section 5. So we
give only the sketch of proof.

The quadratic form QA can be written as follows:

QA(u, u) =
1∫

0

�∑
k=0

p2k

(
u(k)

)2
dx + Q0(u, u) + Q1(u, u), (7.3)

where Q0(u, u) and Q1(u, u) contain boundary terms at the endpoints zero and
one, correspondingly.

First of all, using the minimax principle we eliminate the boundary terms from
QA in the same way as in Proposition 5.5. Then, “raising” and “lowering” bound-
ary conditions as in Propositions 5.2 - 5.4 we reduce the problem to the case of
simplest boundary conditions

u(0) = u′(1) = · · · = u(2�−2)(0) = u(2�−1)(1) = 0.

In this case the result can be obtained as in Proposition 5.6. 
�
Proposition 7.2. Let the covariance GX(s, t) of zero mean Gaussian process X(t),
0 ≤ t ≤ 1, be the Green function for the self-adjoint operator (7.1) satisfying the
conditions of Theorem 7.1. Let κ < 2�2. Then

P {||X||2 ≤ ε} ∼ Cdist(X) · C
(

π

J2�

, 2�, � − 1 − κ

2�

)
·

·ε−�+ κ+1
2�−1 exp

(
− 2� − 1

2

(
J2�

2� sin π
2�

) 2�
2�−1

ε− 2
2�−1

)
, (7.4)

where J2� =
1∫

0
p

−1/(2�)
2� (x) dx, the constant C(ϑ, d, δ) is defined in (6.11) while

Cdist(X) is the distortion constant (6.2).

Proof. This statement is direct corollary of Theorem 7.1 and Theorem 6.2. 
�
Remark 4. In the case κ ≥ 2�2 one must modify formula (7.4) in the way shown
for the Ornstein – Uhlenbeck process at the end of Section 6.
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Now we can obtain the rough (logarithmic) asymptotics of L2-norm of Gaussian
process in highly general case.

Theorem 7.3. Let the covariance GX(s, t) of zero mean Gaussian process X(t),
0 ≤ t ≤ 1, be the Green function for the self-adjoint operator (7.1) (here we
do not suppose that the boundary conditions are separated). Let p2k ∈ L1(0, 1),
k = 0, . . . , � and p2�(x) ≥ c > 0. Then

lim
ε→0

ε2/(2�−1) ln P {||X||2 ≤ ε} = − 2� − 1

2

(
J2�

2� sin π
2�

) 2�
2�−1

.

Proof. Consider two auxiliary quadratic forms QL9 and Q
L(D)

9
with the same for-

mal expression

QL9(u, u) =
1∫

0

p2�

(
u(�)

)2
dx

and different domains: D(QL9) = D(QA) while D(Q
L(D)

9
) is the closure of the

set of smooth functions with compact support in ]0, 1[ with respect to the norm
generated by QL9(u, u).

It follows from [35] that as n → ∞,

µ
(L(D)

9 )
n =

(
πn

J2�

+ o(n)

)2�

.

Next, the difference of the operators L9 and L
(D)
9 is a finite-dimensional oper-

ator, and therefore

µ(L9)
n =

(
πn

J2�

+ o(n)

)2�

.

Now we estimate the lower order terms in (7.3). For example, integrating by
parts we obtain

1∫

0

p2�−2

(
u(�−1)

)2
dx =

(
u(�−1)(1)

)2
1∫

0

p2�−2 dx

−
1∫

0

2u(�−1)(x)u(�)(x)

x∫

0

p2�−2(t) dtdx.

Due to the well-known inequality

max
x∈[0,1]

|f (x)|2 ≤
1∫

0

2|f (x)f ′(x)| dx +
1∫

0

(f (x))2 dx, f ∈ W 1
2 (0, 1)
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we have

∣∣∣∣∣∣

1∫

0

p2�−2

(
u(�−1)

)2
dx

∣∣∣∣∣∣
≤ c




1∫

0

∣∣∣u(�−1)u(�)
∣∣∣ dx +

1∫

0

(
u(�−1)

)2
dx


 . (7.5)

Other lower order terms in (7.3) can be estimated similarly.
The estimate (7.5) implies that A = L9 · (I +T ), where T is compact operator.

By Weyl Theorem ([36]; see also [35]) the lower order terms do not influence upon
the one-term spectral asymptotics, and hence

µ(A)
n =

(
πn

J2�

+ o(n)

)2�

. (7.6)

It follows from (7.6) that for any τ > 0 there exists c2(τ ) such that

(
πn

J2� + τ
− c2(τ )

)2�

≤ µ(A)
n ≤

(
πn

J2� − τ
+ c2(τ )

)2�

.

Using Theorem 6.2 we have

lim inf
ε→0

ε2/(2�−1) ln P {||X||2 ≤ ε} ≥ − 2� − 1

2

(
J2� + τ

2� sin π
2�

) 2�
2�−1

;

lim sup
ε→0

ε2/(2�−1) ln P {||X||2 ≤ ε} ≤ − 2� − 1

2

(
J2� − τ

2� sin π
2�

) 2�
2�−1

.

Passage to the limit as τ → 0 completes the proof. 
�

Remark 5. If in (7.1) p2k ≡ 0, k = 0, . . . , �−1, then the condition p2�(x) ≥ c > 0
can be weakened to p2�(x) > 0 a.e., p−1

2� ∈ L1(0, 1). In particular, rough as-
ymptotics for the process Zm (see subsection 5.6) holds true under the conditions
f 2 ∈ L1(0, 1), f −2 ∈ L1(0, 1).

Though not all Gaussian processes satisfy the conditions of Theorem 7.3, many
processes of probability interest do in case they are obtained by various transfor-
mations of Wiener process.
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