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family-based cohort study, the Erasmus Rucphen Family 
study using variance component methods implemented in 
the SOLAR (Sequential Oligogenic Linkage Analysis Rou-
tines) software package. Heritability estimates ranged from 
34  % for QRS and Cornell voltage product to 49  % for 
12-lead sum. Trait-specific GWAS findings for each trait 
explained a fraction of their heritability (17  % for QRS, 
4 % for QT, 2 % for PR, 3 % for Sokolow–Lyon index, and 
4 % for 12-lead sum). The inclusion of all ECG-associated 
single nucleotide polymorphisms explained an additional 
6  % of the heritability of PR. In conclusion, this study 
shows that, although GWAS explain a portion of ECG trait 
variability, a large amount of heritability remains to be 
explained. In addition, larger GWAS for PR are likely to 
detect loci already identified, particularly those observed 
for QRS and 12-lead sum.

Introduction

Parameters describing electrical activity in the heart, 
measured by the electrocardiogram (ECG), are impor-
tant tools for diagnosing, monitoring, and evaluating 
risk in patients with cardiovascular disease (DeFilippis 
et al. 2007; Milan et al. 2010; Schwartz and Wolf 1978). 
ECG measurements, such as PR interval, QRS complex 
duration, and QT interval, are used for the diagnosis 
and prediction of cardiac arrhythmias and sudden car-
diac death (SCD) (Dekker et al. 2004; Straus et al. 2006; 
Teodorescu et  al. 2011). Myocardial depolarization and 
repolarization time is measured by the QT interval: the 
time between the onset of the QRS complex and the 
end of the T wave. QT shortening or prolongation has 
been associated with an increased risk for arrhythmias 
and SCD (Gussak et  al. 2000; Straus et  al. 2006). PR 
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interval and QRS duration are measures of cardiac con-
duction time; QRS duration reflects conduction through 
the ventricular myocardium, while PR interval measures 
atrial and atrioventricular conduction from the sinoatrial 
node to the ventricular myocardium, primarily through 
the atrioventricular node (Smith et  al. 2009). ECG cal-
culations of the Sokolow–Lyon index (SL), the Cornell 
voltage product (CV), and the 12-lead sum QRS prod-
uct (12LS) have been used as indices of left ventricular 
hypertrophy (LVH) (Ang and Lang 2008; Molloy et  al. 
1992), which is a significant predictor of cardiovascular 
morbidity and mortality (Mayosi et al. 2002; Mutikainen 
et al. 2009a).

Several studies estimated a high heritability for RR inter-
val (40–98 %) and moderate heritabilities for QT/QTc (25–
67 %), PR (34–46 %), and QRS (33–43 %) (Dalageorgou 
et al. 2008; Eijgelsheim et al. 2009; Haarmark et al. 2011; 
Havlik et al. 1980; Holm et al. 2010; Im et al. 2009; Kolder 
et  al. 2012; Mutikainen et  al. 2009b; Russell et  al. 1998; 
Smith et al. 2009). Only a few studies have estimated her-
itabilities for ECG indices of left ventricular hypertrophy, 
12LS (32 %), SL (36–57 %), and CV (28–32 %) (Mayosi 
et al. 2002; Molloy et al. 1992; Mutikainen et al. 2009a, b; 
Shah et al. 2011). Some of these estimates were generated 
in samples ascertained on the basis of phenotype or from 
special populations (such as SL and CV) (Havlik et  al. 
1980).

