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Abstract. We derive a precise Ornstein-Zernike asymptotic formula for the decay of the
two-point function 〈σ0σx〉β in the general context of finite range Ising type models on Z

d .
The proof relies in an essential way on the a-priori knowledge of the strict exponential de-
cay of the two-point function and, by the sharp characterization of phase transition due to
Aizenman, Barsky and Fernández, goes through in the whole of the high temperature region
β < βc. As a byproduct we obtain that for every β < βc, the inverse correlation length ξβ is
an analytic and strictly convex function of direction.
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1. Introduction

The classical Ornstein-Zernike (OZ) formula [OZ], [Fi], [Th] gives a sharp asymp-
totic description of the density pair correlation functions away from the critical
point. The original OZ argument is, essentially, a local limit type computation
(alternatively an inverse Fourier formula) based on ad hoc assumptions on the
validity of a certain renewal structure of the correlations.

The OZ formula has been rigorously justified directly from the picture of
microscopic interactions in various perturbative high-temperature/low density re-
gimes: [AK] and [P-L] prove analyticity of solutions to Ornstein-Zernike equations
once the relevant parameters are sufficiently small, [MZ] is based on the perturba-
tion theory of transfer matrices near β = 0 and in [BF] high/low temperature OZ
asymptotics have been derived using polymer expansions. Most recently, the OZ
asymptotics has been recovered for the interfaces of the (very) low temperature 2D
Blume-Capel model in [HK].

Of course, in the particular case of nearest-neighbour interactions in dimension
2, the Ornstein-Zernike behaviour of the two-point function is well-known, through
explicit computations, see e.g. [MW]. However, non-perturbative, dimension inde-
pendent results of this type have previously been restricted to simpler models: the
OZ formula has been rigorously established for on-axis directions in the context
of self-avoiding walks in [CC] and (again for on-axis directions) in the context of
Bernoulli bond percolation in [CCC]. Both models give rise to the renewal type
representation of the connectivity functions. In both cases a rigorous justification
of Ornstein-Zernike structural assumptions proved to be the main challenge.

From a different perspective, Alexander [Al] proved non-perturbative lower
bounds on two point functions with almost the correct order on the prefactor near
the decay exponent. Though being weaker than the sharp asymptotics presented in
Theorem A and failing to capture the fluctuation picture behind the phenomenon,
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these results have the advantage that they can be applied to a large variety of mod-
els. The core renormalization procedure which we develop in Section 2 is inspired
by the ideas of [Al] (see also the references therein to his previous works).

In this work we develop a rigorous version of the Ornstein-Zernike theory
which applies in a variety of situations. We employ a blend of renormalization and
local limit procedures and, in a way, the work is a sequel to [Io2], [CIo] where the
issues of self-avoiding walks and, respectively, Bernoulli percolation have been ad-
dressed. Though being definitely inspired by the early investigations [CC], [CCC],
our approach is very different in two respects: First of all the relevant local limit
study should not be based on the facts about independent random variables. A more
appropriate probabilistic picture behind the phenomenon in question is that of one
dimensional systems related to Ruelle’s operators for full shifts on countable al-
phabets. Most importantly, however, the bulk of the work in [CC] and [CCC] was
to prove appropriate mass-gap properties for a specific “natural” renewal represen-
tation of the two-point function. Accordingly the proofs hinged on the particular
microscopic splitting rules used to define the corresponding renewal structure. In
the heart of our approach lies the renormalization analysis which we develop in
Section 2 and which essentially implies that the mass-gap property would hold for
any reasonable choice of microscopic splitting rules which are employed to set up
the renewal structure.

We would like to mention that although we discuss here only high temperature
Ising models, many of the ideas we develop could be applied in a broader con-
text of various random line type objects whose distributions possess appropriate
exponential mixing properties. Thus, in the 2D nearest neighbour case our results,
using the duality transformation, can be applied to study fluctuations (see, e.g.
[Hi], [BLP]) of the ± interface up to the critical temperature [GI]. Similarly, an
adjustment of our approach to the general Pirogov-Sinai context in two dimensions
should, in principle, lead to a comprehensive description of the fluctuation struc-
ture of one-dimensional low temperature interfaces. The corresponding results will
appear elsewhere.

Finally, for the moment it is not clear how to apply our approach to study low-
temperature correlation functions or high temperature even-even correlation func-
tions (see e.g. [BF] or [MZ]). However, the asymptotic results for more general
odd-odd correlation functions, as given in [MZ], can also be obtained non-pertur-
batively with our techniques; we relegate this issue to a future note [CIV].

1.1. The model

In this work we are considering the class of Ising models with finite-range ferro-
magnetic two-body interactions. To each site x ∈ Z

d we associate a nonnegative
real number J (x) = J (−x) ≥ 0; we suppose that there exists R > 0 such that
J (x) = 0 if |x| > R. The collection of these coupling constants is denoted by J .
We consider Z

d as a graph (Zd , EJ ), with set of vertices Z
d and set of unoriented

edges EJ
�= {

(x, y) ∈ Z
d × Z

d : J (x − y) > 0
}
. Let B � EJ and β > 0. We

denote by VB the set of sites associated to the edges of B: given an edge e ∈ EJ
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and a site x ∈ Z
d we say that x ∈ e if x is an endpoint of e. Then the vertex set

VB is defined as, VB
�= {

x ∈ Z
d : ∃ e ∈ B with x ∈ e}. The Gibbs measure on the

graph (VB, B) at inverse temperature β is the probability measure on {−1, 1}VB
defined by

µB,β(σ ) = 1

Zβ(B)
exp

{
β

∑

(x,y)∈B
J (x − y)σxσy

}
, σ ∈ {−1, 1}VB .

A standard argument using Griffiths’ second inequality shows that the correspond-
ing infinite-volume measure exists; we denote it by µβ . Expectation values with
respect to the measures µB,β and µβ , are denoted respectively by 〈 · 〉B,β and 〈 · 〉β .

The central quantity of our study is the 2-point correlation function

gβ(x)
�= 〈σ0σx〉β.

It plays in the models under consideration precisely the role of the density-density
correlation function of classical fluids, as can be seen going to the lattice gas inter-
pretation of the model, nx = 1

2 (σx + 1), where the site x is occupied by a particle
iff nx = 1.

We also introduce the corresponding inverse correlation length: For any x ∈ R
d

let

ξβ(x)
�= − lim

k→∞
1

k
log gβ([kx]), (1.1)

where for any y ∈ R
d , [y] ∈ Z

d is the componentwise integer part of y. A standard
sub-additivity argument based on Griffiths’ second inequality implies that this limit

is well-defined and, moreover, letting �n(x) �= x/|x|,

gβ(x) ≤ e−ξβ(x) = e−ξβ(�n(x)) |x| (1.2)

for all x ∈ Z
d . The function ξβ is clearly homogeneous of order one. It also follows

from Griffiths’ second inequality that ξβ is convex. Thus, ξβ is always a semi-norm.
It is important to know for which values of β the 2-point function decays expo-

nentially, i.e. ξβ > 0 on R
d \{0}. Let βc = βc(J ) be the inverse critical temperature

of the model, i.e.

βc
�= sup {β : there is a unique Gibbs state at inverse temperature β} .

It is well-known and easy to check that ∞ > βc > 0 when d ≥ 2. An important
and highly non-trivial fact is the following theorem due to Aizenman, Barsky and
Fernández [ABF], which, asserts that

Theorem 1.1. ξβ > 0 on R
d \ {0} if and only if β < βc.

This theorem shows that exponential decay of the 2-point function characterizes
the high-temperature regime and it provides the basic input for the techniques we
develop here.
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1.2. The Results

Our main result describes sharp Ornstein-Zernike-type asymptotics for the 2-point
function of the models introduced in the previous subsection.

Theorem A. Let β < βc. Uniformly in |x| → ∞,

〈σ0σx〉β = �β
(�n(x))

√
|x|d−1

e−|x|ξβ(�n(x)) (1 + o(1)) , (1.3)

where �n(x) is the unit vector in the direction of x; �n(x) = x/|x|, and�β is a strictly
positive locally analytic function on S

d−1.

As a byproduct of the techniques employed for the proof of Theorem A we de-
duce that the inverse correlation length ξβ is an analytic and strictly convex function
of the direction. In order to formulate this in a precise way recall that ξβ is a convex,
homogeneous of order one strictly positive (on R

d \ {0}) function. As such it is an
equivalent norm on R

d and it is the support function of the compact convex set

Kβ =
⋂

n∈Sd−1

{
t ∈ R

d : (t, n)d ≤ ξβ(n)
}

(1.4)

with a non-empty interiour, 0 ∈ intKβ . ( · , · )d denotes the usual scalar product in
R
d .

Theorem B. Let β < βc. Then Kβ has a locally analytic strictly convex boundary
∂Kβ . Furthermore, the Gaussian curvature κβ of ∂Kβ is uniformly positive,

κ̄β
�= min
t∈∂Kβ

κβ(t) > 0. (1.5)

In two dimensions Kβ is reminiscent of theWulff shape (by duality it is precisely
the low temperature Wulff shape in the case of the nearest neighbour interactions).
The inequality (1.5) is called then the positive stiffness condition, and one of the
consequences of Theorem B is the validity of the following strict triangle inequality
[Io1], [PV2]: Uniformly in x, y ∈ R

2,

ξβ(u)+ ξβ(v)− ξβ(u+ v) ≥ κ̄β (|u| + |v| − |u+ v|) .
In two dimensions κ̄β is the minimal radius of curvature of the Wulff shape ∂Kβ .

Along with Kβ we shall consider the set

Uβ
�=

{
x ∈ R

d : ξβ(x) ≤ 1
}

=
{
x ∈ R

d : max
t∈Kβ

(t, x)d ≤ 1

}
. (1.6)

Of course, Uβ is just the unit ball in the ξβ -norm. It is bounded, convex, and has
non-empty interiour for every β < βc. Furthermore, the polar restatement of The-
orem B implies that the boundary ∂Uβ is also locally analytic and strictly convex
(cf. [CIo]).
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1.3. Probabilistic picture behind the OZ formula

Let us first explain the order |x|−(d−1)/2 of the prefactor in (1.3): Consider a ran-
dom walk Sn = V1 + . . . Vn on Z

d with i.i.d. increments Vi . Let us assume that
the moment generating function E e(t,Vi )d is finite in a neighbourhood of zero in
R
d , that the distribution of Vi is non-lattice and that the walk Sn is forward in the

following sense: any point x from the support of the distribution of Vi has a positive

projection on µ
�= EVi . Given a point x on the direction of the principal advance

of Sn; mint>0 |x − tµ| < 1, the probability that Sn “steps” on x is given by

∞∑

n=1

P (Sn = x) . (1.7)

By the usual local limit theorem the term − log P (Sn = x) is of the order |x −
nµ|2/n. Hence, the main contribution to the above sum comes from roughly

√|x|
terms n around n0 = |x|/|µ|. In other words, up to asymptotically (with |x| → ∞)
negligible terms, the sum in (1.7) is given by the Gaussian summation formula,

c1√
|x|d

∞∑

n=1

exp

{
−c2

(n− n0)
2

|x|
}

= c3√
|x|d−1

.

Of course, it is not difficult to give the exact formula for c3 in terms of µ and the
covariance matrix of Vi .

The above sketch almost literally corresponds to the last step of the proof of the
OZ asymptotic formula in the case of the Bernoulli bond percolation in [CIo]. The
main effort in the latter paper was to show that the percolation cluster from the or-
igin to a (distant) point x ∈ Z

d could be typically split into a density of irreducible
pieces with the displacements along the endpoints of these pieces playing the role
of the i.i.d. steps V1, V2 . . . of the random walk Sn.

In the case of Ising models the two-point function gβ(x) also admits a geomet-
ric random line type representation. Unlike the Bernoulli percolation case, how-
ever, different portions of this random line interact, whatever splitting rules are
being employed. In other words, in the induced random walk picture the incre-
ments V1, V2, . . . are dependent. Local limit description of dependent variables is,
in general, a rather delicate matter. However, random lines which show up in the
representation of the Ising two-point function possess a certain exponential decou-
pling property. The renormalization analysis which we develop in Sections 2 and 3
is designed to generate an irreducible splitting of random paths in such a way, that
the dependence between various irreducible sub-paths has already a uniform expo-
nential decay. The resulting system fits in with the framework of one-dimensional
systems described by Ruelle’s operators for full shifts on a countable alphabet (of
irreducible sub-paths), and, as we shall see in the sequel, the associated local limit
results happen to be precisely of the same analytic nature as in the independent
case.
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1.4. Organization of the paper

In Section 2 we develop a renormalization analysis leading to an irreducible decom-
position (2.14) of the two point functions gβ(x) = 〈σ0σx〉β . The renormalization
step is in the heart of the whole theory. The proof of the key surcharge inequality
(2.8) of Lemma 2.1 relies in a crucial way on the strict positivity of the inverse
correlation length ξβ as asserted in Theorem 1.1 and, to a lesser extent, on the
BK-type inequality (2.5). An additional important ingredient needed for the proof
of the mass-gap inequality (2.12) of Theorem 2.3 is the finite energy condition
(2.15).

