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Abstract Dihydropyrimidine dehydrogenase (DPD) deW-
ciency is an infrequently described autosomal recessive
disorder of the pyrimidine degradation pathway and can
lead to mental and motor retardation and convulsions. DPD
deWciency is also known to cause a potentially lethal
toxicity following administration of the antineoplastic
agent 5-Xuorouracil. In an ongoing study of 72 DPD deW-
cient patients, we analysed the molecular background of 5
patients in more detail in whom initial sequence analysis
did not reveal pathogenic mutations. In three patients, a
13.8 kb deletion of exon 12 was found and in one patient a
122 kb deletion of exon 14–16 of DPYD. In the Wfth

patient, a c.299_302delTCAT mutation in exon 4 was
found and also loss of heterozygosity of the entire DPD
gene. Further analysis demonstrated a de novo deletion of
approximately 14 Mb of chromosome 1p13.3–1p21.3,
which includes DPYD. HaploinsuYciency of NTNG1,
LPPR4, GPSM2, COL11A1 and VAV3 might have con-
tributed to the severe psychomotor retardation and unusual
craniofacial features in this patient. Our study showed for
the Wrst time the presence of genomic deletions aVecting
DPYD in 7% (5/72) of all DPD deWcient patients. There-
fore, screening of DPD deWcient patients for genomic dele-
tions should be considered.
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Introduction

Dihydropyrimidine dehydrogenase (DPD, EC 1.3.1.2) is
the initial and rate-limiting enzyme in the catabolism of
pyrimidine bases. It catalyses the reduction of uracil and
thymine to 5,6-dihydrouracil and 5,6-dihydrothymine,
respectively. DeWciency of DPD (MIM 274270) causes thy-
mine-uraciluria and is typically accompanied by neurologi-
cal symptoms such as mental and motor delay and
convulsions (van Kuilenburg et al. 1999, 2002a). However,
a consistent phenotype has not yet emerged (Fernandez-
Salguero et al. 1997; van Kuilenburg et al. 1999, 2002a). In
addition, DPD plays an important role in the breakdown of
the antineoplastic agent 5-Xuorouracil (5FU). Patients with
a partial or complete enzyme deWciency can suVer from
severe and potentially lethal toxicity following 5FU admin-
istration (van Kuilenburg 2004). Therefore, reliable identi-
Wcation of DPD deWciency is essential to identify cancer
patients at risk.

DPD deWciency is an autosomal recessive disorder and
DPYD is present as a single copy gene on chromosome
1p21.3 and consists of 23 exons (Wei et al. 1998). Physi-
cally, DPYD is at least 950 kb in length with 3 kb of cod-
ing sequence and an average intron size of 43 kb (Wei
et al. 1998). Recently, it has been shown that the common
fragile site FRA1E extends over 370 kb within DPYD and
the region with the highest fragility encompasses exons
13–16 of DPYD (Hormozian et al. 2007). Common fragile
sites represent chromosome structures that are particu-
larly prone to breakage under replication stress and the

genomic instability can give rise to deletions, transloca-
tions and ampliWcations (Hormozian et al. 2007). How-
ever, no DPD deWcient patients have been identiWed with
chromosomal deletions of one or multiple exons of DPYD
(van Kuilenburg et al. 1999, 2002a, 2004). The commonly
used mutation detection methods (exon sequencing;
DHPLC) do not detect deletions or other rearrangements
and for this purpose Southern blotting or quantitative PCR
are often used. Recently, multiplex ligation-dependent
probe ampliWcation (MLPA) and array-based comparative
genomic hybridization (array CGH) have emerged as
alternative techniques for the relative quantiWcation of
genomic sequences (Schouten et al. 2002; Ylstra et al.
2006).

In this paper, we present Wve clinically severely aVected
patients out of a series of 72 patients with complete DPD
deWciency, in whom initial sequence analysis did not
reveal pathogenic mutations, and demonstrate for the Wrst
time the presence of large deletions in DPYD and a de
novo 14 Mb-interstitial deletion of chromosome 1p,
including DPYD.

Materials and methods

Analysis of pyrimidines in body Xuids and DPD activity

The concentrations of pyrimidine bases and their degrada-
tion products in urine and plasma were determined using
reversed-phase HPLC combined with electrospray tandem
mass spectrometry (van Kuilenburg et al. 2004; van Lenthe
et al. 2000). The activity of DPD was determined in
peripheral blood mononuclear (PBM) cells using radiola-
beled thymine followed by separation of radiolabeled
thymine from radiolabeled dihydrothymine using reversed-
phase HPLC (van Kuilenburg et al. 2000b).