In recent years, a number of genome-wide association 
studies (GWASs) for ECG phenotypes identified 65 loci 
harboring both novel and previously described ECG genes, 
including two loci influencing electrocardiographic indices 
related to left ventricular hypertrophy (Arking et al. 2014; 
Eijgelsheim et  al. 2009; Holm et  al. 2010; Newton-Cheh 
et  al. 2007, 2009; Nolte et  al. 2009; Pfeufer et  al. 2009, 
2010; Shah et al. 2011; Sotoodehnia et al. 2010). Surpris-
ingly, only a few of the novel loci include genes with estab-
lished electrophysiological function (such as ATP1B1 and 
PLN and its negative regulator PRKCA (Arking et al. 2014; 
Barwe et  al. 2009; Cerra and Imbrogno 2012; Medeiros 
et al. 2011)) and only a few have been confirmed through 
functional analysis (NDRG4 and SCN5A) (Chopra et  al. 
2010; Qu et  al. 2008). These loci typically have small 
effects, individually accounting for only a small propor-
tion of the variance of these traits. To date, no studies have 
directly estimated the extent to which these loci explain the 
trait heritabilities.

The first aim of the present study was to use a large, 
family-based cohort, not ascertained on the basis of pheno-
type, to estimate heritabilities for a number of widely used 
ECG traits. The second was to evaluate the proportion of 
heritability explained by genetic variants previously identi-
fied by GWAS.

Methods

Study population

This study was embedded in the Erasmus Rucphen Family 
study (ERF), a cohort derived from a region in the south-
west of the Netherlands. The population was established 
in the middle of the 18th century by a limited number of 
founders, has experienced minimal immigration and emi-
gration, and has exponentially increased in size in the last 
century. The ERF study was instituted in this population 
to determine the genes underlying quantitative trait varia-
tion in humans (Pardo et al. 2005). Interviews at the time 
of blood sampling were performed by medical practition-
ers and included questions on education level, smok-
ing status, current medication use, and medical history 
(Sayed-Tabatabaei et al. 2005). Myocardial infarction was 
assessed through interview data and ECG measurements. 
Height and weight were measured with the participant in 
light underclothing and body mass index (kg/m2) was com-
puted. Blood pressure was measured twice on the right 
arm in a sitting position after at least 5 min rest, using an 
automated device (OMRON 711, Omron Healthcare, Ban-
nockburn, IL, USA). The average of the two measures was 
used in the analyses. Hypertension was defined through 
the use of antihypertensive medication and/or through the 
assessment of blood pressure measurements according to 
the World Health Organization guidelines (individuals with 
BP ≥140/90  mmHg should be regarded as hypertensive) 
(1999; Mourad 2008; Tin et  al. 2002). The Medical Eth-
ics Committee of the Erasmus University Medical Center 
approved the ERF study protocol and all participants, 
or their legal representatives, provided written informed 
consent.

ECG interpretation and measurement

Examinations included 12-lead ECG measurements. A 10-s 
12-lead ECG (on average, 8–10 beats) was recorded with 
an ACTA-ECG electrocardiograph (Esaote, Florence, Italy) 
with a sampling frequency of 500  Hz. Digital measure-
ments of the ECG parameters were made using the Modu-
lar ECG Analysis System (MEANS) (van Bemmel et  al. 
1990). In brief, MEANS operates on multiple simultane-
ously recorded leads, which are transformed to a detection 
function that brings out the QRS complex and the other 
parts of the signal. MEANS determines common onsets and 
offsets for all 12 leads together on one representative aver-
aged beat, with the use of template matching techniques. 
The measurement and diagnostic performance of MEANS 
have been extensively evaluated, both by the developers and 
by others (de Bruyne et al. 1997; Willems et al. 1987, 1991) 
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The MEANS criteria for MI are mainly based on pathologi-
cal Q waves, QR ratio, and R wave progression (van Bem-
mel et al. 1990). A cardiologist, specialized in ECG meth-
odology, ascertained the final diagnosis of MI.

MEANS was used to measure several ECG parameters 
(QRS, PR, and QT) and the three LVH proxies (SL, CV, 
and 12LS). Sokolow–Lyon was defined as the sum of the 
S wave in V1 plus the R wave in V5 or V6, Cornell as the 
sum of R in aVL and the S in V3, and 12-lead as the sum 
of R–S in all 12 leads; these three voltages were then multi-
plied by QRS duration to obtain voltage-duration products 
as an approximation of the area under the QRS complex 
(Casale et  al. 1985; Siegel and Roberts 1982; Sokolow 
and Lyon 1949). QT interval was adjusted for heart rate 
using Bazett’s formula (Bazett 1920; Roguin 2011). All 
traits were adjusted for sex, age, BMI, height and heart rate 
(with the exception of QT), and rank transformed prior to 
analysis.