In Subsection 3.2 the basic decoupling inequality (3.1) and the cone confine-
ment properties (P2)–(P4) of the irreducible paths enable a reinterpretation (3.11)
of the decomposition (2.14) in terms of a certain Ruelle operator (3.13) for full
shifts over a countable alphabet of irreducible paths.

Relevant spectral properties of Ruelle operators on countable alphabets are
described and developed in Section 4. The local limit analysis of the associated ob-
servables is developed in the concluding Section 5. Both these sections are written
in a closed general form and do not depend on the rest of the paper.

The proofs of both Theorem B in Subsection 3.3 and of Theorem A in Subsec-
tion 3.4 rely, through the representation formula (3.11), on the general spectral and
local limit results of Sections 4 and 5. Thus, Theorem A follows from the general
local limit type statement formulated in Theorem 5.5, Gaussian summation for-
mula (see Subsection 1.3) and rough exponential large deviation estimates outside
the CLT region. The proof of Theorem B is based on the representation (3.15) of
the series (3.14). This representation is nothing but a grand-canonical (integral)
version of (3.11). Since Kβ can be described as the closure of the domain of con-
vergence (3.14), the analytic perturbation theory of leading eigenvalues comes into
play through (3.18).

2. Renormalization

The results we obtain here hold for any sub-critical finite range Ising model, as
described in Subsection 1.1. Thus, β < βc(J) is the only assumption in all the
statements below.

We start by setting up the notation and recalling the well known random line
representation of the two-point function gβ(x). On the microscopic level these ran-
dom paths wiggle in a messy way. Our main renormalization result Theorem 2.3
asserts, however, that on sufficiently large scales the random path from 0 to x ex-
hibits, with an overwhelming probability, a regular behaviour, in a sense that it
could be split into a density of irreducible pieces. The space of irreducible paths
is defined in Subsection 2.6 and the corresponding irreducible representation of
〈σ0σx〉β is given by the formula (2.14) there. The role of the cone confinement
condition in (P2)–(P4) will become apparent in Section 5: by the bound (3.1) it is
precisely what one needs in order to represent the system in terms of the action of
Ruelle operator with a uniformly Hölder continuous potential.



312 M. Campanino et al.

2.1. The random-line representation

Recall that given a set of edges B � EJ we have defined the associated set of verti-

ces as VB
�= {

x ∈ Z
d : ∃ e ∈ B with x ∈ e}. For any vertex x ∈ VB , we define the

index of x in B by ind(x, B)
�= ∑

e∈B I{e�x} (as before, x ∈ e means that x is an

endpoint of e). The boundary ofB is defined by ∂B
�= {x ∈ VB : ind(x, B) is odd}.

At each x ∈ Z
d , we fix (in an arbitrary way) an ordering of the x-incident edges

of the graph:

Bx
�= {e ∈ B : ind(x, {e}) > 0} = {ex1 . . . , exind(x,B)},

and for two incident edges e = ei ∈ Bx , e′ = ej ∈ Bx we say that e ≤ e′ if the
corresponding inequality holds for their sub-indices; i ≤ j .

Using the identity eβJ (e)σxσy = cosh(βJ (e))
(
1 + σxσy tanh(βJ (e))

)
, we ob-

tain the following expression for the 2-point function of the model in B,

〈σxσy〉B,β = Zβ(B)
−1

∑

D⊂B
∂D={x,y}

∏

e∈D
tanh βJ (e) .

From D ⊂ B with ∂D = {x, y}, we would like to extract a “self-avoiding path”.
We use the following procedure:
Step 1. Set z′0 = y, j = 0 and �0 = ∅.
Step 2. Let e′j = (z′j , z

′
j+1) be the first edge in Bz′j \ �j (in the ordering of Bz′j

fixed above) such that ej ∈ D. This defines z′j+1.

Step 3. Set �j+1 = �j ∪
{
e ∈ Bz′j : e ≤ e′j

}
. If z′j+1 = x, then set n = j + 1

and stop. Otherwise update j
�= j + 1 and return to Step 2.

This procedure produces a sequence (z′0 ≡ y, . . . , z′n ≡ x). Let zk
�= z′n−k and

ek
�= e′n−k . We, thus, constructed a path λ

�= λ(D)
�= (z0 ≡ x, . . . , zn ≡ y) such

that

• (zi, zi+1) ∈ B, i = 0, . . . , n− 1,
• (zi, zi+1) �= (zj , zj+1) for i �= j ,

(but zi = zj for i �= j is allowed); such a sequence will be called a backward
edge-self-avoiding line from x to y1. The construction also yields a set of edges

�(λ) ≡ �n =
n⋃

i=1

{
e ∈ Bzi : e ≤ ei

}
. (2.1)

Notice that�(λ) depends only on λ (and the order chosen for the edges). We use the
convenient notation

∑
λ: x �→y to represent the summation over all (backward) self-

avoiding lines from x to y. Observe that for anyD ⊂ B with ∂D = {x, y}, λ(D) =
1 We prefer the backward construction of the line λ because it happens to be more conve-

nient when reducing to Ruelle’s formalism in Subsection 3.2.
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λ if and only if (considering λ as a set of edges) λ ⊂ D and (�(λ) \ λ) ∩D = ∅.
We can therefore write

〈σxσy〉B,β =
∑

λ:x→y

qB,β(λ) , (2.2)

where, writing w(λ) =∏
e∈λ tanh(βJ (e)),

qB,β(λ) = w(λ)
Zβ(B \�(λ))

Zβ(B)
. (2.3)

Equations (2.2) and (2.3) define the random-line representation for the 2-point
function of the Ising model on the graph G. It has been studied in detail in [PV1,
PV2] and is essentially equivalent (though the derivations are quite different) to
the random-walk representation of [Az]. We’ll need a version of this representation
on the infinite graph (Zd , EJ ). To this end, we use the following result ([PV2],
Lemmas 6.3 and 6.9): For all β < βc,

〈σxσy〉β =
∑

λ:x �→y

qβ(λ) , (2.4)

where qβ(λ)
�= limBn↗EJ

qBn,β(λ) is well defined.
We finally need some rules on how to cut a random-line into pieces. Let λ =

(z0, z1, . . . , zn), x ∈ λ and let zk(x) be the last hitting of x by λ. We write λ<(x)
�=

(z0 . . . , zk(x)) and λ>(x)
�= (zk(x), . . . , zn); notice that (as a set of edges) λ<(x)∩

�(λ>(x)) = ∅. By the notation λ = λ1 � λ2, we mean that there exists x ∈ λ

such that λ1 = λ<(x) and λ2 = λ>(x). We then say that λ1 is λ2-compatible.
Concatenation of more than two paths is defined by iterating this procedure, e.g.
λ1 � λ2 � λ3 = (λ1 � λ2)� λ3.

We then have the following BK-type inequality:

∑

λ: x→y
λ�z

qE,β(λ) ≤
∑

λ1: x→z

qE,β(λ1)
∑

λ2: z→y

qE,β(λ2) . (2.5)

Indeed, by Griffiths’ second inequality,

∑

λ: x→y
λ�z

qE,β(λ) =
∑

λ2: z→y

qE,β(λ2)
∑

λ: x→y
λ=λ1�λ2

qE\�(λ2),β(λ1)

=
∑

λ2: z→y

qE,β(λ2) 〈σxσz〉E\�(λ2),β

≤
∑

λ2: z→y

qE,β(λ2) 〈σxσz〉E,β =
∑

λ1: x→z

qE,β(λ1)
∑

λ2: z→y

qE,β(λ2),
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2.2. K-skeletons

We coarse-grain microscopic self-avoiding lines via an appropriate covering by
inflated Uβ shapes (see (1.6)): Given a self-avoiding line λ = (z0, ..., zn) and a
positive numberK > 0 construct theK-skeleton λK = (x0, ..., xN) of λ as follows
(Figure 1):
Step 1. Set x0 = z0, j = 0 and k = 0.
Step 2. If the rest of the line (zj+1, ..., zn) ⊆ KUβ(xk), then set N = k + 1 and
xN = zn and stop. Otherwise proceed to Step 3.

Step 3. Find j∗ = min
{
i > j : zi �∈ KUβ(xk)

}
. Set xk+1 = zj∗ . Update j

�= j∗,

k
�= k + 1 and return to Step 2.

Let us use the notation λ
K∼ λK to stress the fact that λK is the K-skeleton of

λ. As in the case of paths we say that a skeleton λK = (x0, ..., xN) connects its
endpoints, λK : x0 �→ xN .

Of course a particular skeleton λK = (x0, ..., xN) can be compatible with many
different self-avoiding paths, and we introduce the weight

qβ (λK) =
∑

λ
K∼λK

qβ (λ) .

On any renormalization scale K the BK-inequality (2.5) implies:

qβ (λK) ≤
N∏

l=1

gβ (xl − xl−1) ≤ e−(N−1)K . (2.6)

In the sequel we shall tacitly assume that the running skeleton scale K is much
larger than the range of the interaction R; K � R.

2.3. The surcharge inequality

For t ∈ ∂Kβ let us define the surcharge function st : Z
d �→ R+ as st (x) =

ξβ(x)− (t, x)d . Then, given a skeleton λK = (x0, ..., xN) we define its surcharge

KUb (x1)

z1

KUb (x0)

x1

xN – 1

KUb (xN –1)

xN = zn

 zn – 1

x0 = z0

Fig. 1. A contour λ = (z0, . . . , zn) and its K-skeleton λK = (x0, . . . , xN).
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as st (λK) =
∑

st (xk+1 − xk). By the first of the inequalities in (2.6),

qβ (λK) ≤ e−(t,xN )d−st (λK), (2.7)

uniformly in t ∈ ∂Kβ , scalesK and inK-skeletons λK . Furthermore, the following
crucial surcharge inequality holds:

Lemma 2.1. For any ν > 0 there exists a finite renormalization scaleK0 = K0(ν)

such that

∑

λK :0 �→x
st (λK)≥ 2ν|x|

qβ (λK) ≤ c1(β)e
−(t,x)d−ν|x|, (2.8)

uniformly in t ∈ ∂Kβ , K ≥ K0 and x ∈ Z
d .

Proof. There are at most c2(d)K
d−1 choices for each incoming skeleton step (since

K � R). Thus, there are at most exp{c3(d)N logK} different K-skeletons of N
steps emerging from zero. By (2.6) we can restrict attention only to those skeletons
λK : 0 �→ x which comprise at most N ≤ c4|x|/K steps. Choosing K0 so large
that c3c4 logK0/K0 < ν we, in view of the surcharge bound (2.7), arrive at the
conclusion of the lemma. ��

We are now going to use Lemma 2.1 to construct a class of typical skeletons,
which will be suitable for the implementation of the path decomposition procedure.
These skeletons contain a density of cone points which are defined in Subsection 2.5.

2.4. Forward cones and backtracks

Let us fix δ ∈ (0, 1/2). For any t ∈ ∂Kβ define the forward cone

Cδ (t) =
{
x ∈ Z

d : st (x) < δξβ(x)
}
.

Given aK-skeleton λK = (x0, ..., xN) let us define the number #back
t,δ (λK) of (t, δ)-

backtracks (Figure 2 a)) of λK ,

#back
t,δ (λK) = # {l : xl+1 − xl �∈ Cδ (t)} .

If xl+1 − xl ∈ Cδ (t), we shall say that xl is a forward point of λK .
Notice that the surcharge price of λK satisfies

st (λK) ≥ δK
(

#back
t,δ (λK)− 1

)
(2.9)

(remember that the last piece can be shorter).
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2.5. Cone points of skeletons

Given a skeleton λK = (x0, ..., xN) let us say that xl is a (t, δ)-cone point of λK if
(Figure 2 b))

{xl+1, ..., xN } ⊂ xl + Cδ (t) .
Of course, each cone point of λK is, in particular, a forward point. If a skeleton λK
contains points which do not satisfy the above condition, define

l1 = min
{
j : xj is not a (t, δ)− cone point of λK

}

r1 = min
{
j > l1 : xj − xl1 �∈ Cδ (t)

}

l2 = min
{
j ≥ r1 : xj is not a (t, δ)− cone point of λK

}

r2 = min
{
j > l2 : xj − xl2 �∈ Cδ (t)

}

. . .

