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Abstract. The well known convergence of the spectrum of large random symmetric matri-
ces, due to Wigner, holds for products of correlated symmetric matrices with general entries.
The limiting moments coincide with weighted enumeration of permutations, or of rooted
trees. When the correlations are Markovian, the limiting first moments are closely related
to Carlitz-Riordan q-Catalan numbers. As a consequence, these moments asymptotically
exhibit a phase transition, with respect to the correlation coefficient. The critical correlations
can be computed as the least positive zero of q-hypergeometric functions. Similar methods
allow to recover some results due to Logan, Mazo, Odlyzko and Shepp.

1. Introduction

Wigner (1955, 1957, 1958) proved that the spectral measure of a wide class of sym-
metric random matrices of dimension N converges, in the N → ∞ limit, to the
semicircle law. Since then, this observation has been extended to numerous classes
of matrices, and often completed by central limit theorems. More recently, large
deviations principles have been derived, see Ben Arous and Guionnet (1997) and
Guionnet and Zeitouni (2000). The literature on the subject is too rapidly expanding
to allow for completeness, and we advise the interested reader to consult the two
above-mentioned papers for references.

Broadly speaking, two strategies are used to study random large matrices. Either
one starts from an explicit formula that gives the distribution of the spectrum, if one
is available, as for example in Gaussian settings. Otherwise, one has to go back to
Wigner’s original technique and enumerate the terms of some relevant expansions.
This paper falls in the latter category and proves that an analogue of Wigner’s result
holds for some products of, possibly non Gaussian, correlated symmetric matrices.
In the definition below, the laws of the entries γi,j are not required to be Gaussian
or symmetric.

Definition 1. TheN -dimensional random matrices�N := (γi,j )1≤i,j≤N are called
reduced Wigner matrices if the following holds:
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• Each �N is symmetric, that is, γi,j = γj,i .
• For i ≤ j , the random variables γi,j are independent and centered.
• For i �= j , E(γ 2

i,j ) = 1.
• For any n ≥ 2, E(|γi,j |n) ≤ cn, where cn is independent of i ≤ j .

The sequence �N(k) := (γi,j (k))1≤i,j≤N of N -dimensional random matrices, in-
dexed by k ≥ 1, is called a reduced Wigner process of correlation ρ, with |ρ| ≤ 1,
if the following holds:

• Each �N(k) is a reduced Wigner matrix, and the sequence (cn)n of the last point
above is uniform in k.

• For i ≤ j , each process (γi,j (k))k is independent of the others.
• For i �= j , the process (γi,j (k))k is ρ–correlated, that is, for any k ≥ m,

E(γi,j (k)γi,j (m)) := ρk−m. (1)

A Wigner matrix (or process) of variance σ 2 is defined as being σ times a reduced
Wigner matrix (or process).

Remark 2. If ρ = 0, (�N(k))k is an i.i.d. sequence of Wigner matrices. If ρ = 1,
the matrices�N(k) are all equal to the same Wigner matrix�N(1). For any |ρ| ≤ 1,
the correlation structure (1) entails a Markovian dependence, since one can realize
a ρ–correlated Wigner process �N from an i.i.d. sequence (�N(k))k of Wigner
matrices, as �N(1) := �N(1) and, for k ≥ 1,

�N(k + 1) := ρ �N(k)+ (1 − ρ2)1/2�N(k + 1).

However, see Remark 6 in Section 2.2 for more general correlations. �

The normalization of the entries in Definition 1 implies that Wigner matrices

scale like N1/2. Introduce the products of reduced Wigner matrices

QNk := N−k/2
k∏
m=1

�N(m),

and their spectral measure

µNk := N−1
∑
λ

δλ,

where the sum is over the N eigenvalues λ of QNk . The first order behaviour of
(QNk )

� is described by its mean normalized trace, that is,

N−1
E(tr(QNk )

�) =: BNk,�(ρ).

One sets BNk (ρ) := BNk,1(ρ) and µN := µN1 . The case ρ = 1 is Wigner’s case

since then, QNk = N−k/2 �N(1)k and �N(1) is a Wigner matrix. Thus, BNk,�(1) is
the mean of the (k�)th moment of µN . Wigner solved this case, showing that the
numbersBNk (1) converge to the moments of the now famous semicircle distribution

ν1(dw) := (2π)−1(4 − w2)1/21|w|≤2 dw, (2)
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whose odd moments are zero and even moments are the Catalan numbers

Ck := (2k)!

k! (k + 1)!
. (3)

Wigner assumed that the random variables γi,j have symmetric laws, but this as-
sumption is not necessary.

When the reduced Wigner process (�N(k))k is Gaussian and under the ad-
ditional assumption that E(γi,i (k)

2) = 2, Khorunzhy (2001) proved in a recent
preprint that BNk (ρ) converges for any ρ ∈ [0; 1], whenN → ∞, and he proposed
a combinatorial interpretation of the nonzero limits B2k(ρ).

On the other hand, Logan, Mazo, Odlyzko and Shepp (1983), denoted by LMOS
below, studied a similar problem, in dimension N = 1 and in the Gaussian case,
that we describe now. Let (γk)k denote a one-dimensional Gauss-Markov process,
that is, a stationary centered Gaussian process, of covariance

E(γkγm) := σ 2 ρk−m,

for any integers k ≥ m, where σ 2 > 0 and |ρ| ≤ 1. The polyspectrum of γ is
defined as

E(γ1 · · · γk) =: σk Ak(ρ).

Each A2k+1(ρ) is zero, since γ1 · · · γ2k+1 is centered. LMOS motivate their study
of the asymptotics of A2k(ρ) when k → ∞, by the fact that γ1 · · · γk is a toy
model of the product of noncommuting correlated matrices, which arise in the
analysis of learning curves for adaptive systems. LMOS write the generating series
of (A2k(ρ))k as a continued fraction. This representation yields the existence of
a critical value ρA such that A2k(ρ) → 0 exponentially fast if ρ ∈ [0; ρA) and
A2k(ρ) → ∞ exponentially fast if ρ ∈ (ρA; 1]. Finally, LMOS estimate numeri-
cally

ρA � .563007169.

2. Results

We study the N → ∞ limit of the spectral measures µNk . We prove that, for fixed
k ≥ 1, � ≥ 1 and |ρ| ≤ 1, the �th momentBNk,�(ρ) ofµNk converges whenN → ∞
to a limit Bk,�(ρ). This, and other considerations, imply that µNk converges weak-
ly, in probability, to a deterministic measure νk,ρ , with bounded support. A new
phenomenon due to the correlation structure arises, namely a phase transition for
the limiting first moments Bk(ρ) := Bk,1(ρ). For large values of ρ, Bk(ρ) → ∞
when k → ∞, for smaller values of ρ, Bk(ρ)→ 0.