Genotyping and SNP selection

Genotyping in ERF was performed using Illumina 
318/370  K, Affymetrix 250  K, and Illumina 6  K micro-
arrays. Individuals were excluded for excess autosomal 
heterozygosity, mismatches between called and pheno-
typic gender, and if there were outliers identified by an 
IBS clustering analysis. The exclusion criteria for SNPs 
were Hardy–Weinberg equilibrium (HWE) P  ≤  10−6 or 
SNP call rate ≤98 %. After this quality control, measured 
genotypes which had minor allele frequencies >1 % were 
used to impute ~2.5 million autosomal SNPs with the 
CEU samples from HapMap release 22 (build 36) as a ref-
erence panel with MACH version 1.0.16 (Li et  al. 2010). 
GWAS for ECG traits have identified 71 index SNPs in 65 
loci associated at the conventionally accepted significance 
threshold (P < 5.0 × 10−8) (Arking et al. 2014; Eijgelsheim 
et al. 2009; Holm et al. 2010; Marroni et al. 2009; Newton-
Cheh et  al. 2005, 2007, 2009; Nolte et  al. 2009; Pfeufer 
et  al. 2009, 2010; Shah et  al. 2011; Sotoodehnia et  al. 
2010) (catalog of published GWAS: http://www.genome.
gov/gwastudies/). These SNPs were extracted from our 
imputed dataset for further analysis, with the exception of 
a single QRS SNP (rs991014). If multiple SNPs in a given 
locus were described in the GWAS, only the SNP with the 
lowest P value was selected for inclusion.

Statistical analysis

Individuals were excluded from analysis if their ECG 
showed evidence of atrial fibrillation, myocardial infarc-
tion, left or right bundle branch block, or atrioventricular 
block. Additional exclusion criteria consisted of pace-
maker implantation, Wolff–Parkinson–White syndrome, 

pregnancy, and use of Type I or III antiarrhythmic medi-
cations or digoxin, which may shorten the QT interval 
(Eijgelsheim et  al. 2009). Individuals with QRS >120 ms 
were excluded from the QRS, QT, and LVH proxy analy-
ses. Those with PR ≥320 or ≤80 ms were excluded from 
the PR analyses. Those with QRS axis >90 or <−30 were 
excluded from the LVH proxy analyses. These exclusions 
were implemented to keep our data consistent with previ-
ous and ongoing GWAS.

Heritability estimates were obtained using a variance 
component approach based on maximum likelihood proce-
dures implemented in the SOLAR (Sequential Oligogenic 
Linkage Analysis Routines) software package (http://www.
sfbr.org/solar/index.html). A narrow-sense heritability esti-
mate (h2) represents the fraction of variation in a trait attrib-
utable to additive genetic factors. To determine the propor-
tion of variance due to genotypes associated with ECG trait 
variability, narrow-sense heritabilities were computed with 
and without genotypic data (Isaacs et  al. 2007); compari-
son of the log likelihoods of these models using likelihood 
ratio tests allowed us to assess the significance of the dif-
ferences. Heritabilities were calculated for each trait (QRS, 
QT, PR, SL, CV, 12LS) using three adjusted models. The 
first model adjusted only for non-genetic covariates, the 
second model included GWAS SNPs specific for each trait, 
and the third model included all of the ECG-associated 
SNPs. For the LVH proxies, only two SNPs for 12LS have 
been reported with genome-wide significance; since these 
measures are QRS products, the QRS SNPs were included 
in model 2 for these traits.