Let us say that j is a (t, δ)-marked point of λK if it belongs to the (disjoint) union;
j ∈ ∨k{lk, ..., rk − 1}. Notice that each point of λK which is not marked is, auto-
matically, a (t, δ)-cone point of λK (or simply a cone point, if no ambiguity with
respect to t and δ arises). We use #mark

t,δ (λK) to denote the number of all the marked
points of λK .

Fig. 2. a) A skeleton λK = (x0, . . . , x8). The increments [x2, x3], [x4, x5], [x6, x7] are
backtracks. Thus, #back

t,δ (λK) = 3. b) The same skeleton λK = (x0, . . . , x8). The vertex x1 is
a (t, δ)-cone point of λK .
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Lemma 2.2. Uniformly in K , λK and t ∈ ∂Kβ , the surcharge cost st (λK) is con-
trolled in terms of the number of marked points as

st (λK) ≥ 1
7 δK#mark

t,δ (λK) . (2.10)

Proof. Of course, #mark
t,δ (λK) = ∑

k(rk − lk). We claim that for every marked
interval {lk, ..., rk − 1},

rk∑

j=lk+1

st (xj − xj−1) ≥ 1
7 δK(rk − lk). (2.11)

Indeed, consider two cases:

Case 1. (t, xrk − xlk )d ≥ 2
7K(1 − δ)(rk − lk). Then, since xrk − xlk �∈ Cδ (t), and

since st evidently inherits from ξβ convexity and homogeneity of order one,

rk∑

j=lk+1

st (xj − xj−1) ≥ st (xrk − xlk ) ≥ δ ξβ(xrk − xlk ) ≥ δ (t, xrk − xlk )d

≥ δ 1
7 K (rk − lk).

Case 2. (t, xrk − xlk )d < 2
7K(1− δ)(rk − lk). Notice first that Kβ is symmetric, so

that t ∈ ∂Kβ �⇒ −t ∈ ∂Kβ . Therefore, the worst possible displacement of the
t-projection satisfies (recall that we are assuming K � R)

min
i∈{lk+1,...,rk}

(t, xi − xi−1)d > −2K .

This allows us to bound below the number Nk of increments xj − xj−1 from the
marked interval j = lk + 1, ..., rk that are (t, δ)-backtracking. Indeed,

(t, xrk − xlk )d ≥ (rk − lk −Nk) (1 − δ)K −Nk 2K ,

which gives, since we have fixed the value of δ ∈ (0, 1/2),

Nk ≥ 1
7 (rk − lk).

The conclusion follows from (2.9). ��

2.6. Space of irreducible paths

Given t ∈ ∂Kβ and a path λ = (i0, . . . , in) let us say that il; 0 < l < n, is a
t-break point of λ if il �= ik for all k �= l and

λ̃ ∩ {il + Ht } = {il} ,
where Ht = {

x ∈ R
d : (x, t)d = 0

}
is the t-orthogonal hyper-plane passing

through zero, and λ̃ is the embedding of λ with all its edges into R
d . Alternatively,

il is a t-break point of λ if

max
k<l

(ik, t)d < (il, t)d < min
k>l
(ik, t)d .
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Fig. 3. il is a (t,K, δ)-correct break point of the contour λ = (i0, . . . , in).

In addition, given a renormalization skeleton scale K and a forward cone parame-
ter δ > 0, let us say that a break point il of λ = (i0, . . . , in) is (t,K, δ)-correct if
(Figure 3)

{il+1, . . . , in} ⊆ 2KUβ (il)+ Cδ (t) .
In particular, if one can find some (t, δ)-cone point xj of the skeleton λK of λ

such that the break point il is on the piece of λ between xj and in, and il ∈ KUβ(xj ),
then il is automatically (t,K, δ)-correct.

Theorem 2.3. Fix a forward cone parameter δ ∈ (0, 1/2). There exist a renormal-
ization scaleK0 and positive numbers ε = ε(δ, β), ν = ν(δ, β) andM = M(β) <

∞, such that for all K ≥ K0, the upper bound
∑

λ:0 �→x

qβ (λ) I{ λ has less than ε|x|/K
(t,K, δ)-correct break points

} ≤ Me−(t,x)d−ν|x|, (2.12)

holds uniformly in the dual directions t ∈ ∂Kβ and in the end-points x ∈ Z
d .

We relegate the proof of the theorem to the next subsection. Notice, however,
that by (1.2) and (2.2) the bound (2.12) is trivial whenever t and x are such that x
lies outside the cone Cν′ (t); ν′ = νmaxy �=0 |y|/ξβ(y).

For the forward directions x ∈ Cν′ (t) Theorem 2.3 suggests the splitting of a
typical path λ : 0 �→ x (Figure 4):

λ = µ� γ1 � · · · � γm � η, (2.13)

which possesses the following set of properties P1 − P4:

(P1) The end-points y1, . . . , ym+1 of γ1, . . . , γm (see Fig. 4) are t-break points of
λ.

(P2) η ⊆ 2KUβ (ym+ 1) + Cδ (t) and η does not contain any (t,K, δ)-correct
break point.
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Fig. 4. The splitting λ = µ� γ1 � γ2 � γ3 � γ4 � η into irreducible components.

(P3) For any l = 1, . . . , m, the path γl does not contain (t,K, δ)-correct break
points, but

γl ⊂ 2KUβ (yl)+ Cδ (t) .
(P4) µ does not contain (t,K, δ)-correct break points.

Notice that the successive application of P1–P4 gives an unambiguous con-
struction of the decomposition (2.13).

Notice, furthermore, that the paths γl (or, more precisely, the shifted paths
γl − yl) belong to the following basic countable set S = S(t,K, δ) of irreducible
paths:

Definition (The basic set of irreducible paths S). Let us say that a path γ =
(i0, ..., ik) ∈ S if

(1) i0 = 0 and (i0, t) < (il, t) < (ik, t) for all l = 1, . . . , k − 1.
(2) γ ⊂ 2KUβ(i0)+ Cδ (t).
(3) γ does not contain (t,K, δ)-correct break points.

Given a path λ = (t0, . . . , tn) let us define the displacement V (λ) ∈ Z
d along λ as

the difference between the endpoints V (λ) = tn− t0. By Theorem 2.3, the splitting
(2.13) gives rise to the following irreducible representation of the two point func-
tion gβ(x) = 〈σ0σx〉β : Let ε be small enough and t ∈ ∂Kβ be such that x ∈ Cε (t).
Then

gβ(x)
(

1 + o
(

e−ν|x|
))

=
∑

µ,η

∞∑

m=0

∑

γ1,...,γm∈S :
V (µ)+V (γ1)+···+V (η)=x

qβ (µ� γ1 � · · · � γm � η) . (2.14)

2.7. Proof of Theorem 2.3

The proof is, actually, a modification of the argument developed in [CIo] in the
context of the Bernoulli bond percolation. It is based on the skeleton calculus of
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the preceding subsections and on the following simple finite energy type property:
There exists a positive constant c5 > 0, such that for any set B ⊂ EJ and any path
λ ⊂ B,

qB,β(λ) ≥ e−c5|λ|, (2.15)

where |λ| denotes the number of bonds in λ. Notice that all the estimates we employ
in the course of the proof hold uniformly in t ∈ ∂Kβ , and so will the result.

Fix a number ζ ∈ (0, 1).

Definition. Given a point x ∈ Cδ (t), a skeleton scale K and a K-skeleton λK :
0 �→ x, let us say that λK is ζ -admissible if the number of (t, δ)-marked points

#mark
t,δ (λK) < ζ |x|/K.

By the surcharge inequality (2.8) and the surcharge function lower bound (2.10),
there exists a finite scale K0 = K0(ζ, δ), such that

∑

λK :0 �→x
λ is not ζ -admissible

qβ (λK) ≤ c1exp

{
−δζ

14
|x| − (t, x)d

}
, (2.16)

uniformly in the scales K ≥ K0 and in x ∈ Cδ (t).
Eventually, we are going to pick up ζ sufficiently small, which, as the arguments

below show, will ensure that up to an exponentially small correction the paths λ
compatible with ζ -admissible skeletons contain a density of (t,K, δ)-correct break
points, as has been asserted in (2.12) of Theorem 2.3.

On every skeleton scale K , K � R, let us slice R
d into the disjoint union of

t-oriented slabs: Let �n(t) = t/|t | be the unit vector in the direction of t

R
d =

∞∨

l=−∞

(
l · 8K�n(t) + SK(t)

)
, (2.17)

where the slab SK(t) is defined via:

SK(t) =
{
u ∈ R

d : 0 ≤ (n(t), u)d < 8K
}
.

For every x ∈ Cδ (t),

(t, x)d ≥ (1 − δ)ξβ(x) ≥ (1 − δ)|x| min
�n∈S1

ξβ(�n) �= c6(β)(1 − δ)|x|. (2.18)

Furthermore, by (1.6) (and in view of the assumption R � K), we have (t, xk+1 −
xk)d < 2K , whenever xk+1−xk is a skeleton increment on theK-th skeleton scale.

As a result, each skeleton λK : 0 �→ x intersects at least
[
c6(β)(1−δ)|x|

8K

]
subsequent

slabs in the partition (2.17). On the other hand, if λK is, in addition, ζ -admissible,
then at most ζ |x|/K of these slabs can possibly contain marked points of λK . The
two latter remarks prescribe the choice of the number ζ :

0 < ζ <
(1 − δ)c6(β)

16
. (2.19)
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Let us summarize: Given a number ζ as in (2.19) and a skeleton parameter K >

K0(ζ, δ), then for any x ∈ Cδ (t) and for any ζ -admissible skeleton λK : 0 �→ x at

least
[
c6(β)(1−δ)|x|

16K

]
of the slabs

SK,l(t) �= l · 8K�n(t) + SK(t) ; l = 1, · · · ,
[
c6(β)(1 − δ)|x|

8K

]
− 1

contain only cone points of λK . We shall call such slabs λK -clean.
From now on let us fix ζ and K as above. For any x ∈ Cδ (t) and any ζ -admis-

sible skeleton λK : 0 �→ x let us number the λK -clean slabs in the decomposition
(2.17) as l1, . . . , ln. As we have just seen,

n = n(λK) ≥
[
c6(β)(1 − δ)|x|

16K

]
, (2.20)

uniformly in all the situations of interest.
For any λK -clean slab SK,l(t) of the skeleton λK = (x0, . . . , xN) let us intro-

duce the indices il and jl via:

il = min
{
i : xi ∈ SK,l(t)

}
and jl = max

{
j ≥ il : xj ∈ SK,l(t)

}
.

Thus, we can associate withSK,l(t) the embedded sub-skeletonλ(l)K = (
xil , . . . , xjl

)
.

Similarly, let γ = γ0 � · · · � γN−1 be a path compatible with the skeleton λK ,
where γi : xi �→ xi+1 is the corresponding portion of γ between the skeleton
vertices xi and xi+1. Then we define the embedded paths γ (l)− = γ0 � · · · � γil−1,

γ (l) = γil � · · · � γjl and γ (l)+ = γjl+1 � · · · � γN−1. In this notation,

γ = γ
(l)
− � γ (l) � γ (l)+ .

Let us take a closer look at λ(l)K and γ (l) (Figure 5): Introducing the inner half-
slab

◦
SK,l (t) �=

{
u ∈ R

d : l · 8K + 2K ≤ (t, u)d ≤ l · 8K + 6K
}
,

notice that by the very construction xil , xjl ∈ SK,l(t)\
◦
SK,l (t). In addition, since

all the increments of λK on the interval {il, . . . , jl − 1} are forward;

2K > (xi+1 − xi, t)d ≥ (1 − δ)K ∀ i = il, . . . , jl − 1,

the number jl − il of vertices in the sub-skeleton λ(l)K is bounded as

3 ≤ jl − il ≤ 8/(1 − δ). (2.21)

Finally, the left and right sub-paths γ (l)− and γ (l)+ are disjoint from
◦
SK,l (t):
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γ
(l)
− ∩ ◦

SK,l (t) = ∅ and γ
(l)
+ ∩ ◦

SK,l (t) = ∅. (2.22)

Consequently, any t-break point of γ (l) in the strip
◦
SK,l (t) is automatically

a t-break point of the whole path γ . Furthermore, for any λK -compatible path
γ = γ

(l)
− � γ (l) � γ (l)+ one can find γ̄ (l) : xil �→ xjl , such that γ (l)− � γ̄ (l) � γ (l)+

is still λK -compatible, but γ̄ (l) has a t-break point in
◦
SK,l (t) and |γ̄ (l)| ≤ c7K .