Our methods are primarily combinatorial and they mimick Wigner’s original
one. As mentioned above, no Gaussianity or symmetry is required. About the hy-
potheses in Definition 1, see Remark 6 in Section 2.2. We write every limiting
moment as a weighted enumeration of involutions or, alternatively, of rooted pla-
nar trees. In general, the generating functions considered are continued fractions,
and in fact, the first moments are linked to well known combinatorial objects, called
q-Catalan numbers. The next sections state our mathematical results.
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2.1. Convergence of the first moments

We first give a direct proof of the convergence of BNk (ρ) when N → ∞, see The-
orem 1 below, recovering Khorunzhy’s result about the Gaussian case in a simpler
way. (Additionally, we correct some misprints that mar Khorunzhy (2001).) We find
that the limits B2k+1(ρ) = 0 and that B2k(ρ) is related to some q-analogue Ck(q)
of the Catalan numbers Ck , introduced by Carlitz and Riordan (1964), through the
simple formula

B2k(ρ) = ρk Ck(q) for q := ρ2. (4)

To prove this, we use a general correspondence, systematized by Flajolet (1980), that
links Stieltjes continued fractions and some enumerations of marked lattice paths.
Thus, we exhibit some family of paths thatB2k(ρ) enumerates. This is based on well
known bijections between sets of permutations and sets of lattice paths, and yields
immediately the generating functions of B2k(ρ) as an explicit continued fraction.

The same idea works in the one-dimensional case that LMOS established. We
give a direct proof that the generating function of (A2k(ρ))k is indeed the continued
fraction that LMOS exhibited, see Equation (12) in Section 6. The paths thatA2k(ρ)

and B2k(ρ) enumerate are called Dyck paths by combinatoricians and Bernoulli
excursions by probabilists, see Takacs (1991) for instance. Theorems 1, 2 and 3
below use definitions of Section 3.1, that we recall briefly in the statement of the
theorems.

Theorem 1. Let J (n) denote the set of the involutions of {1, 2, . . . , n} with no fixed
points and no crossing, D(σ) the diameter of σ , D(n) the set of the Dyck paths
of length n, and Area(c) the area under the Dyck path c. Then, when N → ∞,
BN2k+1(ρ) converges to zero, and BN2k(ρ) converges to

B2k(ρ) :=
∑

σ∈J (2k)
ρD(σ) =

∑
c∈D(2k)

ρArea(c).

Recall that we do assume in dimension one the Gaussian distribution.

Theorem 2. Let I(2k) denote the set of the involutions of {1, 2, . . . , 2k} with no
fixed points and, for c ∈ D(2k), denote desc(c) := {n; cn = cn−1 − 1}. Then,

A2k(ρ) =
∑

ρ∈I(2k)
ρD(σ) =

∑
c∈D(2k)

ρArea(c)
∏

n∈desc(c)

cn−1. (5)

2.2. Convergence of the spectral measures

The method outlined above yields the convergence of BNk,� as well, see Theorem 3.
This establishes the full analogue of Wigner’s result.

For any involution σ ∈ I(2n) with n ≥ 1, denote by D(k, σ ) the diameter
modulo k of σ , that is,

D(k, σ ) := 1

2

2n∑
i=1

|{i}k − {σ(i)}k|,

where {i}k ∈ {1, 2, . . . , k} and {i}k is congruent to i modulo k.



578 Ch. Mazza, D. Piau

Theorem 3. WhenN → ∞,µNk converges weakly, in probability, to a determinis-
tic measure νk,ρ . The �th moment Bk,�(ρ) of νk,ρ is the limit of BNk,�(ρ), and equals
the following weighted enumeration of involutions:

Bk,�(ρ) :=
∑

σ∈J (k�)
ρD(k,σ ).

Remark 3. If (�N(k))k is a Wigner process of correlation ρ, then the process
((−1)k �N(k))k is Wigner of correlation (−ρ). Hence,

B2k(−ρ) = (−1)k B2k(ρ), A2k(−ρ) = (−1)k A2k(ρ).

Likewise, ν2k+1,−ρ = ν2k+1,ρ , and ν2k,−ρ is the law of (−1)k times a random
variable of law ν2k,ρ . Thus, one can, and we will, assume that ρ ∈ [0; 1]. �

Remark 4. Special cases of Theorem 3 are as follows. When k� is odd, J (k�) is
empty andBk,�(ρ) = 0. Thus, the odd moments of ν2k+1,ρ are zero, that is, ν2k+1,ρ
is symmetric with respect to the origin. When ρ ≥ 0, all the moments of ν2k,ρ are
real positive. The support of νk,ρ is a subset of the disc |w| ≤ 2k . Assume that
Wigner’s law ν1 defined by Equation (2) is the law ofW . Then, ν1,ρ = ν1 and νk,1
is the law of Wk (both results are consequences of Wigner’s case), and ν2,ρ is the
law of ρ W 2 (see Remark 13 in Section 4.2). �

Remark 5. When |ρ| < 1, QNk is not symmetric for k ≥ 2. However, the crucial
relation ∫

w� dµ(w) = N−1 tr(Q)�

is valid for any matrix Q of normalized spectral measure µ. To see this, use the
triangular formQ = PT P−1 ofQ, where T is (upper) triangular and the diagonal
elements of T are the eigenvalues ofQ. �

Remark 6. Our proofs reveal that the hypotheses in Definition 1 can be relaxed.
The law of γi,j in �N may vary with N , as long as E(γ 2

i,j )→ σ 2 when N → ∞,
uniformly in i and j , and

E(|γi,j |k) ≤ ck N(k/2)−1

for every k ≥ 2, where ck is uniform in N , i and j . Similar modifications are
possible as regards Wigner processes.
One can also consider other correlation structures. Namely, replace (1) by the more
general

E(γi,j (k)γi,j (m)) := σ 2 c(k,m),

where c(·, ·) is a correlation function. In particular, c(k, k) = 1, |c(k,m)| ≤ 1 and
c(k,m) = c(m, k). Then, Theorem 1 holds with

B2k := σ 2k
∑

σ∈J (2k)

∏
i

c(i, σ (i)),



Products of correlated symmetric matrices and q-Catalan numbers 579

and Theorem 3 holds with

Bk,� := σk�
∑

σ∈J (k�)

∏
i

c({i}k, {σ(i)}k),

where each product runs over the integers i such that i < σ(i). In the rest of the
paper, we refrain from looking for the weakest possible hypotheses. �

Remark 7. The objects and the methods of this paper are clearly related to noncom-
mutative probability, see Voiculescu, Dykema and Nica (1992) and Speicher (1990)
for instance. We do not pursue this idea here. �


2.3. Asymptotics of the moments

To get some insight about the first order behaviour of νk,ρ , we turn to the asymptotic
behaviour of (B2k(ρ))k . A useful fact here is that Ramanujan wrote the generating
function ofCk(q) as the ratio of two q-hypergeometric functions, see Equations (8)
and (9) in Section 3.3.

