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Abstract. We study heat-bath Glauber dynamics for the ferromagnetic Ising model on a
finite cycle (a graph where every vertex has degree two). We prove that the relaxation time τ2

is an increasing function of any of the couplings Jxy . We also prove some further inequalities,
and obtain exact asymptotics for τ2 at low temperatures.

1. Introduction

Consider the ferromagnetic Ising model on a finite graph G = (V , E). Let n

denote the number of vertices. We allow variable interaction strength, so each edge
e = [x, y] ∈ E has a coupling constant Jxy > 0. As usual, every vertex x ∈ V has
a spin σx ∈ {+1, −1} and the probability of a configuration is given by the Gibbs
equilibrium measure π(σ) = Z−1 exp(

∑
[x,y]∈E Jxyσxσy). We assume no external

field and no boundary conditions.
We are interested in the Glauber dynamics for this model. The Glauber dynam-

ics is a Markov chain on the space of configurations of the Ising model, whose
stationary distribution is the Gibbs measure. It comes in several flavors (heat-bath,
Metropolis, etc.), but they follow the same scheme. At each step of the algorithm,
one vertex is picked according to some rule (e.g. uniformly random) and with a
certain probability one flips its spin (from +1 to −1 and viceversa). The flip proba-
bility depends on the value of the spin and its neighbors; if it is chosen appropiately,
then the chain distribution converges to the Gibbs measure.

For any configuration σ we let σx be the configuration obtained by flipping
spin x, while leaving all other spins unchanged. We shall focus on the heat-bath
Glauber dynamics, in which a vertex x is picked uniformly at random, then flipped
with probability π(σx)/(π(σ )+π(σx)). Formally, this is the discrete-time Markov
chain whose transition matrix A has size 2n × 2n and is defined by:

A(σ, σ x) = (1/n) π(σx)/(π(σ ) + π(σx))

A(σ, σ ) = 1 −
∑

x∈V

A(σ, σ x)

A(σ, τ ) = 0 f or all other τ (1)
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One fundamental quantity is the relaxation time τ2, defined by

τ2 = (n(1 − µ2))
−1 (2)

where µ2 is the second largest eigenvalue of A. We scale by a factor of n so that
the τ2 defined above is the same as for a continuous-time chain where each vertex
is updated at rate one. Essentially, it says we do n moves of the discrete chain per
unit of time.

In this paper we study the case when the graph G consists of only one cycle
(every vertex has degree two). Our main result is

Theorem 1. For the ferromagnetic Ising model on the cycle, the relaxation time τ2
is an increasing function of any of the couplings Jxy .

This result was motivated by trying to understand how the dynamics depends
on the parameters of the model. The Glauber dynamics has been used in computer
simulations of the Ising model, and in describing the non-equilibrium behavior of
the model. There has been a fair amount of research on its relaxation time and
mixing time; see [5] for a comprehensive survey, and [3] for an analysis of the
Glauber dynamics on trees. Most existing results give asymptotic estimates for the
relaxation time when the graph size is large; in particular, there are fairly sharp
estimates for trees and for the lattice Zd . However, much less is known about how
the relaxation time depends on the parameters of the model, such as the temperature
or the coupling constants. Such results would allow comparing mixing times for
different graphs at different temperatures.

Computer simulations and heuristics suggest that, at least in the ferromagnetic
case, such dependence should be monotone. Indeed, consider the dynamics started
at an initial state where all spins are +1. To achieve mixing, lots of spins would
have to flip to −1. But in the ferromagnetic model, neighboring spins tend to have
the same value. The higher the interaction strength, the harder it will be for spins
to flip. This led to the following

Conjecture 2. (Yuval Peres, personal communication.) For the ferromagnetic Ising
model on any graph, the relaxation time τ2 is an increasing function of any of the
couplings Jxy .

What this says is that for two sets of couplings J, J′ with Jxy ≤ J ′
xy , we must

have τ2(J) ≤ τ2(J′). At first glance it may seem that one way to prove this is to find
a coupling (not to be confused with the couplings Jxy) between the two Glauber
dynamics, in which the dynamics for J is dominated by the one for J′. This would
imply the desired inequality for relaxation times.