By (2.21) the total number of all compatible paths is, uniformly in γ (l)− , γ
(l)
+ and

λ
(l)
K , bounded above by c8K

d . Thus, in view of the finite energy condition (2.15)

applied on the set B = EJ \
(
�(γ

(l)
− ) ∪�(γ (l)+ )

)
, we infer:

∑

γ (l): λK
K∼γ (l)− �γ (l)�γ (l)+

γ (l) has no t-break points

qβ

(
γ
(l)
− � γ (l) � γ (l)+

)

≤
(

1 − e−c8K
d−c7K

) ∑

γ (l): λK
K∼γ (l)− �γ (l)�γ (l)+

qβ

(
γ
(l)
− � γ (l) � γ (l)+

) (2.23)

The estimate (2.23) is uniform in the points x ∈ Cδ (t), skeletons λK : 0 �→ x,
λK -clean slabs SK,l(t) and in the corresponding embedded sub-paths γ (l)− and γ (l)+ .
Since, by the choice of ζ in (2.19) we control the number of different clean slabs
of ζ -admissible skeletons, (2.23) implies: Let K ≥ K0(ζ, δ). Then there exist

xi + cδ (t)

g –
(l)

xil g (l )

xi
xji

g +
(l)

l · 8K l · 8K + 2K l · 8K + 2K (l + 1) · 8K

n( t )

SK,l (t)

S̊K,l (t)

Fig. 5. Clean slab of a skeleton (x0, . . . , xN) (only a piece of which is drawn): Each point
xi ; i = il , . . . , jl , is a cone point of λK . In the decomposition γ = γ

(l)
− �γ (l)�γ (l)+ of a path

γ
K∼ λK , the left and right sub-paths γ (l)− and γ (l)+ do not intersect

◦
SK,l (t).
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ε = ε(K) > 0 and ν = ν(K) > 0 such that, uniformly in x ∈ Cδ (t) and in the
ζ -admissible skeletons λK : 0 �→ x,

∑

γ
K∼λK

qβ (γ ) I
{
γ has less than ε|x| break points

inside λK -clean slabs

} ≤ e−ν|x|qβ (λK) . (2.24)

On the other hand any break-point inside a λK -clean slab lies inside KUβ(xi)
for some cone point xi of λK . Thus, such break points are automatically (t,K, δ)-
correct, and, thereby, the claim of Theorem 2.3 follows from (2.24) and
(2.16). ��

3. Ornstein-Zernike formula

The basic decoupling estimate (3.1) which we derive in the first subsection, the cone
confinement of the irreducible pieces in the decomposition (2.13) and the exponen-
tial estimate of Theorem 2.3 enable a reinterpretation of the representation formula
(2.14) in terms of the Ruelle operator (3.13) with a uniformly Hölder continuous
(3.9) summable (3.10) potential, which paves the way for an application of general
spectral and local limit results of Sections 4 and 5. In view of this reinterpretation
Theorem B more or less directly follows from the analytic perturbation theory of
non-degenerate eigenvalues as it is proved in Subsection 3.3. The Ornstein-Zer-
nike formula (1.3) is derived, along the lines of the general local limit approach of
Section 5, in Subsection 3.4.

3.1. Basic decoupling estimate

We prove here an important estimate on the dependence between pieces of a path,
similar to point 4 of Lemma 5.3 in [PV1]. Let λ be a path; for any λ-compatible γ
(see p. 313), we define the conditional weight

qβ,λ(γ ) = qβ (γ � λ)
qβ (λ)

.

Lemma 3.1. For every β < βc there exists θ < 1 and c1 < ∞, such that for any
pair of paths λ = η � λ1 and λ′ = η � λ2, and any λ- and λ′-compatible path γ ,
with �(γ ) ∩ (�(λ1) ∪�(λ2)) = ∅ (see (2.1)), the following estimate on the ratio
of the conditional weights holds:

qβ,λ(γ )

qβ,λ′(γ )
≥ exp





−c1

∑

t∈γ
s∈λ1∪λ2

θ |t−s|





. (3.1)

Remark 3.2. Lemma 3.1 is a principal tool for rewriting the random line weights
qβ in terms of the action of Ruelle operator with Hölder continuous potential. In
particular, the cone confinement conditions (P2) and (P3) have been designed in
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Fig. 6. The three paths λ = η � λ1, λ′ = η � λ2, and γ of Lemma 3.1.

order to ensure appropriate exponential summability properties based on (3.1); see
the bound (3.9) below.

Proof. Let us consider a finite graph (V, E) such that γ � λ ⊂ E and γ � λ′ ⊂ E .
Using qE,β,λ(γ ) = qE\�(λ),β(γ ), we see that the ratio (on the finite graph)

equals

qE\�(λ),β(γ ; J )
qE\�(λ′),β(γ ; J )

. (3.2)

However, using the following expression for the weight of a contour (see (6.39)
in [PV2]),

qE,β(λ; J )=
(∏

e∈λ
tanh(βJ (e))

) ∏

e∈�(λ)
e=〈t,t ′〉

cosh(βJ (e)) exp[−βJ (e)
∫ 1

0
〈σtσt ′ 〉JsE,β ds] ,

(3.3)

where the coupling constants Js = (Js(e))e∈E are defined by

Js(e) =
{
J (e) if e �∈ �(λ)
sJ (e) if e ∈ �(λ) ,

we see that (3.2) is also equal to

∏

e=〈t,t ′〉∈�(γ )
exp

[
−βJ (e)

∫ 1

0

(
〈σtσt ′ 〉JsE\�(λ),β − 〈σtσt ′ 〉JsE\�(λ′),β

)
ds

]
. (3.4)

In view of the strict exponential decay of connectivities in (1.2), it is then sufficient
to show that

〈σtσt ′ 〉JsE\�(λ),β − 〈σtσt ′ 〉JsE\�(λ′),β ≤
∑

s∈λ1∪λ2

〈σtσs〉β〈σsσt ′ 〉β .
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Let us prove the latter bound. Let E1 = E \ �(λ) and E2 = E \ �(λ′). We have
using the random-line representation:

〈σtσt ′ 〉JsE1,β
=

∑

λ: t �→t ′
λ⊂E1∩E2

qE1,β(λ; Js)+
∑

λ: t �→t ′
λ∩(E1"E2)�=∅

qE1,β(λ; Js)

≤
∑

λ: t �→t ′
λ⊂E1∩E2

qE1∩E2,β(λ; Js)+
∑

u∈λ1∪λ2

∑

λ: t �→t ′
λ�u

qE1,β(λ; Js)

≤ 〈σtσt ′ 〉JsE1∩E2,β
+

∑

u∈λ1∪λ2

〈σtσu〉JE1,β
〈σt ′σu〉JE1,β

≤ 〈σtσt ′ 〉JsE2,β
+

∑

u∈λ1∪λ2

〈σtσu〉β〈σt ′σu〉β .

The first inequality follows from (3.3), Griffiths’ second inequality and the fact
that all paths containing an edge of E1" E2 must also contain a site from λ1 ∪ λ2;
the second one from the BK-type inequality (2.5); finally, the last one results from
another application of Griffiths’ second inequality.

3.2. Reduction to Ruelle’s setting

Given t ∈ ∂Kβ , δ ∈ (0, 1), a lattice point x ∈ Cδ (t) and a path λ : 0 → x which
admits the irreducible decomposition (2.13), let us rewrite the statistical weight
qβ (λ) as

qβ (λ) e(t,x)d = qβ (µ� γ1 � · · · � γm � η) e(t,x)d

= qβ (η) qβ (µ) e(t,V (η)+V (µ))d exp

{
m∑

k=1

ψtη(γk, . . . , γm)

}

× wtµ,η(γ1, . . . , γm),

where, as in (2.14), we use V (γ ) to denote the Z
d -displacement between the end-

points of γ and define the potential ψtη via:

eψ
t
η(γk,...,γm) = qβ (γk � γk+1 � · · · � γm � η)

qβ (γk+1 � · · · � γm � η) e(t,V (γk))d

= qβ,γk+1�···�γm�η (γk) e(t,V (γk))d
(3.5)

for k = 1, . . . , m− 1 and, accordingly, eψ
t
η(γm) = qβ,η (γm) e(t,V (γm))d . Similarly,

the function wtµ,η is defined as

wtµ,η(γ1, . . . , γm) = qβ (µ� γ1 � · · · � γm � η)
qβ (γ1 � · · · � γm � η) qβ (µ) = qβ,γ1�···�γm�η (µ)

qβ (µ)

(3.6)

Notice that since the irreducible paths γ1, . . . , γm and the boundary condition η
in the decomposition (2.13) always satisfy the K-cone conditions (P2) and (P3)
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of Subsection 2.6, the decoupling Lemma 3.1 implies that the conditional weights
above are sandwiched between the corresponding unconditional ones: There exists
c2 = c2(θ,K, δ) <∞ such that

1

c2
≤ qβ,γk+1�···�γm�η (γk)

qβ (γk)
≤ c2 and

1

c2
≤ wtµ,η(γ1, . . . , γm) ≤ c2

(3.7)

uniformly in t ∈ ∂Kβ , x ∈ Cδ (t), paths λ : 0 �→ x and k = 1, . . . , m in the
decomposition (2.13) of λ.

In order to enable a uniform local limit study of gβ(x) along the lines of the
formalism which will be developed in Sections 4 and 5 let us, first of all, extend any
finite sequence of paths (γ1, . . . , γm) to an infinite one by adding dummy empty
paths ∅. In this way any finite sequence of paths (γ1, . . . , γm) corresponds to the in-
finite sequence γ = (γ1, . . . , γm,∅,∅, . . . ). Thus, given t ∈ ∂Kβ and the forward
cone parameter δ ∈ (0, 1) the basic space S∅ of infinite sequences of irreducible
paths can be described as follows:

S∅ =
{
γ = (γ1, γ2, . . . ) ∈ {S ∪ ∅}N : γk = ∅ ⇒ γj = ∅ ∀ j > k

}
, (3.8)

where S = S(t, δ) is the corresponding space of irreducible paths.
The potential ψtη in (3.5) has been defined only for sequences γ of the type

γ = (γ1, . . . , γm,∅, . . . ). However, the basic decoupling estimate (3.1) implies
that for every t ∈ ∂Kβ any two such sequences γ and λ with the proximity index

i(γ , λ) �= min {k : γk �= λk} > 1 satisfy the uniform estimate:

∣∣∣ψtη(γ ) − ψtη(λ)

∣∣∣ ≤ c3θ
i(γ ,λ), (3.9)

where the constant c3 depends only on the renormalization scale K and on the
forward cone parameter δ which specify the set of irreducible paths S, provided
θ is chosen small enough. Consequently, ψtη admits a unique Hölder continuous
extension to the whole of S∅. Finally, in view of (3.7), Theorem 2.3 implies:

∑

γ1∈S
eψ

t
η(γ1,γ ) ≤ c4

∑

x∈Cδ(t)
e−ν|x| < ∞, (3.10)

uniformly in γ ∈ S∅.
By (2.14) we have derived the following representation of the two point func-

tion: For every x ∈ Cδ (t);

e(t,x)d gβ(x) = o
(

e−ν|x|
)
+
∑

µ,η

qβ (µ) qβ(η)e
(t,V (µ)+V (η))d

∞∑

n=1

W
t
µ,η,n (x − V (µ)− V (η)), (3.11)

where the weights W
t
µ,η,n (r) are given by
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W
t
µ,η,n (r) =

∑

γ∈Sn∑
V (γi )=r

e�
t
η,n(γ | ∅)wtµ,η(γ ,∅), (3.12)

with Sn being the set of all n-strings, γ = (γ1, . . . , γn), of irreducible paths from
S(t, δ), and, for every γ ∈ Sn,

�tη,n(γ | ∅) = ψtη(γn,∅)+ ψtη(γn−1, γn,∅)+ · · · + ψtη(γ1, γ2, . . . , γn,∅).
Let us introduce the associated Ruelle’s operator,

Ltηf (γ ) =
∑

γ1∈S
eψ

t
η(γ1,γ )f (γ1, γ ) . (3.13)

By (3.9) and (3.10) the potential ψtη is precisely of the type studied in Section 4. In
particular, Ltη is a bounded linear operator on Gθ (S∅) (see Subsection 4.1 for the
definition of the space Gθ (S∅) of Hölder continuous functions on S∅) and all the
conclusions of Theorem 4.1 apply.