We prove that (B2k)k≥0 exhibits a phase transition in the following sense: there
exists a critical value ρB ∈ (0; 1), such that

• B2k(ρ)→ 0 exponentially fast for ρ ∈ [0; ρB),
• B2k(ρ)→ ∞ exponentially fast for ρ ∈ (ρB; 1].

Theorem 4. For any ρ ≥ 0, (B2k(ρ))
1/k converges to β(ρ) ≥ 0 as k → ∞. If

ρ > 1, β(ρ) = +∞. On the interval [0; 1], β is continuous and strictly increasing.
Finally, β(0) = 0 and β(1) = 4.

Corollary 8. If σ 2 ∈ [0; 1/4], σ 2k B2k(ρ)→ 0 for every ρ ∈ [0; 1].
If σ 2 > 1/4, there exists a unique ρB(σ 2) ∈ (0; 1), such that σ 2k B2k(ρ) converges
to +∞ if ρ > ρB(σ 2), and to 0 if ρ < ρB(σ 2).
The critical value ρ = ρB(σ 2) solves

σ 2 β(ρ) = 1.

For instance, ρB := ρB(1) ∈ (.660; .683).

Further properties of β are in Section 5. In Section 3.3, we write β = β(ρ) as
the largest root of F(ρ2, ρ/β) = 0 for a given q-hypergeometric function F . This
reads ∑

k≥0

(−1)k ρ2k2−k β−k/(ρ2)k = 0.

From the implicit functions theorem for analytic functions, β is real analytic on
[0; 1). The critical value ρ = ρB(σ 2) is the root of smallest modulus of the explicit
q-series F(ρ2, ρσ 2) = 0. Very few terms of this q-series yield accurate numerical
estimations, such as

ρB � .662901485.
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Remark 9. In terms of the diameter ek,ρ of the support of the measure νk,ρ , one
should have e2k,ρ → 0 for ρ < ρB and e2k,ρ → ∞ for ρ > ρB . However, this
supposes to interchange the limits N → ∞ and k → ∞, something we have not
checked. �

Remark 10. The limit γ (q) of Ck(q)1/k exhibits no phase transition as in Theo-
rem 4, since, for instance, our proofs imply that

Ck(q) ≥ (1 + q)k−1.

On the other hand, introduce the generating function C(q, z) of the sequence
(Ck(q)) (see Section 3.3). From Odlyzko and Wilf (1988), the coefficient of qk

in the expansion of C(q, q) as a series of powers of q behaves like (qOW)
−k , with

qOW � .5761487699142756.

Thus, the radius of convergence ofC(q, q) is qOW. In other words, putting together
these results, using the monotonicity of Ck(q) with respect to q and its submulti-
plicativity with respect to k, see Lemma 16 below, one gets that (ρB)2 ≤ qOW < ρB
and

• if q < (ρB)2, then Ck(q) ≤ (ρB)−k ≤ q−k/2 and γ (q) ≤ ρ−1
B ≤ q−1/2,

• if q < qOW, then Ck(q) ≤ (qOW)
−k ≤ q−k and γ (q) ≤ q−1

OW ≤ q−1,
• if q ≤ 1, then Ck(q) ≤ 4k and γ (q) ≤ 4.

Although q-Catalan numbers are classical combinatorial objects, such quantifica-
tions of their asymptotic behaviour do not seem customary. �


The situation in dimension one is quite similar. We know from LMOS that
(A2k)k exhibits a phase transition. Theorem 5 includes this result.

Theorem 5. For any ρ ≥ 0, (A2k(ρ))
1/k converges to α(ρ) ≥ 0 as k → ∞. If

ρ ≥ 1, α(ρ) = +∞. On the interval [0; 1), α is continuous and strictly increasing.
Finally, α(0) = 0 and α(1−) = +∞.
For any σ 2 �= 0, there exists a unique ρA(σ 2) ∈ (0; 1), such that σ 2k A2k(ρ)

converges to +∞ if ρ > ρA(σ 2), and to 0 if ρ < ρA(σ 2). The critical value
ρ = ρA(σ 2) solves

σ 2 α(ρ) = 1.

For instance, ρA := ρA(1) ∈ (.543; .619).

We conjecture that α is real analytic on [0; 1). The fact that α(ρ) is infinite for
ρ ≥ 1 comes from the exact expression

A2k(1) = (2k)!

2k k!
.

Theorem 5 provides the behaviour of E(γ1 · · · γ2k) for any σ 2. Recall that, for
σ 2 = 1, LMOS estimate numerically

ρA � .563007169.
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We have not been able to treat the continued fraction of LMOS, see Equation (12)
in Section 6, like the generating series ofB2k(ρ), see Equation (8) in Section 3.3, so
as to get its exact radius of convergence. In this respect, and somewhat ironically,
the N → ∞ limit is easier to handle than the one-dimensional case that LMOS
had set out to solve as “a valuable guide to more realistic situations.”

However, and in a somewhat different direction, we provide in Sections 5 and
6 explicit geometric bounds of A2k(ρ) and Ck(q), valid for every finite k ≥ 1.
This yields direct proofs of some numerical values stated in our theorems, and
more generally, by inversion, bounds of ρA(σ 2) and ρB(σ 2) for every σ 2. Finally,
we provide in Section 7 additional bounds of γ (q) and α(ρ), deduced from the
continued fraction representations.

The rest of the paper is organized as follows. Section 3 provides a quick remind-
er of the combinatorial objects that we use in our proofs, mainly involutions and
Dyck paths, the bijections between them, and some well known continued fractions
that are related to q-Catalan numbers. Section 4 proves Theorems 1 and 3. Sec-
tion 5 starts the asymptotic study of the numbers B2k(ρ), thus proving Theorem 4.
The same study is achieved in Section 6 for the numbers Ak(ρ) and Theorem 5.
Section 7 complete this with further asymptotic results. For the convenience of
the reader, we finally provide in Section 8 the probably well known proof of an
integration by parts formula for Gaussian vectors, used in Section 6.