Inbreeding coefficients, which represent the level of 
consanguinity between a subject’s parents, were calculated 
as previously described (Isaacs et al. 2007). To analyze the 
impact of inbreeding on the ECG traits, inbreeding coef-
ficient quartiles were included in the SOLAR models. 
People with zero inbreeding were classed as “0”; the peo-
ple with non-zero inbreeding were divided into quartiles. 
The quartiles were used because of the large skew in the 
distribution.

Results

After exclusions, 1396–1474 phenotyped and genotyped 
ERF participants were available for analysis. Table  1 
shows descriptive statistics for a number of traits in the 
study population. The average age of the cohort was 
47.5 (±13.8)  years and 40  % were men. The population 
tends toward being overweight, with a mean BMI of 26.7 
(±4.5)  kg/m2. A large number, nearly 30  %, were hyper-
tensive. The median (inter-quartile range) of the pair-wise 
kinship coefficients for the analyzed sample was 0.004 
(0.007); the number of pairs for a broad range of kinship 
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levels are presented in Supplementary Table 1. The median 
(inter-quartile range) of the inbreeding coefficient was 
0.003 (0.009). Correlations between the analyzed traits are 
presented in Table  2. The correlations between PR, QRS, 
and QT were modest, especially after adjustment for covar-
iates. Correlations between the LVH proxies, particularly 
12LS and SL, were stronger; these measures were also 
moderately correlated with QRS, a component of each.

The heritability for heart rate-adjusted QT, prior 
to the inclusion of SNP information, was 36  % 
(P =  1.14 ×  10−8). There was no evidence for recessive 
effects, as the inclusion of inbreeding coefficient did not 
alter the heritability estimates. The inclusion of SNPs spe-
cifically identified for QT (model 2) explained approxi-
mately 4 % of the trait’s heritability (leaving 96 % unex-
plained) (Table 3). A significant difference between model 
1 and 2 was observed (P = 2.58 × 10−4). The additional 

inclusion of SNPs identified in GWAS of other ECG phe-
notypes further decreased the heritability by 15 %, although 
this difference (between model 2 and 3) was not significant 
(P = 0.15).

The heritability of QRS was similar to that of QT, 34 % 
(P = 2.32 × 10−9). QRS-specific GWAS SNPs explained 
17 % of the heritability of QRS (P = 1.30 × 10−6). Inclu-
sion of non-QRS ECG SNPs did not further explain the 
heritability (P =  0.28). Two percent of the heritability of 
PR (40 %, P =  4.13 ×  10−11) could be explained by the 
inclusion of known PR variants (P =  2.64 ×  10−4). The 
inclusion of SNPs associated with the other ECG pheno-
types explained a further 6 % of PR heritability, reducing 
it to 37 % (P = 1.00 × 10−3) (Table 3; Fig. 1). To investi-
gate which set of SNPs might offer additional explanatory 
power for PR, comparisons were made with the addition of 
the QRS SNPs, the QT SNPs, and the 12LS SNPs in turn. 
This analysis determined that the majority of the additional 
PR heritability explained was due to the QRS SNPs (5 %, 
P = 7.09 × 10−4), while the two 12LS SNPs explained an 
additional 0.5 % (P = 4.03 × 10−4).

Heritability estimates were also calculated for three 
LVH proxies (SL, CV, and 12LS); since only two GWAS 
associations (at P < 5 × 10−8) are known for these traits, 
and since QRS is a crucial component of all three, QRS 
SNPs were included in model 2 for each of these measures. 
12LS showed the highest heritability of these outcomes 
(49  %, P =  4.6 ×  10−16), while CV showed the lowest 
(34 %, P = 7.44 × 10−9). The heritability estimate for SL 
was 46 % (P = 1.00 × 10−13); inclusion of QRS SNPs did 
not significantly alter this estimate (P = 0.42), nor did the 
inclusion of all ECG SNPs (P = 0.15). The inclusion of the 
two 12LS SNPs and the QRS SNPs explained 4 % of the 
heritability of 12LS (P =  5.77 ×  10−3). The inclusion of 
the remainder of the SNPs did not further explain the herit-
ability (P = 0.15). For CV, the inclusion of the QRS SNPs 
increased the estimate slightly, but significantly (0.7  %, 
P = 6.34 × 10−5), while the inclusion of all SNPs did not 
influence the heritability (P = 0.18). The additional inclu-
sion of inbreeding coefficient did not impact any of these 
models (data not shown).