Similarly, given the potential ψtη and the operator Ltη introduced in (3.13), the
weights (3.12) fall into the general framework of (5.1). The local asymptotics of
the latter are studied in general in Section 5, see Theorem 5.5 there.

3.3. The geometry of ∂Kβ and the spectral radius ρtS(s).

Since gβ(x) is logarithmically asymptotic (see (1.1)) to e−ξβ(x),

lim
|x|→∞

1

|x|
(
ξβ(x)+ log gβ(x)

) = 0

the shape Kβ could be alternatively described as the closure of the domain of
convergence of the series

s →
∑

x∈Zd

e(s,x)d gβ(x).

Proof of Theorem B. Let us fix t ∈ ∂Kβ and ν > 0 small. For every |s| < ν/2 the
convergence of the series

∑

x

gβ(x)e
(t+s,x)d (3.14)

depends, by the very definition of the surcharge costs, only on the behaviour of
gβ(x)e(t+s,x)d along the directions x satisfying st (x) ≤ ν|x|. For such x-s, howev-
er, the paths λ : 0 �→ x admit the irreducible decomposition (2.13) with respect to
the dual direction t ∈ ∂Kβ , and we are entitled to employ the representation (3.11).
Therefore, for |s| < ν/2 the convergence in (3.14) is equivalent to the convergence
of the following series:

∑

n

∑

µ,η

qβ(µ)qβ(η)e
(t+s,V (µ)+V (η))d

[
Ltη,s

]n
wtµ,η(∅), (3.15)

where we have introduced the “tilted” operator
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Ltη,sf (γ ) =
∑

γ1∈S
eψ

t
η(γ1,γ )+(s,V (γ1))d f (γ1, γ ) = Ltη

(
e(s,V (·))d f

)
(γ ).

(3.10) insures that the operator Ltη,s is well defined for all s < ν/2.
By Theorem 2.3 the series

∑

µ,η

qβ(µ)qβ(η)e
(t+s,V (µ)+V (η))d (3.16)

converges; indeed, by construction, µ and η have no (t,K, δ)-correct break points.

On the other hand, (3.7) suggests the substitution of the
[
Ltη,s

]n
wtµ,η(∅) terms in

(3.15) by [
Ltη,s

]n
I(∅) =

∑

γ∈Sn
e�

t
η,n(γ | ∅)+∑(s,V (γi ))d ,

where I(·) denotes the constant function on S∅, identically equal to 1.As in the cases
of (3.7) and (3.9), the cone confinement properties (P2) and (P3) of the irreducible
paths and the basic decoupling estimate (3.1) imply:

sup
n

sup
η,η′

sup
γ

{
�tη,n(γ | ∅)−�tη′,n(γ | ∅)

}
≤ c5 <∞. (3.17)

In view of (3.16) this means that the convergence in (3.14) is equivalent to the
convergence of

∑

n

[
Ltη,s

]n
I(∅)

for some (and hence for all η). By (3.17),

e−c5 ≤
[
Ltη,s

]n
f (γ )/

[
Ltη′,s

]n
f (γ ) ≤ ec5 ,

for allf > 0,n,η,η′ and γ . This evidently implies that the spectral radiusρS

(
Ltη,s

)

�= ρtS(s) does not depend on η, we arrive to the following characterization of ∂Kβ

around t : For |s| < ν/2,

t + s ∈ ∂Kβ ⇐⇒ ρS

(
Ltη,s

)
�= ρtS(s) = 1 . (3.18)

Moreover, by Theorem 2.3, the conditions A1 and A2 of Subsection 5.1 are
satisfied for the path displacement observable V : S �→ Z

d . Consequently, by the
analytic perturbation theory and the non-degeneracy of Hess(log ρtS)(0) established
in Subsection 5.5 below, the equation (3.18) implies that the compact surface ∂Kβ

is locally analytic and has a uniformly positive Gaussian curvature. ��
Notice, in particular, that the map

t �→ ∇ρtS(0)
|∇ρtS(0)|



Ornstein-Zernike theory for finite range Ising models above Tc 329

is a diffeomorphism from ∂Kβ to S
d−1. Since by the general dual description of

support functions ξβ(x) = (t, x)d if and only if x is orthogonal to a supporting
hyperplane to Kβ at t , we conclude: For any x ∈ R

d \ 0 and t ∈ ∂Kβ ,

ξβ(x) = (t, x)d ⇐⇒ ∃α ∈ R+ such that x = α∇ log ρtS(0). (3.19)

3.4. Proof of the OZ formula

We shall recover the asymptotic behaviour of the two point function gβ(x) =
〈σ0σx〉β from the representation (3.11). The crucial fact is that the local limit anal-
ysis which will be developed in Section 5 applies to the operators Ltη (defined
in (3.13)) and the functions wtµ,η (defined in (3.6)) uniformly in t ∈ ∂Kβ and in
boundary conditions µ,η satisfying properties (P2) and (P4) of Subsection 2.6.
Indeed, in the language of Section 4 the inequalities (3.7) and (3.9) imply that

sup
t,µ,η

{
||ψtη||θ + ‖wtµ,η‖θ + ‖Ltη‖θ

}
< ∞.

In particular (see Theorem 4.1 below), there exists ε > 0 such that the spectrum

�S

(
Ltη

)
of Ltη satisfies

�S

(
Ltη

)⋂{
µ : |µ| > (1 − 2ε)ρtS(0)

} = {
ρtS(0)

}

uniformly in t ∈ ∂Kβ and in the boundary conditions η. Consequently one can
find an open neighbourhood U of the origin in C

d , such that the family of analytic
functions (see Subsection 4.2 for the definition of the spectral projector PL),

{
ξ �→ PLtη,ξ

I(∅)
}

t,η

is uniformly continuous on U . By the second of the inequalities in (3.7) it follows
that the family of the analytic functions

{
ξ �→ χtµ,η(ξ)

�= PLtη,ξ
wtµ,η(∅)

}

t,µ,η

is uniformly bounded away from zero and infinity on U . By the Cauchy formula

the sequence
{
∇χtµ,η(0)

}
is also uniformly bounded in t ∈ ∂Kβ and boundary

conditions µ and η satisfying properties (P2) and (P4) of Subsection 2.6.
By the preceding discussion the asymptotic results of Subsection 5.1 below

hold uniformly in t ∈ ∂Kβ and in the boundary conditions µ, η. For each particu-
lar choice of the data we shall distinguish between three different cases:

Let us fix (see (5.9) below ) ν ∈ (0, 1/2) and define

Rtn,ν =
{
r ∈ Z

d : |r − n∇ log ρtS(0)| < n1−ν
}
.
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Case 1. r ∈ Rtn,ν . Then, by Theorem 5.5

W
t
n,µ,η(r) = χtµ,η(0)√

(2πn)ddetAtS

exp

{
− 1

2n
At

S

(
r − n∇ log ρtS(0)

)}
(1 + o(1)) ,

(3.20)

where the quadratic form At
S is given by At

S(v) =
([
AtS

]−1
v, v

)

d
and we have set

AtS
�= Hess

(
log ρtS

)
(0) .

Pick now a large enough number M .
Case 2. r �∈ Rtn,ν , but |r| ≤ Mn. Then, as it follows from Lemma 5.2,

W
t
µ,η,n (r) ≤ e−c6n

1−2ν ≤ e−c7|r|1−2ν
. (3.21)

Case 3. Finally, let r �∈ Rtn,ν , and |r| > Mn. In view of Theorem 2.3,

W
t
µ,η,n (r) ≤ e−c8|r|, (3.22)

onceM has been chosen large enough. This is just an exponential form of Markov’s
inequality.

Turning back to the expansion (3.11), for each x ∈ Z
d define the dual di-

rection t = t (x) ∈ ∂Kβ and the coefficient α = α(x) as in (3.19). Set also
n0 = n0(x) = [α(x)]. Of course,

n0(x) = |x|
|∇ log ρtS(0)|

(1 + o(1)) (3.23)

uniformly in |x| → ∞.
For every pair of boundary conditions (µ, η) with

|V (µ)| + |V (η)| ≤ n
1/2−ν
0 (3.24)

we, using the asymptotic estimates (3.20), (3.21) and (3.22), infer that the second
sum in (3.11) admits the following (uniform in |x| → ∞ and in (µ, η) satisfying
(3.24)) asymptotic expression:

χtµ,η(0)√
(2πn0)d−1At

S

(∇ log ρtS(0)
)

detAtS

(1 + o(1)) �= φµ,η(t)√
|x|d−1

(1 + o(1)) ,

(3.25)

with

φµ,η(t) =
χtµ,η(0)

√
|∇ log ρtS(0)|d−1

√
(2π)d−1At

S

(∇ log ρtS(0)
)

detAtS

.
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On the other hand, in view of the irreducibility of the boundary conditions (µ, η)
in the decomposition (2.13), the mass-gap estimate (2.12) of Theorem 2.3 implies
that

qβ (µ) qβ (η) e(t,V (µ)+V (η))d ≤ c9e−c10(|V (µ)|+|V (η)|),

uniformly in t ∈ ∂Kβ and in (µ, η). Consequently, the total contribution to the
right-hand side of (3.11) from the terms corresponding to those boundary condi-
tions (µ, η) which do not comply with (3.24) is at most exp

{−c11|x|1/2−ν
}

for
some c11 > 0. This is negligible as compared to (3.25), and the Ornstein-Zernike
formula (1.3) follows with the pre-factor �β

(�n(x)) being identified as

�β
(�n(x)) =

∑

µ,η

φµ,η(t) qβ(µ)qβ(η)e
(t,V (µ)+V (η))d ,

where t = t (x) ∈ ∂Kβ is the dual direction; ξβ(x) = (t, x)d . ��

4. Ruelle’s Perron-Frobenius Theorem for Countable Alphabets

The results and the methods of this section are not particularly new. A general treat-
ment of the subshifts on countable alphabets could be found in [Br] and in [Sa].
Full shifts are studied in the recent preprint [Is] based on the earlier work [CIs].
Unfortunately, the setup in the abovementioned papers is different from ours and
we cannot rely directly on the corresponding techniques therein. In particular, in
all these works the authors assumed one or another form of irreducibility of the
shift, whereas in our context it happens to be natural to permit an additional tran-
sient class. Thus, for the reader’s convenience we prefer to formulate the theory in
a closed form as we need it here, giving exact references whenever possible and
providing brief proofs otherwise.

The notations and the results of Sections 4 and 5 are independent of the rest of
the paper.

4.1. The Setup

Let S be a countable set. We use Sn to denote the set of n-strings x = (x1, ..., xn)

of elements of S and S to denote the set of countable x = (x1, x2, . . . ) strings of
elements of S. Eventually, we shall study functions defined on the set of all finite
and infinite strings,

S
⋃

( ∞⋃

n=1

Sn
)

.

It happens to be convenient to introduce a dummy element ∅ and define

S∅ =
{
x ∈ {S ∪ ∅}N : xi = ∅ ⇒ xj = ∅ ∀ j > i

}
. (4.1)

In other words, the infinite strings S ⊂ S∅, and for every n ∈ N we extend finite
strings from Sn by attaching to it the infinite sequence ∅ of empty elements.
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For every θ ∈ (0, 1) one can define the distance dθ on S∅ via

dθ (x, y) = θ i(x,y),

where the proximity index between the strings x �= y is given by

i(x, y) �= min {k : xk �= yk} .
Notice that S is a closed subset of S∅ in the dθ metrics.

Given a function f : S∅ �→ C and a number k ∈ N define the k-th variation of
f ,

vark (f ) = sup{
x,y : i(x,y)≥ k

}

∣∣∣f (x)− f (y)
∣∣∣.

We say that f is continuous (or, more exactly, locally uniformly continuous) if

lim
k→∞

vark (f ) = 0.

The space C = C(S∅) of bounded continuous functions equipped with the usual
sup-norm ‖ · ‖∞ is Banach.

Also, given a number θ ∈ (0, 1), we say that f is uniformly Hölder continuous
(or, equivalently, uniformly Lipschitz continuous in the dθ metrics of S∅) if

||f ||θ �= sup
k>1

vark (f )
θk−1 < ∞.