3. Combinatorial tools

3.1. Involutions and Dyck paths

We use the following notations. For k ≥ 1, [k] := {1, 2, . . . , k}, I(k) is the set
of the involutions of [k] with no fixed point, J (k) is the subset of I(k) of the
involutions σ with no crossing. This means that the configurations

i < j < σ(i) < σ(j)

do not appear in σ ∈ J (k). For odd values of k, I(k) and J (k) are empty.

Definition 11. Let i ∈ cr(σ ) denote the fact that i < σ(i). Let D(σ) denote the
diameter of σ , that is, the sum of the diameters of its cycles. When σ ∈ I(2k), σ
has only 2-cycles, thus

D(σ) :=
∑
i∈cr(σ )

σ (i)− i = 1

2

2k∑
i=1

|i − σ(i)|.

Let D(2k) be the set of the Dyck paths of length 2k, that is, of the sequences
c := (cn)0≤n≤2k of nonnegative integers such that

c0 = c2k = 0, cn − cn−1 = ±1, n ∈ [2k].

Thus, exactly k indices n ∈ [2k] correspond to ascending steps (cn−1, cn), that is,
to steps when cn = cn−1 + 1. We denote this by n ∈ asc(c). The k others indices
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correspond to descending steps, that is, to steps when cn = cn−1 −1, and we denote
this by n ∈ desc(c). For odd values of k, let D(k) denote the empty set. Let Area(c)
denote the area under the path c, that is,

Area(c) := c1 + c2 + · · · + c2k.
Finally, M(2k) is the set of the marked Dyck paths (c, a), where c ∈ D(2k) and
the sequence a := (an)1≤n≤2k is a mark of c, that is

if n ∈ asc(c), an = 1,

if n ∈ desc(c), an ∈ [cn−1].

3.2. Bijections

We make use of bijections between D(2k) and J (2k), and between M(2k) and
I(2k). Their construction is in Biane (1993) and we rephrase it slightly for our
purposes.

If c ∈ D(2k), ψ(c) := σ ∈ J (2k) is an involution which maps each element
of desc(c) to a smaller element of asc(c). Thus, cr(σ ) = asc(c). More specifically,
if n ∈ desc(c), σ(n) is the greatest m ≤ n such that (cm−1, cm) = (cn, cn−1). This
defines a bijection ψ : D(2k)→ J (2k), such that

Area(c) = D(σ).
In fact, ψ is the restriction of a bijection ϕ : M(2k) → I(2k), that we describe
now. Here again, ϕ(c, a) := σ is such that,

if n ∈ desc(c), then σ(n) ∈ asc(c) and σ(n) < n. (6)

Since c ≥ 0, asc(c)∩[n] has greater cardinality than desc(c)∩[n], for any n ∈ [2k].
If n ≥ 2 is the first element of desc(c), [n− 1] ⊂ asc(c), and one sets

σ(n) := an ∈ [cn−1] = [n− 1].

More generally, let n ∈ desc(c). For any choice of the images of the preceding
descents which respects the rule (6), a careful enumeration of [n − 1] shows that
there remains exactly cn−1 ascents before n that are not the image of a descent
before n. Choose the anth greatest ascent before n as σ(n).

Since one can reconstruct (c, a) from σ , the map ϕ is a bijection. If a is min-
imal, that is, if an = 1 for every n, then ϕ(c, a) = ψ(c). Finally, D(ϕ(c, a)) is
independent of a. Thus,

D(ϕ(c, a)) = D(ψ(c)) = Area(c).

3.3. Continued fractions and q-Catalan numbers

Recall that the generating series of the ordinary Catalan numbers Ck , defined by
(3), is
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C(z) :=
∑
k≥0

Ck z
k = (1 − (1 − 4z)1/2)/(2z).

This follows easily from C0 = 1 and from the recursion relation

Ck+1 =
k∑
n=0

Cn Ck−n.

For any |q| ≤ 1, Carlitz and Riordan (1964) uniquely define q-Catalan numbers
Ck(q) by C0(q) := 1 and

Ck+1(q) :=
k∑
n=0

qn Cn(q) Ck−n(q). (7)

For instance,

C1(q) = 1, C2(q) = 1 + q, C3(q) = 1 + 2q + q2 + q3,

and the usual Catalan numbers are Ck = Ck(1). The q-Catalan generating function
satisfies

C(q, z) :=
∑
k≥0

Ck(q) z
k = 1 + z C(q, z) C(q, qz).

Iterating this equation yields C(q, z) as a continued fraction. To state this, let
[z] := z and

[z1, z2, . . . , zk] := z1

1 − [z2, . . . , zk]
.

Note the minus sign in the denominator. Let [z1, z2, . . .] denote the limit of
[z1, z2, . . . , zk] when k → ∞, if this limit exists. Finally, let (q)0 = 1 and
(q)k = (q)k−1 (1 − qk). Then, C(q, z) is the generalized Rogers-Ramanujan con-
tinued fraction, that is,

C(q, z) = [1, z, qz, q2z, . . . , qkz, . . .]. (8)

From chapter 7 of Andrews (1976), this is the ratio of two q-hypergeometric func-
tions, that is, C(q, z) = F(q, qz)/F (q, z), where

F(q, z) :=
∑
k≥0

(−1)k qk
2−k zk/(q)k. (9)

4. Spectral measures by enumeration

We prove Theorem 1 in a detailed way and Theorem 3 more quickly. Both proofs
follow Wigner’s combinatorial argument.
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4.1. Proof of Theorem 1

The mean non normalized trace adds the numbers

t (i) := E(γi0i1(1)γi1i2(2) · · · γi2k−1i2k (2k)),

for the sequences i := (in)0≤n≤2k in [N ] such that i0 = i2k . Since the involved
random variables are centered, we can assume that each edge (j, j ′) of [N ] × [N ],
together with the reversed edge (j ′, j), does not appear at all, or appears at least
twice in t (i). Let s(i) denote the support of i, that is,

s(i) := {in ; 0 ≤ n ≤ 2k}.
The contribution t (i) is invariant by conjugacy, that is, t (i) = t (i′) if there
exists a bijection from s(i) to s(i′) that sends in to i′n for any n. There exist
N (N − 1) · · · (N − s + 1) ≤ Ns sequences in the conjugacy class of i, where
s is the cardinality of s(i), and the total number of conjugacy classes is finite and
fixed with k. Since BNk (ρ) involves a normalization by N1+(k/2), the classes such
that s ≤ (1 + k)/2 disappear in the N → ∞ limit. This implies that the limit is
zero when k is odd. From now on, we consider BN2k(ρ).