However, such a coupling does not exist. To see why, choose some starting state
(for example, all spins are +1) and let Pn, P

′
n be the measures obtained after n steps

of the dynamics. Let π, π ′ be the corresponding Gibbs measures. We would like to
define both dynamics on the same probability space so that stochastic dominance
Pn ≺ P ′

n holds. But then it must also hold in the limit, so we would need to have
π ≺ π ′, which cannot hold, because both measures have mean zero.
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In this paper, we prove the conjecture in the special case when G is a cycle.
The proof proceeds as follows. We show that on the cycle, the transition matrix
of the Glauber dynamics preserves linear functions of the spins, and furthermore
that there is a linear eigenfunction corresponding to the second largest eigenvalue.
Hence by looking at the action of the dynamics on the space of linear functions
of spins, the original 2n × 2n transition matrix can be reduced to a smaller, n × n

matrix, whose entries are easily computable, and mostly zeroes.
We analyze the smaller matrix to obtain a variational description of the relaxa-

tion time, as well as an inequality involving the components of its lead eigenfunc-
tion. These two combine to prove the desired monotonicity. In addition, we obtain
some further inequalities involving the relaxation time, as well as low-temperature
asymptotics.

2. Two useful lemmas

The results in this section are valid for the ferromagnetic Ising model on any graph.
They will be needed later in the proof of our main theorem.

The transition matrix A of the heat-bath Glauber dynamics was defined above.
It acts on the space of functions of σ in the natural way. It has 2n eigenvalues 1 =
µ1 > µ2 ≥ · · · ≥ µ2n with corresponding eigenfunctions f1 ≡ 1, f2, . . . , f2n .
Because A is π -reversible we have π(fifj ) = 0 for i �= j (if an eigenvalue is
multiple, we can choose its eigenfunctions to be π -orthogonal), and in particular
πfi = 0 for i ≥ 2 (we use the standard notation πf ≡ Eπf ).

An important class of functions are the increasing functions, defined in the usual
way: f is increasing if f (σ) ≤ f (τ) whenever σ ≤ τ (that is σi ≤ τi∀i). f is
strictly increasing if strict inequality holds. We have

Lemma 3. (Y. Peres) The second eigenvalue µ2 has an increasing eigenfunction.

Proof. The method is similar to the proof of Perron-Frobenius. We need a standard
result about the Glauber dynamics: if f is increasing then Af is increasing (for a
proof see, for example, Theorem 2.14 in [4]).

Let f be any increasing function with πf = 0; it can be written as a linear
combination of eigenvectors f = ∑2n

i=2 qifi . Let µ = max(|µ2|, |µ2n |). Iterating,
we have

Amf/µm =
2n
∑

i=2

qi(µi/µ)mfi (3)

so if we let

g =
2n
∑

i=2

qifi1(µi = µ)

h =
2n
∑

i=2

qifi1(µi = −µ)
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we obtain convergence A2mf/µ2m → g + h, A2m+1f/µ2m+1 → g − h, where g

is some eigenvector corresponding to µ2 (a multiple of f2 if µ2 is a simple eigen-
value). Since Anf is increasing for all n, the limits must also be increasing, so their
sum must be increasing, so g must be increasing.

It remains to show that g is nonzero. If it were then we would have both h

and −h increasing, so h would also have to be zero. To avoid this, it suffices to
choose f not orthogonal to f2 and f2n . For example, f = f2 + f2n + K

∑
σi has

πf = 0, and for large K > 0, π(ff2) �= 0, π(ff2n) �= 0, and f is increasing.
Hence q2 �= 0, q2n �= 0 so at least one of g and h is nonzero. 
�
Lemma 4. (Y. Peres) If A has a strictly increasing eigenfunction f , then f corre-
sponds to µ2.

Proof. Let g be any other increasing eigenfunction. We will show there are only
two possibilities: g is constant (so its eigenvalue is 1), or g corresponds to the same
eigenvalue as f . Otherwise, we would have π(fg) = 0, πf = 0, πg = 0. Since
f is strictly increasing, so is f − αg for some α > 0 small enough. Since the
Ising model has the FKG property (see [1]), π((f − αg)g) ≥ π(f − αg)πg so
π(fg) − απ(g2) ≥ (πf )(πg) − α(πg)2 so −απg2 ≥ 0, contradiction.