Table 1   Descriptive statistics of the study population (N = 1474)

Values presented are mean (SD) or N (%)

BMI body mass index, SBP systolic blood pressure, DBP diastolic 
blood pressure, SL Sokolow–Lyon index, CV Cornell product, 12LS 
12-lead sum product

Mean (SD) Minimum Maximum

Males 597 (40 %) – –

Age (year) 47.2 (13.9) 16.6 81.4

BMI (kg/m2) 26.6 (4.5) 15.5 48.6

Height (cm) 166.6 (9.0) 143.6 196.5

Weight (kg) 74.0 (14.8) 41.9 154.7

SBP (mmHg) 136.0 (19.5) 85.5 217.0

DBP (mmHg) 79.8 (9.8) 54.5 120.0

Hypertension 629 (42 %) – –

QRS (ms) 97.0 (10.0) 68 120

QT (ms) 397.4 (27.7) 300 520

Heart rate (bpm) 63.0 (10.5) 35 120

PR (ms) 152.3 (22.1) 92 308

SL (mm ms) 2316 (680.2) 1040.0 5288.5

CV (mm ms) 1172.6 (498.3) 118.7 3953.0

12LS (mm ms) 13,670 (3551.6) 5485 32,550

Table 2   Pearson’s correlations 
between ECG traits

Above the diagonal: unadjusted correlations. Correlations are significant at the 0.01 level (2-tailed). Below 
the diagonal: adjusted correlations (adjusted for age, sex, body mass index, height and heart rate)

QRS QT PR SL CV 12LS

QRS 1 0.225 0.144 0.376 0.468 0.532

QT 0.152 1 0.229 0.108 0.081 0.089

PR 0.007 0.105 1 0.082 0.169 0.117

SL 0.253 0.014 0.001 1 0.289 0.803

CV 0.382 0.053 0.04 0.178 1 0.564

12LS 0.409 0.034 0.019 0.741 0.484 1
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Discussion

In the present work, we estimated the heritability of ECG 
traits (QT, QRS, and PR) and ECG-derived LVH indices 
(SL, CV, and 12 LS). Highly significant estimates of her-
itability, ranging from 0.34 to 0.49, were observed for all 
traits, several of which needed replication in a population-
based study. The inclusion of known trait-specific GWAS 

loci explained a fraction of the heritability of each trait 
except for SL and CV (17 % for QRS, 4 % for QT, 2 % for 
PR, 4 % for 12LS). Inclusion of all ECG-associated SNPs 
further explained an additional proportion of the heritabil-
ity for PR (6 %), clearly suggesting cross-phenotype effects 
for some loci.

This study benefits from a large, well-characterized, 
family-based population, selected on the basis of genealogy 
and not phenotype. It is well powered for this type of anal-
ysis and is not biased due to phenotypic selection for, as an 
example, cardiovascular disease. The complex genealogy 
allowed for the assessment of inbreeding and, furthermore, 
accounts for relatedness within families.