The remaining sequences i involve exactly 1 + k different elements in in [N ].
Each pair {j, j ′} in the sequence i is such that j �= j ′ and it appears once as
(j, j ′) = (in−1, in) and once as (j ′, j) = (im−1, im) with m > n. Thus,

E(γj,j ′(n)γj ′,j (m)) = ρm−n.

The unique involution σ ∈ I(2k) such that σ(n) := m for the couples (n,m) that
are described above characterizes the conjugacy class of i, and, from the definitions,

t (i) = ρD(σ).
Consider the undirected graph g(i) whose vertices are the elements of s(i) and
whose edges are the pairs {j, j ′} that appear in i. Viewed as a directed path on s(i),
the sequence i performs a walk on g(i) that crosses twice every edge. Since the
cardinality of s(i) is k + 1, g(i) has no cycle. Thus, i performs the standard (left
most, say) walk on the tree g(i), rooted at i0, see Takacs (1991) for instance.

Viewing the (conjugacy class of the) sequence i as the Bernoulli excursion
c ∈ D(2k) which is encoded by σ = ψ(c), this shows that B2k(ρ) is the sum over
σ ∈ J (2k) of ρD(σ), or the sum over c ∈ D(2k) of ρArea(c). This ends the proof of
Theorem 1.

4.2. Proof of Theorem 3

A nice feature of the problem is that µNk and E(µNk ) are asymptotically close, in
the N → ∞ limit. We begin with E(µNk ), and write the trace of (QNk )

�, as in the
proof of Theorem 1. Due to the normalization by N1+(k�)/2, the remaining terms
correspond to walks on rooted tree on (k�)/2 edges and 1 + (k�)/2 nodes, every
edge {j, j ′} appearing twice, at some time instants n < m. Hence, k�must be even
and we assume this below. The only difference with Theorem 1 is the contribution
of (n,m) to the correlation. To study this, we need one more definition.
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Definition 12. For i ≥ 1, let {i}k denote the unique integer in [k] such that k
divides i − {i}k . Introduce the diameter D(k, σ ) modulo k of σ as

D(k, σ ) := 1

2

∑
i

|{i}k − {σ(i)}k|.

For instance, if σ ∈ J (k), {i}k = i for any i ∈ [k], hence D(k, σ ) = D(σ).
Each product considered above can be decomposed into � blocks of size k. If

both time instants n and m belong to the same block, the contribution of (n,m) is
ρm−n. If n and m belong to different blocks, their contribution is

ρ|{m}k−{n}k |.

Thus, the moment of order � of µNk converges to

Bk,�(ρ) :=
∑

σ∈J (k�)
ρD(k,σ ).

The moments Bk,�(ρ) specify a unique distribution, for example because Carl-
eman’s condition holds trivially, since

Bk,�(ρ) ≤ Bk,�(1) = Ck�/2 ≤ 2k�.

To end the proof of Theorem 3, it remains to check that the variance of any integral
with respect to µNk goes to zero as N → ∞. From Bienaymé-Chebychev bound,
this would imply that µNk and E(µNk ) have the same weak limit, in probability. Fix
� ≥ 1, and letQN := (QNk )�. One has to show that

E((trQN)
2)− E(trQN)

2

goes to zero when N → ∞. Without the normalization by N2+k�, this is the sum
over all the paths i and j of length k�, such that i0 = ik� and j0 = jk�, of the
correlations

E(t (i) t (j))− E(t (i))E(t (j)).

There are two classes of couples (i, j). First, paths i and j can have no common
edge. Then, t (i) and t (j) are independent and the correlation is zero. Second, there
can exist at least one edge, common to i and j . This leaves N times less choices
for i and j , meaning at most N1+k� possible couples. Because one normalizes by
N2+k�, this contribution vanishes, when N → ∞, and the proof is complete.

Remark 13. Consider the special cases k = 1 and k = 2. First, {·}1 = 1, hence
D(1, ·) = 0. Thus, B1,� is the cardinality of J (�), that is, zero if � is odd, and C�/2
if � is even. This describes ν1. Turning to the case k = 2, note that {2i + 1}2 = 1
and {2i}2 = 2 for any i. For any σ ∈ J (n), the pairs {i, σ (i)} are made of integers
of opposite parities. Thus,

D(2, σ ) = �,
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for any σ ∈ J (2�), and B2,�(ρ) is ρ� times the cardinal of J (2�), that is,

B2,�(ρ) = ρ� C�.
Recall thatW denotes a random variable of law ν1, defined by (2), whose moments
are given by B2� = C� and B2�+1 = 0. Thus, ν2,ρ is the distribution of ρ W 2. �

Remark 14. The supremum ek,ρ of the support of νk,ρ is

lim
�→∞

B
1/2�
k,2� (ρ),

thus ek,ρ ≤ 2k . This bound is obvious from the fact that the support of the semicir-
cle law ν1 is [−2, 2]. Can one compute ek,ρ in the general case? One knows that
ek,1 = 2k , e1,ρ = 2 and e2,ρ = 4ρ. Can one show that the support of νk,ρ is (a
subset of ) the interval [0; ek,ρ] or [−ek,ρ; ek,ρ] of the real line, depending on the
parity? �

5. Phase transition for q-Catalan numbers

The starting point to the asymptotic study ofB2k(ρ) is Lemma 15, that linksB2k(ρ)

to q-Catalan numbers.

Lemma 15. Setting B0(ρ) := 1, for any k ≥ 0,

B2k+2(ρ) =
k∑
n=0

ρ2n+1 B2n(ρ) B2k−2n(ρ). (10)

Proof of Lemma 15. Decompose the sum that definesB2k+2(ρ) in Theorem 1 along
the values of σ(1). Due to the non crossing property, σ(1) = 2n + 2 for a giv-
en 0 ≤ n ≤ k. Then, σ is the juxtaposition of three pieces, namely, the cycle
{1, 2n+ 2}, which has diameter 2n+ 1, the restriction σ− of σ to {2, · · · , 2n+ 1},
which corresponds to a given involution of J (n), and the restriction σ+ of σ to
{2n+ 3, · · · , 2k+ 2}, which corresponds to a given involution of J (k− n). When
n = 0 or n = k, σ− or σ+ does not appear, and we set D(σ−) = 0 or D(σ+) = 0.
Then, for any n,

D(σ) = 2n+ 1 +D(σ−)+D(σ+),
a fact which implies (10). �


Thus, B2k is a polynomial function of ρ ≥ 0, of valuation k, degree k2, with
nonnegative integer coefficients. A direct consequence of Equations (10) and (7)
is Equation (4) in Section 2.1. We now prove Theorem 4 and Corollary 8. See
Remark 19 below for additional properties of β.