Lemma 3 guarantees there is an increasing g corresponding to µ2; hence f

must also correspond to µ2. 
�

3. Proof of the main result

From now on we assume our graph G is a cycle, with vertices V = {1, 2, . . . , n}
and edges [1, 2], [2, 3], . . . , [n, 1]. All notation will be mod n, so n + 1 ≡ 1.
The coupling constants are Ji,i+1 ≡ Ji ≥ 0. As usual, every vertex i ∈ V has
a spin σi ∈ {+1, −1} and the probability of a configuration is given by π(σ) =
Z−1 exp(

∑n
i=1 Jiσiσi+1). We assume no external field and no boundary conditions.

For technical reasons we assume Ji > 0; the case when some of the J ’s are
zero can be easily obtained by limiting arguments. In particular, most results in this
paper hold in the case when the graph G is a straight line (Jn,1 = 0).

We have already introduced increasing functions. Another important class of
functions are linear functions, that is functions of the form f (σ) = ∑n

i=1 qiσi for
some real constants qi . On the cycle we have

Lemma 5. If f is linear then Af is linear.

Proof. We will need the standard hyperbolic functions sinh(x) = 1/2(exp(x) −
exp(−x)), cosh(x) = 1/2(exp(x)+exp(−x)), tanh(x) = sinh(x)/ cosh(x). Since
A is a linear operator, it is enough to consider f (σ) = σi . Then f (σ j ) = σi for
j �= i, and f (σ i) = −σi , so

(Af )(σ ) = A(σ, σ )f (σ ) +
∑

j

A(σ, σ j )f (σ j )

= (1 −
∑

j

A(σ, σ j ))σi +
∑

j

A(σ, σ j )σi − 2A(σ, σi)σi
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= σi − 2A(σ, σi)σi

= (1 − 1/n)σi + (1/n)σi − (1/n)
2π(σ i)

π(σ ) + π(σ i)
σi

= (1 − 1/n)σi + (1/n)σi

π(σ i) − π(σ)

π(σ i) + π(σ)

= (1 − 1/n)σi + (1/n)σi tanh(Ji−1σiσi−1 + Jiσiσi+1)

Since tanh is an odd function, the second term does not depend on σi , so

(Af )(σ ) = (1 − 1/n)σi + (1/n) tanh(Ji−1σi−1 + Ji+1σi+1) (4)

and the tanh is easily expressed as a linear function

tanh(Ji−1σi−1 + Ji+1σi+1) = aσi−1 + bσi+1 (5)

since σi−1 and σi+1 only take the values +1 and −1, and both sides of the equality
are odd functions. So we only need to check that a +b = tanh(Ji−1 +Ji), a −b =
tanh(Ji−1 − Ji). After a bit of algebra, this yields

a = sinh(2Ji−1)/(cosh(2Ji−1) + cosh(2Ji))

b = sinh(2Ji)/(cosh(2Ji−1) + cosh(2Ji))

and the lemma is proven. 
�
Hence we can look at the restriction of A to the space of linear functions. With

respect to the basis {σ1, σ2, . . . , σn}, this is described by an n × n matrix L whose
entries are all zero, except on the diagonal, and immediately above and below it.
Let si = sinh(2Ji) and ci = cosh(2Ji). Then we have

L(i, i) = 1 − 1/n

L(i, i − 1) = (1/n)si−1/(ci−1 + ci)

L(i, i + 1) = (1/n)si/(ci−1 + ci)

Note that an eigenvalue of L is also an eigenvalue of A, so all must be real. Since
all entries on the diagonal of L are equal, we can write L = (1−1/n)I + (1/n)M ,
where the diagonal of M is all zeroes, and the only non-zero entries are

M(i, i − 1) = si−1/(ci−1 + ci), M(i, i + 1) = si/(ci−1 + ci) (6)

Let the eigenvalues of M be λ1 ≥ · · · ≥ λn. Then the eigenvalues of L are
1 − (1 − λi)/n for 1 ≤ i ≤ n, and M and L have the same eigenvectors. It is
easy to see M is irreducible. Hence by Perron-Frobenius, λ1 > 0, λ1 is a simple
eigenvalue, and there exists a dominant eigenvector x (that is, corresponding to λ1)
which has non-negative entries. In fact, the entries must be strictly positive, since
we have Mx = λ1x, so

M(i, i − 1)xi−1 + M(i, i + 1)xi+1 = λ1xi (7)

so if xi = 0 for some i, then also xi+1 = 0, so x = 0, contradiction. But then
f (σ) = ∑

xiσi is a strictly increasing function of σ , and also an eigenfunction of
A. Lemma 4 then implies that f corresponds to the second eigenvalue. We have
obtained.
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Corollary 6. µ2 = 1 − (1 − λ1)/n, and µ2 has a linear eigenfunction.