Despite these strengths, there are also limitations to this 
study. One is that ERF was part of the discovery analy-
ses for the QRS and QT GWAS. However, ERF accounts 
for only a small proportion of those efforts, making it 
unlikely that over-fitting has a large impact on these find-
ings. Discovery of genetic variants is still in progress. In 
all likelihood, larger GWAS efforts will lead to the iden-
tification of additional SNPs and, therefore, larger propor-
tions of explained heritability. Finally, medication use, 
abundant in the population, may directly affect variability 
in ECG measurements. Some medications are known to 
induce such effects (Ahnve and Vallin 1982; Malik 2004), 
although, with the exception of the antiarrhythmics (which 

Table 3   Heritability (h2) of ECG measurements

Model 1: adjusted for age, sex, body mass index, height and heart rate. Model 2: adjusted for age, sex, body mass index, height, heart rate and 
SNPs associated with each trait. Model 3: adjusted for age, sex, body mass index, height, heart rate and SNPs associated with all traits (65 in 
total)

h2 heritability, n SNPs REFS number of SNPs and references, SL Sokolow–Lyon index, CV Cornell product, 12LS 12-lead sum product
a  Holm et al. (2010)
b  Sotoodehnia et al. (2010)
c  Arking et al. (2014)
d  Marroni et al. (2009)
e  Newton-Cheh et al. (2009)
f  Pfeufer et al. (2009)
g  Newton-Cheh et al. (2007)
h  Pfeufer et al. (2010)
i  Shah et al. (2011)

Model 1 Model 2 Model 3

h2 (SD) P h2 (SD) P Δh2* P
∆h2 n SNPs 

REFS
h2 (SD) P Δh2** P

∆h2

QRS 0.34 (0.06) 2.32 × 10−9 0.28 (0.06) 1.30 × 10−6 0.06 2.6 × 10−3 21a, b 0.27 (0.07) 1.06 × 10−5 0.01 0.28

QT 0.36 (0.07) 1.14 × 10−8 0.34 (0.07) 1.00 × 10−7 0.02 2.5 × 10−4 36a, c–f 0.29 (0.07) 1.17 × 10−5 0.05 0.15

PR 0.40 (0.06) 4.13 × 10−11 0.39 (0.06) 1.31 × 10−10 0.01 2.6 × 10−4 9a, g, h 0.37 (0.07) 5.06 × 10−9 0.02 1.0 × 10−3

12LS 0.49 (0.06) 4.60 × 10−16 0.46 (0.06) 1.44 × 10−14 0.03 5.7 × 10−3 23b, i 0.44 (0.07) 3.71 × 10−12 0.02 0.15

CV 0.34 (0.07) 7.44 × 10−9 0.35 (0.07) 5.20  × 10−9 −0.002 6.3 × 10−5 21b 0.35 (0.07) 1.13 × 10−8 −0.005 0.17

SL 0.46 (0.07) 1.00 × 10−13 0.44 (0.07) 2.74  × 10−12 0.02 0.42 21b 0.43 (0.07) 6.76 × 10−11 0.01 0.14

0

25

50

QRS QT PR SL CV 12LS

Fig. 1   Heritability (h2) of ECG measurements. The height of the bar 
indicates trait heritability. The proportion of unexplained heritability 
is in light gray and the proportion of heritability explained by trait-
specific SNPs is depicted in dark gray. The additional proportion 
of the explained heritability of PR due to the inclusion of all ECG 
GWAS SNPs is in black
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were excluded in these analyses), these effects are typically 
small or not well characterized. Moreover, any medication 
effects should be randomized across genotype groups, and, 
therefore, unlikely to affect these results.