Lemma 16. The sequences (A2k)k , (B2k)k and (Ck)k are submultiplicative, in the
following sense. For Dk := A2k or Dk := B2k or Dk := Ck , and for u ≥ 0,

Dk+m(u) ≥ Dk(u)Dm(u).
Thus,A2k(ρ)

1/k → α(ρ),B2k(ρ)
1/k → β(ρ) andCk(q)1/k → γ (q), where α(ρ),

β(ρ) and γ (q) are defined on [0; +∞) and valued in [0; +∞]. Finally,

β(ρ) = ρ γ (ρ2).
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Lemma 17. For q ∈ [0; 1) and k ≥ 1,

(1 + q)k−1 ≤ Ck(q) ≤ γ2(q)
k−1, (11)

where γ2(q) is the unique positive solution of γ 2 − γ = q/(1 − q).
Thus, γ2(q) ≤ (1 − q)−1.

Corollary 18. For any q < 1 and any ρ < 1,

(1 + q) ≤ γ (q) ≤ γ2(q) ≤ (1 − q)−1,

ρ (1 + ρ2) =: β1(ρ) ≤ β(ρ) ≤ β2(ρ) := ργ2(ρ
2) ≤ ρ/(1 − ρ2).

Remark 19. The function β(ρ)/ρ is nondecreasing. Thus, for any ρ ∈ [0; 1],
ρ ≤ β(ρ) ≤ 4ρ. Using results of this section and of Section 7, this is refined,
for ρ ∈ [0; 1), by

β1(ρ) ≤ β(ρ) ≤ 2 β1(ρ), β(ρ) ≤ β2(ρ),

with

β1(ρ) := ρ(1 + ρ2), β2(ρ) := 1

2
ρ

(
1 +

(
1 + 3ρ2

1 − ρ2

)1/2
)
.

Thus, β(ρ) = ρ + ρ3 + O(ρ7) when ρ → 0+. (See Remark 27 in Section 7 for
more about this.) The best upper bound of β is β2 for values of ρ up to a certain
value, and 2β1 for higher values of ρ. The value β(1) = 4 comes from the exact
expression of B2k(1) = Ck , the usual kth Catalan number. Finally, one can prove
that the critical point ρ = ρB is the unique solution of the equation∑

k≥0

ρ2k+1B2k(ρ) = 1.

�


Proof of Theorem 4. From (7), Ck(q) is nondecreasing. Hence, for any ρ ≥ ρ′,
β(ρ) ≥ β(ρ′) ρ/ρ′, and β is strictly increasing.

Assume that ρ > 1. Iterating the inequality Ck+1(q) ≥ qk Ck(q), which is a
byproduct of (7), one gets Ck+1(q) ≥ qk(k−1)/2. Thus, B2k(ρ) ≥ ρk2

and β(ρ) is
infinite. We assume now that ρ < 1 and we consider Ck(q).

We first show that γ (q) → 4 when q → 1. Let z > 1/4 be close to 1/4.
Since the generating function C(1, ·) diverges at 1/4, consider the first truncation
of C(1, ·), say

[1, z, z, . . . , z],

that takes a negative value at z. By continuity, the same holds for

[1, z, qz, . . . , qkz],

if q < 1 is large enough. For such values of q, the radius of convergence of C(q, ·)
is less than z. This means that γ (q) ≥ 1/z.
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The continuity of β on (0; 1) is a consequence of Proposition 20 below, since
the continued fraction B(ρ, z) := C(ρ2, ρ z) obviously satisfies hypothesis (H) in
this proposition, and β(ρ) is the inverse of the radius of convergence of B(ρ, ·).
Note that (H) covers the one-dimensional case as well. We conclude the proof of
Theorem 4, translating bounds of β into bounds of ρB .

From Corollary 18, β1 ≤ β ≤ β2, where β1 and β2 are increasing. Assume
that β1(ρ1) = β2(ρ2) = 1. Then, if ρ > ρ1, β(ρ) ≥ β1(ρ) > 1, hence ρB ≤ ρ1.
Likewise, ρB ≥ ρ2. Finally,

ρ1 � .6823278040, ρ2 � .6609925319.

�

Proposition 20. Set CF(q, z) := [1, f1(q) z, . . . , fk(q) z, . . .]. Assume that each
real valued function fk is continuous on (0; 1), nonnegative, nondecreasing, and
that, for any q ∈ (0; 1), fk(q) → 0 when k → ∞, uniformly in the following
sense.

(H) For any q ∈ (0; 1) and any ε > 0, there exists a neighborhoodU ⊂ (0; 1) of q
and a finite integerN , such that, for all r ∈ U and k ≥ N , fk(r) ≤ fN(r) ≤ ε.

Then, the radius of convergence R(q) of the holomorphic function CF(q, ·) is a
nonincreasing continuous function of q.

Proof of Proposition 20. We prove thatR is continuous on (0; 1), the sense of vari-
ation of R being obvious. Let q ∈ (0; 1) and z < R(q). Choose ε > 0 such that
(1 + ε)2 z < R(q). Choose U and N from (H). Since fk(q) → 0 when k → ∞,
replace N by a larger value, if necessary, to ensure that fN(q) ≤ ε. Since f1,
. . . , fN are continuous at q, replace U by a smaller neighborhood, if necessary, to
ensure that fk(r) ≤ (1 + ε) fk(q) for all r ∈ U and k ≤ N . Finally, introduce

[[u]] := [u, u, . . .] = (1 − (1 − 4u)1/2)/2,

and note that [[u]] = u+ o(u) when u → 0. Hence, one can assume that [[u]] ≤
(1 + ε) u, for every nonnegative u ≤ 2ε R(q). For any r ∈ U ,

[fN+1(r) z, fN+2(r) z, . . .] ≤ [[fN(r) z]] ≤ [[(1 + ε) fN(q) z]],
which is at most (1 + ε)2 fN(q) z, since fN(q) ≤ ε and z < R(q). Hence,

CF(r, z) ≤ [1, (1 + ε) f1(q) z, . . . , (1 + ε) fN−1(q) z, (1 + ε)2 fN(q) z],
which is at most CF(q, (1 + ε)2 z). This converges, since (1 + ε)2 z < R(q). We
proved that R(r) ≥ z, that is, that R is lower semicontinuous.