Hence the relaxation time of the Glauber dynamics can be computed as τ2 =
1/(n(1 −µ2)) = 1/(1 −λ1), so from now on we can focus on the small matrix M .
We will need an inequality which roughly says that its lead eigenvectors are not
too far from a constant vector.

Lemma 7. If x is a non-negative dominant eigenvector of M , then

(ci − 1)/si ≤ xi/xi+1 ≤ (ci + 1)/si (8)

Proof. The method could be called “cyclic induction.” Note that c2
i − s2

i = 1, so
(ci − 1)/si = si/(ci + 1) < 1. We have Mx = λ1x, so

λ1(ci−1 + ci)xi = si−1xi−1 + sixi+1 ∀i (9)

Assume the left-hand inequality of (8) holds for i − 1 so (ci−1 − 1)/si−1 ≤
xi−1/xi . Combining this with (9), we get (since λ1 < 1)

(ci−1 + ci)xi ≥ λ1(ci−1 + ci)xi ≥ (ci−1 − 1)xi + sixi+1

so (ci +1)xi ≥ sixi+1 so xi/xi+1 ≥ si/(ci +1) = (ci −1)/si . Hence the inequality
holds for i as well; hence it holds either for all i or for none. But in the latter case
we would get xi/xi+1 < (ci −1)/si < 1 for all i, hence x1 < x2 < · · · < xn < x1,
which is impossible.

The right-hand inequality can be proven in a similar way: if the inequality
(ci + 1)/si ≤ xi/xi+1 holds for i − 1, it also holds for i; it cannot hold for all i, so
it cannot hold for any i. Alternatively, the right-hand side can be deduced from the
left-hand side by symmetry. 
�

An immediate consequence of this is

Proposition 8. If x is a non-negative dominant eigenvector of M , then xi/xi+1 +
xi+1/xi ≤ 2ci/si .

Proof. The function f (t) = t + 1/t is decreasing for t < 1 and increasing for
t > 1, so it follows from Lemma 7 that f (xi/xi+1) ≤ f ((ci + 1)/si) if xi ≥ xi+1,
and f (xi/xi+1) ≤ f ((ci − 1)/si) if xi ≤ xi+1. Both upper bounds are equal to
2ci/si . 
�

To apply the last result we need an expression for the largest eigenvalue in terms
of its eigenvector. Note that the product of the elements under the diagonal of M

is equal to the product of the ones above the diagonal, so M is reversible in the
following sense. Define q(i) = ci + ci+1. Then q(i)M(i, j) = q(j)M(j, i)∀i, j .
So if Q is the diagonal matrix with Q(i, i) = q(i) then Q1/2MQ−1/2 is symmetric,
and has the same eigenvalues as M . Then by the usual extremal characterization,

λ1 = sup
(Q1/2MQ−1/2v, v)

(v, v)
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where the sup can be taken over all nonzero vectors v, and is attained at dominant
eigenvectors of Q1/2MQ−1/2. The numerator expands as

(Q1/2MQ−1/2v, v) =
∑

2vivi+1

√
M(i, i + 1)M(i + 1, i)

=
∑

2vivi+1si/
√

(ci−1 + ci)(ci + ci+1)

so if we finally substitute vi = (ci + ci+1)
1/2yi we obtain

Lemma 9. λ1 = supy (
∑

2yiyi+1si)/(
∑

(y2
i + y2

i+1)ci) and the sup is attained at
dominant eigenvectors of M .

Now let h(y, J) = (
∑

2yiyi+1si)/(
∑

(y2
i + y2

i+1)ci) and let x ≡ x(J) be a non-
negative dominant eigenvector of M , chosen so x(·) is a smooth function in a neigh-
borhood of J. This can be done because λ1 is a simple eigenvalue; see, for example,
[2], Chapter 2.1. We have λ1(J) = h(x(J), J). Because for fixed J, sup h(y, J) is
attained at y = x(J), we have

∂h/∂yk(x(J), J) = 0 ∀k (10)

so by the chain rule

∂λ1/∂Ji = ∂h/∂Ji +
∑

k

(∂h/∂yk)(∂xk/∂Ji) = ∂h/∂Ji (11)

Hence

∂λ1/∂Ji = ∂h/∂Ji(x, J)

= 2(2xixi+1ci − (x2
i + x2

i+1)sih(x, J))/
∑

(x2
i + x2

i+1)ci (12)

From Proposition 8, (x2
i +x2

i+1)/(2xixi+1) ≤ ci/si and since h(x, J) = λ1 < 1
it follows that ∂λ1/∂Ji > 0. This completes the proof of Theorem 1.