Of course, ||f ||θ < ∞ does not imply that var1 (f ) < ∞, and hence uniformly
Hölder continuous functions can be unbounded. However, the functional space

Gθ = Gθ (S∅) = {f : f ∈ C and ||f ||θ <∞}
is Banach with respect to the norm ‖ · ‖θ = ‖ · ‖∞ + || · ||θ .

Let a real uniformly Hölder continuous function ψ; ||ψ ||θ <∞, be such that

sup
x∈S∅

∑

z∈S
eψ(z,x) < ∞ (4.2)

Then the linear operator

Lf (x) =
∑

z∈S
eψ(z,x)f (z, x) (4.3)

is well defined and bounded on both C and Gθ .
Furthermore, given a potential ψ as above and an observable V : S �→ Z

d , the
complex operator

Liτ f (x)
�=

∑

z∈S
eψ(z,x)+i(τ,V (z))d f (z, x), (4.4)

where (·, ·)d denotes the scalar product in C
d , is also defined and bounded on Gθ

and C for every τ ∈ [−π, π)d . The original operator L corresponds in the latter
notation to τ = 0.
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4.2. Spectral properties of L and Liτ

Given a bounded linear operator T on Gθ let �S(T ) and �F(T ) denote the spec-
trum and, respectively, the Fredholm spectrum [AKPRS] of T . We use ρS(T )

and ρF(T ) to denote the corresponding spectral radii. Any point λ ∈ �S(T ) ∩
{λ : |λ| > ρF(L)} is an isolated eigenvalue of T ([AKPRS], Subsection 2.6.12),
and there exists ε > 0, such that

{µ : |µ− λ| < 2ε} ∩�S = {λ} .
Furthermore, for such points λ the associated spectral projector

Pλ = 1

2πi

∮

|µ−λ|=ε
(µI − T )−1 dµ (4.5)

is finite dimensional. The dimension of Range (Pλ) is called the algebraic multi-
plicity of λ. An isolated point λ0 ∈ �S of algebraic multiplicity 1 called a non-de-
generate eigenvalue of L. There is a well-developed analytic perturbation theory
of non-degenerate eigenvalues, which, in our context, leads to crucial local limit
type results. We shall describe this in detail in Section 5.

With the above notions in mind let us turn to the spectral properties of the
operators L and Liτ which were defined in (4.3) and in (4.4) respectively.

Theorem 4.1. Assume that a uniformly Hölder continuous real interaction po-
tential ψ; ||ψ ||θ < ∞, satisfies the summability condition (4.2). Then for every
V : S �→ Z

d and for each τ ∈ [−π, π)d (in particular for τ = 0)

ρF(Liτ ) < ρS(L). (4.6)

Furthermore, ρS = ρS(L) is a non-degenerate eigenvalue of L on Gθ and the
corresponding eigenfunction h is strictly positive;

inf
x∈S∅

h(x) > 0. (4.7)

Finally, the rest of the spectrum of L on Gθ satisfies

sup
λ∈�S\ρS

|λ| < ρS. (4.8)

In particular, there exist C <∞ and δ > 0, such that for any f ∈ Gθ one can find
a coefficient c = c(f ) satisfying:

‖ 1

ρnS
Lnf − c(f )h‖θ ≤ C‖f ‖θ (1 − δ)n. (4.9)

The above coefficient c(f ) satisfies c(f )h = PLf , where we use PL to denote the
spectral projector (4.5) associated with λ = ρS.

The rest of the section is devoted to the proof of the theorem.
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4.3. Fredholm spectrum

In this subsection we establish the spectral gap assertion (4.6) of Theorem 4.1.
Without loss of the generality we may assume that ρS(L) = 1. By a version of
the Nussbaum’s formula [Nus1], [AKPRS] it suffices to show that there exists a
compact subset K = K(τ) of Gθ and a number n = n(τ) ∈ N, such that

sup
‖f ‖θ≤1

inf
g∈K

‖Lniτ f − g‖θ < 1. (4.10)

The n-th power of L is given by

Lnf (x) =
∑

z∈Sn
e�n(z | x)f (z, x),

where

�n(z | x) = ψ(zn, x)+ ψ(zn−1, zn, x)+ ...+ ψ(z1, z2, ...zn, x). (4.11)

It is easy to check that for every n ∈ N and for every x, y ∈ S∅

�n(z | y)−�n(z | x) ≤ βθ i(x,y), (4.12)

with

β = β(ψ, θ) = ||ψ ||θ
1 − θ . (4.13)

Lemma 4.2. Assume that ρS(L) = 1. Then,

sup
n

∑

z∈Sn
‖e�n(z | ·)‖θ �= M = M(ψ) <∞ . (4.14)

Proof. By the assumption on ρS(L), infx LnI(x) ≤ 1, where I(·) is the constant
function identically equal to 1. Let us pick x0 such that LnI(x0) ≤ 2. Then, for
every y ∈ S∅, we estimate, using (4.12):

e�n(z | y) = e�n(z | x0)e�n(z | y)−�n(z | x0) ≤ e�n(z | x0)eβθ .

Therefore, by the choice of x0,

sup
n

∑

z∈Sn
‖e�n(z | ·)‖∞ ≤ 2eβθ . (4.15)

Moreover, since for every n, by (4.12),

vark
(

e�n(z | ·)
)

≤ ‖e�n(z | · )‖∞
(

eβθ
k − 1

)
, (4.16)

the sup-norm estimate (4.15) readily implies the conclusion of the Lemma with

M(ψ) = 2eβθ
(

1 + sup
t∈(0,1]

eβt − 1

t

)

. ��
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Given n ∈ N, τ ∈ [−π, π)d and z ∈ Sn set

gnτ,z(x) = exp

{

�n(z | x)+ i
n∑

1

(τ, V (zk))d

}

.

By Lemma 4.2 we (assuming that ρS(L) = 1) obtain the following estimate:

sup
n

∑

z∈Sn
‖gnτ,z‖θ ≤ M <∞. (4.17)

We shall construct the compact setsK(τ) in (4.10) from finite linear combinations
of functions from the family {gnτ,z}z∈Sn : Given f ∈ Gθ with ‖f ‖θ ≤ 1 and n ∈ N

let us represent Ln+1
iτ f as

Ln+1
iτ f (x) =

∑

z∈Sn
gnτ,z(x)Lz,iτ f (x), (4.18)

where the operator Lz,iτ is defined by

Lz,iτ f (x) =
∑

u∈S
eψ(u,z,x)+i(τ,V (u))d f (u, z, x).

Using the obvious inequalities: For every φ1, φ2 ∈ Gθ , ‖φ1φ2‖∞ ≤ ‖φ1‖∞‖φ2‖∞
and, for each k ∈ N,

vark (φ1φ2) ≤ ‖φ1‖∞vark (φ2)+ ‖φ2‖∞vark (φ1) ,

we infer from (4.17):

‖Lz,iτ f (·)‖∞ ≤ M and ||Lz,iτ f (·)||θ ≤ 2Mθn, (4.19)

uniformly in n, z ∈ Sn and in ‖f ‖θ ≤ 1. Fix now a large enough power n satisfying
4M2θn < 1/2 and a reference point x0 ∈ S∅. Defining the coefficients

az[f ] = Lz,iτ f (x0),

we can rewrite (4.18) as

Ln+1
iτ f (x) =

∑

z∈Sn
az[f ]gnτ,z(x) +

∑

z∈Sn
gnτ,z(x)

(
Lz,iτ f (x)− Lz,iτ f (x0)

)
.

(4.20)

Since we have adjusted the choice of the power n to the estimates in (4.17) and in
(4.19) (notice that the latter also implies ‖Lz,iτ f (·)−Lz,iτ f (x0)‖∞ ≤ 2Mθn), we
obtain

‖
∑

z∈Sn
gnτ,z(·)

(
Lz,iτ f (·)− Lz,iτ f (x0)

) ‖θ < 1/2. (4.21)



336 M. Campanino et al.

On the other hand, by the first of the inequalities in (4.19), the sequence of the co-
efficients {az[f ]} is a bounded one; |az[f ]| ≤ M . Since by (4.17) for every ε > 0
one can choose a finite subset Sn,ε � Sn such that

∑

z �∈Sn,ε
‖gnτ,z‖θ <

ε

M
,

we are able to derive the following estimate which holds uniformly in ‖f ‖θ ≤ 1:

‖Ln+1
iτ f (·)−

∑

z∈Sn,ε
az[f ]gnτ,z(·)‖θ <

1

2
+ ε.

It remains to define the compact set K(τ) � Gθ as the set of all M-bounded linear
combinations of the finite family {gnτ,z}z∈Sn,ε ;

K(τ)
�=





∑

z∈Sn,ε
az gnτ,z(·) : max

z
|az| ≤ M





,

and the target assertion (4.10) follows.

4.4. The principal eigenfunction of L

Two main complications we encounter here, as compared to the classical setup of
subshifts over finite alphabets [Bow], [PP], are the non-compactness of the space
S∅ and the reducibility of the shift (x1, x2, . . . ) �→ (x2, . . . ) on S∅. The latter is
merely a nuisance. Nevertheless, it precludes an immediate reference to [Sa], where
a non-compact version of Ruelle’s Perron-Frobenius theorem has been established
in a rather general irreducible context.

The results on the existence and strict positivity of the principal eigenfunction
in the form we need them here, that is as asserted in Theorem 4.1, can be deduced
from a generalized version of Krein-Rutman theorem [Nus2] on the set-condensing
linear maps on cones. However, possibly the most transparent way to prove (4.24)
is to use an approximation procedure similar to the one suggested in [CIs]: Let us
enumerate the elements of S as x1, x2, x3, . . . For everyN ∈ N define the truncated
finite state space S(N) = {x1, . . . , xN }, and, accordingly, define the space S(N)∅ of
countable strings of elements from S(N) ∪ {∅} as in (4.1).

For every θ ∈ (0, 1) S(N)∅ is a compact shift-invariant subset of S∅ in the dθ -

distance (the topology does not depend on θ , of course). Let us use G(N)θ to denote

the restriction of Gθ to S(N)∅ . Proceeding along these lines, given an interaction
potential ψ which satisfies the assumptions of Theorem 4.1 define the truncated
operator L(N) on G(N)θ ,

L(N)f (x) =
∑

z∈S(N)
eψ(z,x)f (z, x).
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By Lemma 4.2,

lim
N→∞

ρS

(
L(N)

)
= ρS (L) . (4.22)

On the other hand, despite the reducibility, the arguments of [PP] (pp. 22–24, proof
of Theorem 2.2 (i)) directly apply in the (G(N)θ , L(N))-setup above. Consequently,

there exists a strictly positive eigenfunction h(N) ∈ G(N)θ ;

L(N)h(N) = ρS

(
L(N)

)
h(N),

which, moreover, satisfies the following bound:

∀ x, y ∈ S(N)∅ h(N)(x) ≥ e−βθ
i(x,y)

h(N)(y), (4.23)

where the constant β has been defined in (4.13). Notice that the estimate (4.23)
holds uniformly in the cutoffs N .

It is natural to normalize h(N)(∅) = 1, so that for all N ; e−β ≤ h(N)(·) ≤ eβ .
Then for every N ∈ N the restriction to S(N)∅ of the family {h(M)}M≥N is bounded

in G(N)θ . Using the diagonal procedure, one can extract a subsequence,
{
h(Mk)

}

which converges in the ‖ · ‖∞-norm on each of the S(N)∅ sets. The limiting function,

let us call it h, is defined on ∪NS(N)∅ and inherits the following properties:

h(∅) = 1 and ∀ x, y ∈
⋃

N

S(N)∅ h(x) ≥ e−βθ
i(x,y)

h(y).

Therefore, it can be extended by continuity to the whole of S∅, and it is straight-
forward to check from (4.22) and (4.14) that the extension, which we continue to
call h, is a strictly positive principal eigenfunction of L;

Lh = ρS(L)h and e−β ≤ h(·) ≤ eβ. (4.24)

This establishes (4.7) of Theorem 4.1

4.5. Properties of ρS(L)

In principle it is possible to complete the proof of Theorem 4.1 along the lines of
[Ru] (Proposition 5.4 on p.90) with necessary adjustments due to the fact that the
unit ball of Gθ is no longer compact in the space of continuous functions C. How-
ever, the invariant measure in our case will be concentrated on the infinite strings
of elements from S proper and put zero weight on the extended (by ∅) finite strings
from Sn. Since the latter is the main object to be studied in the application to the
sharp decay asymptotics of the two-point functions in the high temperature Ising
models, we shall follow a different route:

Using (4.24) of the previous subsection we can normalize L, and, apart from
the conditions imposed on the interaction ψ in the statement of Theorem 4.1, there
is no loss of generality in assuming that

ρS(L) = 1 and, moreover, LI(·) ≡ 1, (4.25)

We need to show:
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(I) λ = 1 is the only spectral point of �S(L) on the spectral circle
{z ∈ C : |z| = 1}.