On the other hand, let Rk(q) denote the radius of convergence of the kth trun-
cated continued fractionCFk(q, ·) ofCF(q, ·). If z ≤ (1−ε)Rk(q), one can show
that CFk(q, z) ≤ 1/ε. This implies that the nonincreasing sequence Rk of con-
tinuous functions converges to R when k → ∞. Hence, R is upper semicontinu-
ous. �
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We now prove Lemmas 16 and 17. The submultiplicativity in Lemma 16 is a
consequence of the following definition.

Definition 21. If σ is a permutation of [k] and τ a permutation of [m], the concat-
enation σ 8 τ of σ and τ is the permutation of [k +m] defined by

σ 8 τ(n) := σ(n) if n ≤ k,
:= k + τ(n− k) if n > k.

Remark 22. If (σ, τ ) ∈ I(k)× I(m), then σ 8 τ ∈ I(k +m). If σ and τ have no
crossing cycle, neither has σ 8 τ . Finally, the map (σ, τ ) �→ σ 8 τ is injective. �

Proof of Lemma 16. From Remark 22, (A2k(ρ))k and (B2k(ρ))k are submultipli-
cative. For instance, (B2k(ρ))

1/k converges to

β(ρ) := sup
k≥1
(B2k(ρ))

1/k, β(ρ) ∈ [0; +∞].

The result for (Ck(q))k follows from (4). �

Proof of Lemma 17. Since C1 = 1, (11) holds for k = 1. Assume that the lower
bound holds for Cn, n ≤ k, with k ≥ 1. Then, (7) yields

Ck+1(q) = (1 + qk) Ck(q)+
k−1∑
n=1

qi Cn(q) Ck−n(q)

≥ (1 + qk) (1 + q)k−1 + (1 + q)k−2 (q + · · · + qk−1).

Note that k ≥ 1 ensures that the terms n = 0 and n = k are indeed different. Also,
the last sum is null if k = 1. Thus, Ck+1(q) ≥ (1 + q)k , as soon as

(1 + qk) (1 + q)+ (q + · · · + qk−1) ≥ (1 + q)2.
This holds if k ≥ 2 (one cancels the qk (1 + q) term and keeps only two terms in
the sum), and this holds as an equality if k = 1. Note that this part of the proof is
valid for any q ≥ 0. Assume now that q < 1. Likewise, the recursion for the upper
bound holds as soon as, for any k ≥ 1,

γ 2 ≥ (1 + qk) γ + (q + · · · + qk−1)

= γ + q

1 − q + qk
(
γ − 1

1 − q
)
.

Since qk decreases from q to 0 when k increases from 1 to ∞, it is enough to check
the inequality at k = 1 and k = ∞. This yields the conditions γ ≥ 1 + q, and
γ ≥ γ2(q), with

γ2(q)
2 = γ2(q)+ q

1 − q .
The second condition implies the first one. Note that ρ = ρ2 in the proof of Theo-
rem 4 is defined by ρ γ2(ρ

2) = 1, that is,

1

ρ2 = 1

ρ
+ ρ2

1 − ρ2 ,

that is:ρ4−ρ3+ρ2+ρ−1 = 0. Since this polynomial has a unique real nonnegative
root, the proof is complete. �
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6. Gauss-Markov products in dimension one

Proof of Theorem 2. A repeated use of the integration by part formula for Gaussian
vectors, see Lemma 28 in Section 8, yields the first equality of Equation (5). To
see this, set γ := (γ1, . . . , γ2k)

t , F(γ ) := γ2 · · · γ2k , and use Lemma 28. Each
∂nF (γ ) is the product γ2 · · · γk where one omits γn. Use Lemma 28 again to com-
pute E(∂nF (γ )), with the term γm of smallest index in lieu of γ1 and the remaining
product in lieu of F(γ ). After k applications of the lemma, one getsA2k as a sum of
products of E(γnγm). Replacing each of these expectations by the corresponding
power of ρ, and noting that each involution comes into play exactly once, one gets
the first equality of Equation (5). The bijection ϕ reduces the sum over involutions
to a sum over marked paths (c, a) ∈ M(2k). Then, D(σ) = Area(c) is indepen-
dent of a, and the number of marks of each path c, that is, the cardinality of the set
{a ; (c, a) ∈ M(2k)}, is ∏

n∈desc(c)

cn−1.

This yields the second part of (5). �

Thus, A2k(ρ) is an enumeration of marked paths, or an enumeration of involu-

tions. The latter is a special case of the enumerations considered by Flajolet (1980).
Hence, the expression of the generating function of (A2k(ρ))k as a continued frac-
tion in LMOS is straighforward, yielding

A(ρ, z) := 1 +
∑
k≥1

A2k(ρ) z
k

= [1, ρz, 2ρ3z, . . . , k ρ2k−1 z, . . .]. (12)

We stick in this section to the formulation of Equation (5). Like B2k(ρ), A2k(ρ)

can be defined for any ρ. This polynomial function has valuation k, degree k2, and
nonnegative integer coefficients. We turn to the proof of Theorem 5.

Lemma 23. For ρ ∈ [0; 1) and k ≥ 1,

A2k−2(ρ)
ρ − ρ4k+3

1 − ρ2 ≤ A2k(ρ) ≤ A2k−2(ρ)
ρ + ρ3

1 − ρ2 .

Corollary 24. For ρ ∈ [0; 1),

ρ

1 − ρ2 =: α3(ρ) ≤ α(ρ) ≤ α4(ρ) := ρ + ρ3

1 − ρ2 .

Thus, α(0+) = 0 and α(1−) = +∞.

Proof of Theorem 5. From Lemma 16, (A2k)k is submultiplicative. Thus,
(A2k(ρ))

1/k converges to

α(ρ) := sup
k≥1
(A2k(ρ))

1/k, α(ρ) ∈ [0; +∞].
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Like B2k(ρ)/ρ
k , A2k(ρ)/ρ

k is nondecreasing, hence α is strictly increasing on its
domain. The continuity of α on (0; 1) is a consequence of Proposition 20, since
α(ρ) is the inverse of the radius of convergence of A(ρ, ·).