4. Further inequalities

We can get more precise bounds on the derivatives of λ1. Indeed, equation (12) and
Proposition 8 yield easily

∂λ1/∂Ji ≥ 2(1 − λ1)(2xixi+1ci)/
∑

(x2
i + x2

i+1)ci (13)

hence
∑

(si/ci)∂λ1/∂Ji ≥ 2(1 − λ1)
∑

(2xixi+1si)/
∑

(x2
i + x2

i+1)ci

= 2(1 − λ1)λ1 (14)

So we can obtain an interesting inequality by differentiating along a particu-
lar direction. To do that, consider functions Ji(t) with Ji(0) = Ji and J ′

i (t) =
tanh(2Ji(t)). This differential equation is easy to solve and yields

Ji(t) = (1/2) sinh−1(exp(2t) sinh(2Ji)) (15)
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(here sinh−1 denotes the inverse hyperbolic function). Then the function λ(t) =
λ1(J1(t), . . . , Jn(t)) satisfies λ′ ≥ 2λ(1 − λ). This becomes even simpler if we
substitute

τ ∗ = τ2 − 1 = λ/(1 − λ) (16)

We obtain τ ∗′ ≥ 2τ ∗ so (log τ ∗)′ ≥ 2 and τ ∗(t) ≥ exp(2t). Hence, with a
slight abuse of notation (by f (J) we mean that f is applied to all entries of J), we
have

Proposition 10. τ ∗((1/2) sinh−1(exp(2t) sinh(2J))) ≥ exp(2t)τ ∗(J)∀J, t ≥ 0.

For large x, sinh−1(x) is close to log(x), so we expect Ji(t) to be approxi-
mately Ji + t . In fact it is easy to prove that exp(2t) sinh(2u) ≤ sinh(2t + 2u), so
Ji(t) ≤ Ji + t , so from Theorem 1 we get

Theorem 11. τ ∗(J + t) ≥ exp(2t)τ ∗(J) for all t ≥ 0.

As above, J + t means t is added to all entries of J. Numerical computations
confirm that the factor 2 in the exponent is optimal. It would be nice to have a sim-
ilar inequality where the elements of J are multiplied by t , so that we can estimate
the effect of a change of temperature on the relaxation time. Note, however, that
tJ > t + J for large t , so the inequality we have proven is in some sense stronger.

5. Low temperature asymptotics

Introduce the inverse temperature β; the coupling constants are now βJ1, . . . , βJn.
We are interested in τ2(βJ) for large β and fixed J. This turns out to be asymptoti-
cally exponential in β. More precisely, let Jmax = max Ji and Jmin = min Ji . We
have

Proposition 12. The following holds as β → ∞:

lim τ2(βJ)/ exp(Cβ) = D

where C = 2(Jmax + Jmin) and D = (1/2)#{i : Ji = Jmax}/#{i : Ji = Jmin}.
Proof. As before, let x be a dominant eigenvector. Lemma 7 guarantees that the
ratios xi/xi+1 are close to 1 for large β. That is, given ε > 0, 1−ε ≤ xi/xi+1 ≤ 1+ε

for β large enough. We can set x1 = 1 so we get (1 − ε)n ≤ xi ≤ (1 + ε)n ∀i.
If we apply Lemma 9 for y ≡ 1 we obtain λ1 ≥ ∑

si/
∑

ci so

τ2 = 1/(1 − λ1) ≥
∑

ci/
∑

(ci − si) (17)

If we apply Lemma 9 for y = x and substitute τ2 = 1/(1 − λ1), we obtain

τ2 =
∑

ci(x
2
i + x2

i+1)/[
∑

ci(xi − xi+1)
2 +

∑
2xixi+1(ci − si)]

≤ ((1 + ε)/(1 − ε))2n
∑

ci/
∑

(ci − si) (18)

The ratio
∑

ci/
∑

(ci − si) is easily shown to be asymptotically D exp(Cβ). Since
ε is arbitrary, the proof is complete. 
�
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