(II) The algebraic multiplicity of λ = 1 equals one, or, equivalently, Range (PL) is
a one-dimensional sub-space spanned by the eigenfunction I(·), where, as in
the statement of Theorem 4.1,PL is the spectral projector (4.5) at the principal
eigenvalue λ = 1.

Once (I) and (II) above are verified, we readily recover the remaining expo-
nential convergence result (4.9). Indeed, by (II), for every f ∈ Gθ there exists a
number c(f ), such that PLf = c(f )I. On the other hand, the spectral radius of
L (I − PL) is, by (I) above, strictly less than 1.

Let λ ∈ {z : |z| = 1} ∩ �S. Since we have already established that ρF < 1, it
follows ([AKPRS], Subsection 2.6.12) that the eigenspace N (λI −L) is not empty
and finite-dimensional. Let hλ be an eigenfunction; Lhλ = λhλ. By the positivity
of L,

L |hλ| (x) ≥ |hλ| (x) ∀ x ∈ S∅ . (4.26)

Since, for every x ∈ S∅ and each n ∈ N, the probability distribution e�n(·|x) is
strictly positive on Sn, we infer from (4.26) that

sup
x∈S∅

|hλ| (z, x) = sup
x∈S∅

|hλ| (x) ∀ n and ∀ z ∈ Sn . (4.27)

Indeed, taking supx in both sides of (4.26) certainly does not change the “≥” sign
of the latter inequality. On the other hand, supx∈S∅ |hλ| (z, x) ≤ supx∈S∅ |hλ| (x)
for any n and z.

The relation (4.27) suggests to consider the restriction of hλ to the closed shift
invariant subset S = {

x : xi �= ∅ ∀ i} of S∅: The Hölder continuity of hλ and the
n→ ∞ limit in (4.27) readily imply:

|hλ| (·) ≡ sup
x∈S∅

|hλ| (x).

on S. It is natural to normalize hλ as |hλ| ≡ 1 on S. But then, given any x ∈ S, the
function

z → hλ(z, x)

λnhλ(x)

is also unimodal on every Sn; n = 1, 2, . . . . Since

∑

z∈Sn
e�n(z|x)

hλ(z, x)

λnhλ(x)
= 1,

the normalization assumption (4.25), strict positivity of the weights e�n(z|x) and
elementary convexity considerations imply that

hλ(z, x) = λnhλ(x) (4.28)



Ornstein-Zernike theory for finite range Ising models above Tc 339

for every x ∈ S, n ∈ N and z ∈ Sn. Consequently, for every n ∈ N,

sup
x,y∈S

∣∣∣hλ(x)− hλ(y)
∣∣∣ ≤ θn‖hλ‖θ ,

or, in other words,hλ is a multiple of I on S. In particular, (4.28) already implies that
λ = 1, and (I) follows. Furthermore, sinceLnhλ(x) = hλ(x) for every x ∈ S∅ and
hλ is Hölder continuous, we, taking the limit n → ∞, readily infer that, actually,
hλ ≡ 1 on the whole of S∅ .

In order to prove (II) notice, first of all, that the argument above implies that the
eigenspace N (I − L) is, actually, spanned by I(·), and, hence, λ = 1 is a simple
eigenvalue. Now, since λ = 1 is a Fredholm point; 1 > ρF(L), there exists a power
n0 < ∞, such that (I − L)n0f = 0 for every function f from the range of the
projector f ∈ Range(PL) ([Ka], Section III.6.5). If n0 = 1, then, by the preceding
remark, we are done. Otherwise, if n0 > 1, then for every f ∈ Range(PL) there
exists a number d(f ) ∈ C, such that

(I − L)n0−1 f = d(f )I.

However, the equation (I−L)g = dI does not have solutions unless d = 0. Indeed,
we may assume that both d and g are real and, in addition, that d is non-negative.
But, by (4.25),

d = inf
x
(g − Lg)(x) ≤ 0.

As a result (I−L)n0−1f = 0 for everyf ∈ Range(PL). This reduces the discussion
back to the case of n0 = 1, and (II) follows.

5. Local limit theorem

We continue to work in the framework and the notation of Section 4 and derive
strong local limit type results associated with the Ruelle’s operator L. The main
Theorem 5.5 gives sharp asymptotics of Wn,x(·), see (5.1) below. The asymptotic
expressions are recovered from the inverse Fourier transform formula and hold uni-
formly in potentialsψ and functionsw as it is described in Remark 5.1. Besides the
conventional local limit techniques, our basic tool here is to use the spectral theory
of Ruelle’s operator in order to control the analytic expansions of the corresponding
log-moment generating functions. These results are formulated in Lemma 5.3 and
Lemma 5.11 whose proofs are explained in Subsections 5.4 and 5.5. The proof of
Theorem 5.5 proper is given in Subsections 5.2 and 5.3 and it relies on Lemma 5.4.

We refer to [DS] for a thorough exposition of the local limit analysis of depen-
dent Z

d -valued random variables in general. See also [AD], where similar results in
the CLT region (and, more generally, in the appropriate scaling regions for various
stable laws) have been established for Gibbs-Markov maps.
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5.1. The setup and the result

LetV : S �→ Z
d be an observable andw ∈ Gθ be a positive function; infx w(x) > 0.

Assuming that the potential ψ; ||ψ ||θ < ∞, satisfies the summability assumption
(4.2), we associate with each x ∈ S∅ and every n ∈ N the weight function Wn,x

on Z
d via

Wn,x(r) =
∑

z∈Sn:
∑n

1 V (zi )=r
e�n(z | x)w(z, x). (5.1)

Our prime task here is to develop a sharp (as n→ ∞) asymptotic formula for the
weights Wn,x . The term “sharp” will always mean “up to zero order terms”. An
example of such a sharp asymptotic expression is provided by (4.9): There exists
c1 > 0, such that

∑

r

Wn,x(r) = Lnw(x) = dw(x)ρ
n
S(L)

(
1 + o(e−c1n)

)
, (5.2)

where dw(x) = PLw(x). Since dw is strictly positive and bounded away from zero,
there is no loss of generality in assuming that Wn,x is a probability measure on Z

d :
∑

r

Wn,x(r) = Lnw(x) ≡ ρS(L) = 1. (5.3)

In the sequel we shall use En,x to denote the expectation with respect to Wn,x .
The essential assumptions are, of course, those imposed on the observable V :

A1. Range(V ) generates Z
d , in particular V is truly d-dimensional, in the sense

that ∀ξ ∈ R
d \ 0, the scalar product (V (·), ξ)d �= const .

The second assumption links V with the potential ψ :
A2. There exists δ > 0 and K <∞, such that

max
|ξ |≤δ

∑

z∈Sn
e�n(z | x)+

∑n
1(ξ,V (zk))d < K. (5.4)

Notice that by the rigidity bound (4.12), the assumption A2 is not sensitive to the
choices of boundary condition x and powers n = 1, 2, .... In particular,

Lξf (x) =
∑

z∈S
eψ(z,x)+(ξ,V (z))d f (z, x) (5.5)

is a well defined bounded linear operator on Gθ for every ξ ∈ C
d with |Re(ξ)| < δ.

Notice that the Fourier transform Ŵn,x of Wn,x can be written as

Ŵn,x(τ ) = En,xei
∑
(τ,V (ZK))d = Lniτw(x).

The latter relation links the local limit behaviour of Wn,x with the analytic proper-
ties of the family {Lξ }.

Let us fix an observable V : S �→ Z
d which satisfies assumption A1, δ > 0,

K <∞ and positive constants b1,b2 ∈ (0,∞) .
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Remark 5.1. All the results below hold uniformly in

Hölder continuous potentials ψ satisfying ||ψ ||θ < b1 and assumption A2 (5.6)

Functions w ∈ Gθ ; 1/b2 ≤ w(·) ≤ b2 (5.7)

Both (5.6) and (5.7) will be implicitly assumed in all the claims below.

As we have already mentioned there is no loss of generality in assuming in
addition that (5.3) holds.

Our first result is a rough Gaussian large deviation upper bound which enables
to focus the attention on the values of r near the running average

nvn,x
�= En,x

n∑

k=1

V (zk).

Lemma 5.2. For every ν > 0 there exist c2, c3 > 0, such that
∑

r:|r−nvn,x |≥n1−ν
Wn,x(r) < c2e−c3n

1−2ν
. (5.8)

Lemma 5.2 is a standard consequence of the exponential Markov inequality and
the non-degeneracy condition (5.12) which is formulated below (and, subsequently,
is proved in Subsection 5.5).

From now on we fix ν ∈ (0, 1/2) and concentrate on deriving uniform sharp
asymptotics of Wn,x(r) over the set

Rn,ν =
{
r ∈ Z

d : |r − nvn,x | < n1−ν
}
. (5.9)

It is exactly on this stage that we shall extensively rely on the spectral analysis
of Section 4. In order to structure our main result here in an optimal way let us
formulate it in the form of several separate propositions:

We claim that there exists an open neighbourhood U of the origin in C
d , such

that, uniformly in boundary conditions x ∈ S∅, all the properties listed below hold:

Lemma 5.3. The functions

ρS(ξ)
�= ρS(Lξ ) and χx(ξ)

�= PLξw(x)

are analytic and bounded away from zero on U . Furthermore, for every ξ ∈ U ,
ρS(ξ) is (cf. Subsection 4.1) a non-degenerate eigenvalue ofLξ and, independently
of a particular choice of ξ ∈ U , there exists ε > 0 such that the rest of the spectrum
of Lξ lies inside the circle of the radius (1 − ε)|ρS(ξ)|.

Notice that in the notation of (5.2), dw(x) = χx(0).
Lemma 5.3 is a rather standard assertion of the analytic perturbation theory

based on Theorem 4.1 and assumption A2. We shall explain it in more detail (and
with the appropriate references to [Ka]) in Subsection 5.4.

As it follows from Lemma 5.3, the log-Laplace transforms

Hn,x(ξ)
�= 1

n
logLnξw(x) (5.10)

are defined and analytic on U . Moreover,
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Lemma 5.4. There exist c4 > 0 such that, uniformly in x ∈ S∅ and ξ ∈ U ,

Hn,x(ξ) = log ρS(ξ)+ 1

n
logχx(ξ)+ o

(
e−c4n

)
. (5.11)

In addition the Hessians Hess
(
Hn,x

)
are uniformly non-degenerate at ξ = 0;

inf
x∈S∅

|det
(
Hess(Hn,x)(0)

)| > 0. (5.12)

The proofs of (5.11) and (5.12) are relegated to Subsection 5.4 and Subsection 5.5
respectively.

The non-degeneracy condition (5.12) is responsible for the Gaussian form of
our main uniform local limit result: Define

AS = Hess (log ρS) (0).

Then the following local limit version of (5.2) holds:

Theorem 5.5. Uniformly in r ∈ Rn,ν (see (5.9)) and x ∈ S∅

Wn,x(r) = dw(x)ρ
n
S(0)√

(2πn)ddet(AS)
exp

{
− 1

2n

(
A−1

S (r − nvn,x), (r − nvn,x)
)

d

}

× (1 + o(1)) . (5.13)

Notice that since the running average vn,x = ∇Hn,x(0), the uniform analytic
expansion (5.11) implies,

vn,x = ∇ log ρS(0)+ 1

n
∇ logχx(0)+ o

(
e−c5n

)
, (5.14)

and, consequently, we could have written the x-independent term ∇ log ρS(0) in-
stead of vn,x in the target asymptotic formula (5.13).

5.2. Proof of Theorem 5.5

The proof is a blend of conventional local CLT techniques and the (equally conven-
tional) change of measure by exponential tilts argument reinforced with an analytic
control over log-Laplace transforms through the expansion (5.11). We shall merely
sketch it here with an emphasis on how the spectral analysis of the Ruelle’s opera-
tor enters the picture. We refer to [DS] for a comprehensive general exposition of
the local limit theory and also to [PP], where similar results are obtained for the
Ruelle’s operators over finite alphabets.