From Lemma 23, ρA ≥ ρ4 where α4(ρ4) = 1, that is, ρ4 � .5436890125.
Likewise, ρA ≤ ρ3 where α3(ρ3) = 1, that is, ρ3 � .6180339890. �


Proof of Lemma 23. Let σ be an involution of [2k + 2] with no fixed point, and
define n+1 := σ(1). Then, 1 ≤ n ≤ 2k+1 and the cycle {1, n+1} has diameter n.
The other cycles contribute as follows. Let τ(m) = σ(m+1)−1 ifm ∈ [n−1], and
τ(m) = σ(m+2)−2 if n ≤ m ≤ 2k. Thus, τ ∈ I(k). Let κn(σ ) denote the number
of cycles of σ that cross n+ 1, that is, the number of i such that i < n+ 1 < σ(i).
Then,

D(τ) = D(σ)− n− κn(σ ).
Thus, D(σ) − n ≥ D(τ), and, when n is even, D(σ) − n ≥ D(τ) + 1, since at
least one cycle of σ crosses n + 1. Furthermore, for a fixed n, the map σ �→ τ is
one-to-one, from the set of the involutions σ ∈ I(k + 1), such that σ(1) = n+ 1,
to I(k). Assuming that ρ < 1, one gets

A2k+2(ρ) ≤
∑
n≥0

ρ2n+1
∑
τ

ρD(τ) +
∑
n≥0

ρ2n+2
∑
τ

ρD(τ)+1 = A2k(ρ)
ρ + ρ3

1 − ρ2 .

On the other hand, κn(σ ) ≤ min{n − 1, 2k + 1 − n}, hence D(σ) is at most
D(τ)+ 2n− 1. This yields

A2k+2(ρ) ≥
2k+1∑
n=1

∑
τ

ρD(τ)ρ2n−1 = A2k(ρ)

2k∑
n=0

ρ2n+1.

�


7. Asymptotic estimates

The continued fraction expressions of A(ρ, z) and C(q, z) in (12) and (8) yield
bounds of α(ρ) and γ (q), thus of β(ρ). We skip the proofs of Lemmas 25 and 26
below, which can be deduced from Theorems 11.2 and 14.1 of Wall (1948).

Lemma 25. Set qk := qk−1. Then, γ (q) ≥ γ5(q), where γ = γ5(q) is the largest
root of

γ 2 − (q1 + q2 + q3 + q4) γ + q1 q3 + q1 q4 + q2 q4 = 0.

A consequence is γ (q) > q1 + q2 = 1 + q. On the other hand,

γ (q) ≤ 2 sup{qk + qk+1 ; k ≥ 1} = 2 (1 + q).
Lemma 26. Set ρk := k ρ2k−1. Then, α(ρ) ≥ α6(ρ), where α = α6(ρ) is the
largest root of

α2 − (ρ1 + ρ2 + ρ3 + ρ4) α + ρ1 ρ3 + ρ1 ρ4 + ρ2 ρ4 = 0.
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A consequence is α(ρ) > ρ1 + ρ2 = ρ + 2ρ3. On the other hand,

α(ρ) ≤ 2 sup{ρk + ρk+1 ; k ≥ 1}.
This implies for example that α(ρ) ≤ 2 (ρ + 2ρ3) if ρ ≤ 3−1/4, and that

lim
ρ→1

(1 − ρ) α(ρ) = 2/e � .7357588824.

Thus, ρB ≤ ρ5 where ρ5 γ5(ρ
2
5 ) = 1, that is, ρ5 solves

ρ10 + ρ8 + ρ6 + 1 = ρ7 + ρ5 + ρ3 + ρ.
Hence, ρ5 � .6629288547. Likewise, ρA ≤ ρ6 where α6(ρ6) = 1, that is, ρ6 solves

8ρ10 + 4ρ8 + 3ρ6 + 1 = 4ρ7 + 3ρ5 + 2ρ3 + ρ.
Hence, ρ6 � .5630593728. Note that ρ5 and ρ6 are approximations of ρB and ρA,
up to 3 · 10−5 and 6 · 10−5, respectively.

Remark 27. The representation (9) of C(q, z) yields an expansion of γ (q) along
powers of q. For instance, considering the first four terms, one gets

(1 − q) (1 − q2) (1 − q3) γ 3 − (1 − q2) (1 − q3) γ 2

+ (1 − q3) q2 γ − q6 + q12 = O(q13),

that is,

γ (q) = 1 + q + q3 − q4 + 2 q5 − 3 q6 + 6 q7 − 12 q8 + 25 q9

−52 q10 + 111 q11 − 241 q12 +O(q13).

Computations with the help of Maple 6 c©, up to order q156, seem to indicate that
the expansion of γ (q) is

γ (q) = 1 +
∑
n≥1

(−1)n+1 cn q
n,

with nonnegative integers cn, such that the sequence cn+1/cn is nondecreasing for
n ≥ 6, and converges to a finite limit c > 2.4. Thus, one would have cn = cn+o(n),
as n→ ∞.

Finally, elementary computations show that γ (q) is related to the least positive
zero q0(z) of the generalised Rogers-Ramanujan continued fraction, that is, with
our notations, of the function q �→ F(q, qz). More precisely,

1/γ (q) = q q−1
0 (q),

where q−1
0 is the inverse function of q0. See Theorem 6.2 of Berndt, Huang, Sohn

and Son (2000), and the sequence A050203 in Sloane’s On-Line Encyclopedia of
Integer Sequences (our Reference [11]), for expansions of q0(z) along the powers
of 1/z. �
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8. Gaussian integration by parts

For the sake of completeness, we prove an integration by parts formula for Gaussian
vectors, that we used above, and which is probably well known since it yields one
easy proof of Wick’s formula. The notations of this section are independent of the
rest of the paper.

Lemma 28. Let γ := (γ1, . . . , γk)
t denote a centered Gaussian vector,F a smooth

function such that F(γ ) is integrable, and gradF the gradient of F . Then,

E(γ1F(γ )) = E(γ1γ ) · E(gradF(γ )) =
k∑
n=1

E(γ1γn)E(∂nF (γ )).

Proof of Lemma 28. Conditionally on γ1, γ is distributed like γ1α + δ, where δ is
a centered Gaussian vector, independent of γ1, and where α := E(γ1γ )/σ

2. Thus,
α is a deterministic vector.

Fix δ, set σ 2 := E(γ 2
1 ) and gδ(γ1) := F(γ1α + δ). The usual integration by

parts of the function x gδ(x) e−x2/2σ 2
in dimension 1 yields

E(γ1gδ(γ1)) = σ 2
E(g′

δ(γ1)).

There is δ-almost surely no boundary term because F(γ ) is integrable. Since
σ 2α = E(γ1γ ), and g′

δ = α · gradF , one gets

E(γ1F(γ ) | δ) = E(γ1γ ) · E(gradF(γ1α + δ) | δ).
Taking expectations of both sides yields the lemma. �
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