Heritability estimates for QT between 60 and 67  % 
have been reported in twin studies (Dalageorgou et  al. 
2008; Haarmark et al. 2011). Our estimate is substantially 
lower, but similar to that of another population-based fam-
ily cohort, the Framingham study (35  %) (Newton-Cheh 
et  al. 2005). This may be due to the inclusion of distant 
relatives in our study that share fewer household-based 
environmental factors (Sleegers et al. 2007). Our heritabil-
ity estimate for QRS is higher than in the previous reports 
that did not find statistical significance (Havlik et al. 1980; 
Russell et al. 1998; Smith et al. 2009). Modest sample sizes 
or poor precision in the QRS measurements may have hin-
dered those earlier studies (Havlik et al. 1980; Russell et al. 
1998; Smith et al. 2009). Our estimate is somewhat lower 
than those reported in older women and a Chinese popula-
tion (Eijgelsheim et al. 2009; Mutikainen et al. 2009b), but 
similar to that reported in an Icelandic population (Holm 
et al. 2010). Our findings for PR heritability are similar to 
those previously reported (Eijgelsheim et  al. 2009; Smith 
et  al. 2009). Among the LVH indices, our SL heritability 
estimate is less than previously reported in older women 
(Mutikainen et  al. 2009b) and corresponds well to the 
estimate provided by Mayosi et  al. (2002) (~40  %) and 
Shah et  al. (2011) (~39 %). With respect to CV, our esti-
mate corresponds with previous estimates ranging from 23 
to 40 % (Mayosi et al. 2002; Shah et al. 2011). For 12LS, 
our estimate was higher (0.46 %) than previously reported 
(0.32 %) (Shah et al. 2011).

This is the first study that provides direct estimates 
of the proportion of heritability attributable to common 
variants discovered by GWAS. The heritability explained 
is particularly low for PR and SL, a finding that is not 
uncommon for complex traits (Manolio et al. 2009). For 
QRS (17 %), a substantial portion of trait heritability is 
explained by trait-specific GWAS variants, while for the 
other traits the proportion is more modest. At the same 
time, our study shows that large percentages remain 
unexplained (83 % for QRS, 96 % for QT, 94 % for PR, 
94  % for 12LS, 96  % for SL, 100  % CV). These per-
centages correspond to the “missing heritability”. Sev-
eral plausible reasons might explain this “missing herit-
ability”, including the overestimation of the heritability 
of these complex traits and the underestimation of the 
effects of common alleles identified through GWAS. It 
should also be noted that we have only studied the per-
centage of variance explained by one common variant in 
each locus. When more variants, including rare variants, 
are taken into account, these loci may explain a larger 
proportion of the heritability, as some loci are likely to 

include more than one independent association. Epi-
genetic modifications, regulated in part by microRNAs 
through regulation of DNA methyl transferases and his-
tone deacetylases, are often dynamic and influenced by 
the environmental factors and may play a role. Finally, 
gene × gene interactions (epistasis) and gene × environ-
ment interactions might explain another portion of the 
heritability of these traits (Manolio et  al. 2009; Marian 
2012).

The finding that the addition of SNPs identified for 
another trait to the trait-specific SNPs explained an addi-
tional portion of heritability (particularly for the QRS 
SNPs and PR) strongly suggests the presence of variants 
with effects across these traits. These cross-phenotype 
effects are a common phenomenon in complex trait genet-
ics (Solovieff et  al. 2013). Known associations reinforce 
this notion; TBX5, for example, has been associated with 
QRS, PR, and QT (Holm et  al. 2010), while SCN5A has 
been associated with both QRS and PR intervals (Pfeufer 
et  al. 2010). This type of cross-phenotype effect was 
described by Sotoodehnia et al. (2010) who found several 
QRS loci previously associated with PR or QT intervals, 
including PLN, TBX5/3, and SCN10A/5A. It is of interest 
that cross-phenotype effects in particular decreased the 
heritability of PR.

In conclusion, we report heritability estimates for a 
number of ECG traits, including three LVH proxies. The 
incorporation of genotype information allowed for direct 
estimates of the impact of known GWAS SNPs on ECG 
trait heritabilities, and indicated that a high proportion 
of the genetic variability remains to be explained: the so-
called “missing heritability”. The inclusion of SNPs identi-
fied in GWAS of other ECG phenotypes further increased 
the amount of PR heritability that could be explained, 
clearly suggesting that GWAS variants identified for other 
ECG phenotypes (QRS and 12LS, in particular) influence 
PR, despite failing to achieve genome-wide significance in 
PR GWAS to date. Increasing GWAS sample sizes, search-
ing for cross-phenotype effects, and identifying less com-
mon variants are likely to increase the explicable portion of 
ECG trait heritability.
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