As before, there is no loss of generality in assuming that Wn,x is a probability
measure on Z

d , in particular, that dw(x) ≡ 1 and that ρS(L) = ρS(0) = 1.
Step 1. Fix a small ε > 0. We shall start by proving (5.13) for the values of r
satisfying (see (5.14))

|r − n∇ log ρS(0)| ≤ n1/2−2ε . (5.15)
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In this case the target asymptotic expression (5.13) of Theorem 5.5 takes a simpler
form:

Wn,x(r) = 1
√
(2πn)ddet(AS)

(1 + o(1)) . (5.16)

Let Ŵn,x denote the Fourier transform of Wn,x ,

Ŵn,x(τ ) =
∑

r∈Zd

Wn,x(t)e
i(τ,r)d = Lniτw(x).

By the Fourier inversion formula,

Wn,x(r) = 1

(2π)d

∫
...

∫

[−π,π ]d
e−i(τ,r)dŴn,x(τ )dτ. (5.17)

Given δ > 0, we split [−π, π ]d into three disjoint regions of integration:

[−π, π ]d = Aε ∨ Aε,δ ∨ Aδ
�=
{
τ : |τ | < n−1/2+ε

}
∨
{
τ : n−1/2+ε≤|τ | < δ

}
∨ {τ : |τ | ≥ δ} .

(5.18)

The integral over Aδ could be ignored by the virtue of the following proposition,
which we shall prove in Subsection 5.3:

Proposition 5.6. For every δ > 0 there exists υ = υ(δ) > 0, such that

sup
τ∈[−π,π ]d\(−δ,δ)d

ρS (Liτ ) ≤ 1 − υ. (5.19)

An immediate consequence is that, uniformly in x ∈ S∅ and τ ∈ Aδ ,
|Ŵn,x(τ )| ≤ en log(1−υ). (5.20)

Turning to Aε,δ notice that if δ > 0 is sufficiently small, then iAε,δ ⊂ U , and,
consequently,

Ŵn,x(τ ) = enHn,x (iτ ).

Choosing, if necessary, δ > 0 even smaller, we infer from the analytic expansion
formula (5.11) and the non-degeneracy of Hess (log ρS) (0), that there exists c5 > 0,
such that

|Ŵn,x(τ )| ≤ e−c5n|τ |2 ≤ e−c5n
2ε
, (5.21)

uniformly in x ∈ S∅ and τ ∈ Aε,δ .
Finally, uniformly in τ from the remaining region Aε ,

Ŵn,x(τ )e
−i(τ,r)d (5.15)= exp

{
nHn,x(iτ )− in (τ,∇ log ρS(0))d + o(1)

}

(5.11)= exp
{
−n

2
(ASτ, τ )d + o(1)

}
,

and (5.16) follows.
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Step 2. In order to extend the result to the full range of r ∈ Rn,ν as it has been
asserted in Theorem 5.5, consider the family of “tilted” measures {Wξ

n,x} (indexed
by ξ ∈ U ∩ R

d ):

W
ξ
n,x(r) = e(ξ,r)d

Lξg(x)
Wn,x(r) = exp

{
(ξ, r)d − nHn,x(ξ)

}
Wn,x(r).

The expectation nvn,x(ξ) under the measure W
ξ
n,x is, according to (5.11), given by

the following asymptotic expression:

vn,x(ξ) = ∇ log ρS(ξ)+ 1

n
∇ logχx(ξ)+ o

(
e−c6n

)
.

Since the Hessian Hess(log ρS) is non-degenerate at ξ = 0, we, actually indepen-
dently from x ∈ S∅, can pick a small δ > 0, such that the map ξ �→ vn,x(ξ) has an
analytic inverse on {ξ : |ξ | < δ} ⊂ U . Since, in this case,

Rn,ν ⊂ Range

(
nvn,x(ξ)

∣∣∣|ξ |<δ

)
,

as soon as n is sufficiently large (also uniformly in x ∈ S∅), we are entitled to
introduce the notation

ξn,x = ξn,x(r) = v−1
n,x(r/n) or, equivalently,

r

n
= ∇Hn,x(ξn,x).

(5.22)

Then the analytic implicit function theorem (cf. [DS]) implies that, uniformly in
r ∈ Rn,ν and x ∈ S∅,

ξn,x(r) = A−1
S

( r
n
− ∇ log ρS(0)

)
+ O

(
n−2ν

)
. (5.23)

As a result, we conclude that, uniformly in x ∈ S∅ and r ∈ Rn,ν ,

Wn,x(r) = exp
{
−n

(
(
r

n
, ξn,x(r))d − Hn,x(ξn,x)

)}
W
ξn,x
n,x (r)

(5.11),(5.23)= exp

{
− 1

2n

(
A−1

S (r − n∇ log ρS(0)), (r − n∇ log ρS(0))
)

d

}

× W
ξn,x
n,x (r) (1 + o(1)) .

Finally, by the very choice of the tilt ξn,x(r) in (5.22), the results of Step 1 . apply

to yield the desirable prefactor expression for W
ξn,x
n,x (r). ��
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5.3. Decay off the real axis

In this subsection we establish the claim of Proposition 5.6. The proof involves
three steps:
Step 1. Fredholm spectrum of Liτ

This has been already performed in Subsection 4.3, and by (4.6) of Theorem 4.1,
ρF (Liτ ) < 1 holds for every τ ∈ [−π, π ]d .

Step 2. Spectrum of Liτ for τ �= 0.

Lemma 5.7. Assume that τ �= 0. Then,

ρS (Liτ ) < 1. (5.24)

Proof. If there exists λ ∈ �S (Liτ ) with |λ| ≥ 1, then, by the preceding step, λ is
a Fredholm point and, as such, is, necessarily, an eigenvalue of Liτ . Let hλ ∈ Gθ
be a corresponding eigenfunction;

Liτhλ = λhλ.

Taking the absolute values,

L|hλ| ≥ |λ| |hλ|.

Since L is normalized we, following the line of reasoning employed in Subsec-
tion 4.5, infer that |λ| = 1 as well as that hλ is unimodal, |hλ| ≡ 1. Consequently,
for every x ∈ S∅, every n ∈ N and each z ∈ Sn,

ei
∑n

1(τ,V (zk))d hλ(z, x) = λnhλ(x), (5.25)

and then, taking n→ ∞, conclude that hλ is a multiple of I. In view of (5.25) this
means that (τ, V (z))d is independent of z ∈ S, a contradiction to Assumption A1
of Subsection 5.1. ��
Step 3. Uniform estimate on ρS (Liτ ).

It remains to show that, given δ > 0, the inequality (5.24) holds uniformly
over τ ∈ [−π, π ]d \ (−δ, δ)d . This follows from well known facts on the lower-
semicontinuity of the spectrum. Assume that this is not the case, and there exists a
sequence {τk} ⊂ [−π, π ]d \ (−δ, δ)d and a sequence of numbers λk ∈ �S

(
Liτk

)
,

such that
lim
k→∞

|λk| = 1.

Without loss of the generality we may assume that {τk} converges to some τ �= 0
and {λk} converges to some λwith |λ| = 1. By Lemma 5.7, however, ρS (Liτ ) < 1.
Therefore, λ belongs to the resolvent set ofLiτ . The latter is open, and one can find
an ε > 0, such that the operator norm

‖ (µI − Liτ )−1 ‖θ ≤ ε−1 (5.26)
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for every |µ − λ| ≤ ε. On the other hand, Liτk converges to Liτ in the strong
operator topology: For every f ∈ Gθ ,

‖ (Liτk − Liτ
)
f ‖∞ ≤ ‖f ‖∞

∑

z∈S

∣∣∣1 − ei(τ−τk,V (z))d
∣∣∣φ(z),

where we have introduced the notation

φ(z) = sup
x

eψ(z,x)
(

Notice that by (4.12),
∑

z

φ(z) <∞
)

.

Similarly, using (4.12),

|| (Liτk − Liτ
)
f ||θ ≤ (c3(ψ)‖f ‖∞ + ||f ||θ )

∑

z∈S

∣∣∣1 − ei(τ−τk,V (z))d
∣∣∣φ(z),

with

c3(ψ) = sup
t∈(0,1)

eβt − 1

t
,

and β specified in (4.13). Thus, limk→∞ ‖Liτk −Liτ‖θ = 0 follows by the bound-
ed convergence theorem. As a result, it follows from (5.26) that

(
µI − Liτk

)
is

invertible on {µ : |µ− λ| < ε}, as soon as τk is close enough to τ , which is, of
course, a contradiction. ��
5.4. Perturbation theory of non-degenerate eigenvalues

Let F be a Banach space, F∗ its dual and Bδ ⊂ C be an open ball Bδ =
{z : |z| < δ}.
Definition. A uniformly bounded family of linear operators {T (ξ)}ξ∈D is said to
be holomorphic on Bδ if

∀f ∈ F and ∀f ∗ ∈ F∗ the map ξ �→ (
T (ξ)f, f ∗) is holomorphic in Bδ.

We rely on the following statement of the analytic perturbation theory (cf. [Ka],
Section VII.1.3 ):

Let {T (ξ)} be a holomorphic family of operators on Bδ , and assume that λ =
λ(0) is a non-degenerate eigenvalue of T (0). Then given a closed contour � with
ext(�) ∩�S (T (0)) = {λ}, there exists ε ∈ (0, δ), such that:

1) For every T (ξ) with |ξ | < ε, there is exactly one spectral point λ(ξ), such that
{λ(ξ)} = ext(�) ∩�S (T (ξ)).

2) λ(ξ) is a non-degenerate eigenvalue of T (ξ) and the map ξ �→ λ(ξ) is analytic
on Bε .

We use this result in the following way: By (5.4) the family of operators {Lξ } on Gθ
is holomorphic on Bδ for some δ > 0. According to Theorem 4.1, λ(0) = ρS(L)

is a non-degenerate eigenvalue of L = L0 and, moreover, there exists ν > 0, such

that the exteriour of �ν
�= {z ∈ C : |z| = (1 − 2ν)ρS(L)} satisfies

ext (�ν) ∩�S (L0) = {λ(0)}.



Ornstein-Zernike theory for finite range Ising models above Tc 347

Consequently, there exists ε > 0 and an analytic function λ(ξ) on Bε , such that

for every |ξ | ≤ ε the number λ(ξ)
�= ρS(Lξ ) is a non-degenerate eigenvalue ofLξ ,

|λ(ξ)− λ(0)| < ν, and

ext (�ν) ∩�S
(
Lξ
) = {λ(ξ)}.

It follows that the family of projectors

PLξ
�= I + 1

2πi

∮

�ν

(
µI − Lξ

)−1 dµ

is analytic on Bε , and so is the family

χx(ξ)
�= PLξ g(x),

which shows up in the statement of Lemma 5.3. Since infx Lg(x) > 0, we can,
if necessary, choose ε so small that {χx(ξ)} is, uniformly in x ∈ S∅ and ξ ∈ Bε ,
bounded away from zero. All the conclusions of Lemma 5.3 are, thereby, verified.
Furthermore, for every ξ ∈ Bε and x ∈ S∅,

Lnξg(x) = χx(ξ)ρ
n
S(ξ) + o

(
(1 − ν)n|ρS(ξ)|n

)
.

The expansion (5.11) follows.

5.5. Non-degeneracy of Hess (log ρS) (0).

One has to show that there exists a positive α > 0, such that the variance

(
Hess(Hn,x)l, l

)
d

= 1

n
Varn,x

(
n∑

k=1

(V (zi), l)d

)

≥ α|l|2,

uniformly in n, x ∈ S∅ and l ∈ R
d . This follows from the conditional variance

argument based on the assumptions A1, A2 and the Hölder upper bound (4.12).
Indeed, let n = km+ l. Then,

Varn,x

(
n∑

i=1

(V (zi), l)d

)

≥ min
z̄j∈S j �=0 mod(m)

Varn,x

(
k∑

i=1

(V (zim), l)d | zj = z̄j

)

However the conditional variances of the variables V (zim) are, uniformly in {z̄j },
bounded away both from zero and ∞, whereas the correlation coefficient between
different V (zim)’s decays to zero exponentially fast with m. ��
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[Al] Alexander, K.S.: Approximation of subadditive functions and convergence rates
in limiting-shape results, Ann. Prob. 25, 30–55 (1997)

[Bow] Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomor-
phisms, LNM 470, Springer Berlin 1975

[Br] Bressaud, X.: Subshifts on an infinite alphabet, Ergodic Theory Dynam. Systems
19, 1175–1200 (1999)
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