Sequence analysis of coding exons of DPYD

DNA was isolated from leukocytes using the Wizard
Genomic DNA PuriWcation Kit (Promega Benelux, Lei-
den, The Netherlands). PCR ampliWcation of all 23 cod-
ing exons and Xanking intronic regions of DPYD was
carried out using intronic primer sets, essentially as
described before (van Kuilenburg et al. 2000a). Sequence
analysis of genomic fragments ampliWed by PCR was
carried out on an Applied Biosystems model 3100 auto-
mated DNA sequencer using the dye-terminator method
(Applied Biosystems, Nieuwekerk a/d IJssel, The Nether-
lands). The DPYD sequence of patients was compared to
that observed in controls and the reference sequence of
DPYD (Ref Seq NM_000110.3; Ensembl ENST00000
370192).
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Deletion-speciWc PCR analysis

Exon 12 of DPYD was ampliWed using the forward primer
DPYD12f (5�-ttcctgtatgtgaggtgta-3�) and reversed primer
DPYD12r (5�-gaagcacttatccattgg-3�). The forward primer
contained a 5�-TGTAAAACGACGGCCAGT-3� exten-
sion whereas the reverse primers included a 5�-CAG-
GAAACAGCTATGACC-3� extension at their 5� ends. The
deleted genomic region was analysed using the forward
primer IVS11f (5�-tgctttcactccttccaagc-3�) and reverse
primer IVS12r (5�-gacttcaaatgctggctgct-3�). cDNA analysis
of exon 14–16 was performed using the forward primer F13

(5�-TTGATCTGGTGGACATTAGTG-3�) and reverse
primer R19 (5�-GAAACTGAAGACCACTTTCAG-3�).

AmpliWcation was carried out in 25 �l reaction mixtures
containing 20 mM Tris/HCl pH 8.4, 50 mM KCl, 1.5–
2 mM MgCl2, 0.4 �M of each primer, 0.2 mM dNTPs and
0.02 U of Platinum Taq polymerase. After initial denatur-
ation for 5 min at 95°C, ampliWcation was carried out for 30
cycles (30 s 95°C, 30 s 55°C, 1 min 72°C) with a Wnal
extension step of 10 min at 72°C. PCR products were sepa-
rated on 1.5% agarose gels, visualised with ethidium bro-
mide or used for direct sequencing.

MLPA analysis

The MLPA test for DPYD (MRC-Holland, Amsterdam,
The Netherlands) contains 37 exon probes for DPYD and 9
control probes speciWc for DNA sequences outside the
DPYD gene. MLPA was performed essentially as described
before (Schouten et al. 2002). Data analysis was performed
using Genescan and Genotyper software (Applied Biosys-
tems). The relative peak area of each probe was divided by
the average relative peak area of this probe in control sam-
ples. In normal individuals this calculation will result in a
value of 1.0 representing two copies of the target sequence
in the sample.

Cytogenetic analysis

FISH analysis was performed with BAC clones (Wellcome
Trust Sanger Institute) for DPYD (Clones RP11-272L13
and RP11-526F14) and the Xanking genes PTBP2 (RP11-
122C9) and SNX7 (RP11-296E3) on metaphase chromo-
somes from lymphocytes of probands and parents.

Array-based comparative genomic hybridization was
performed using a 28.830 oligo-array, as described before
(van den IJssel et al. 2005). Microarray image analysis and
quality control were performed using BlueFuse version 3.2
(BlueGnome). Regions with Wve or more consecutive
deleted or duplicated oligonucleotides were further analysed
provided they were not known variants as listed in the data-
base of genomic variants (http://projects.tcag.ca/variation/).

Results

Clinical and biochemical phenotype of patients 
with a DPD deWciency

Patient 1 is a boy born to consanguineous Italian parents.
At the age of 2 years, he presented with two short
generalised febrile seizures. Because of slow psychomotor
development, he attended a special school for children with
learning disabilities at the age of 6 years. At the age of
8 years, he suVered from mild adipositas. In addition, he
had started to show abnormal social behaviour with an
impulsive, explosive and aggressive attitude towards his
classmates, sister and parents. Treatment with methylpheni-
date (Concerta®) resulted in signiWcant amelioration of
explosive behaviour. Informed consent was obtained from
the parents.

Patient 2 and 3 are cousins from a highly consanguine-
ous Turkish family. Patient 2 is a girl of consanguine Turk-
ish parents. At the age of 12 months, she suVered from her
Wrst febrile seizure. Subsequently, she showed febrile and
non-febrile seizures, severe developmental delay including
a severe language developmental disorder with absence of
active speech, muscular hypotonia with an inability to
walk freely, microcephaly, strabism and an autistic-like
behaviour. Informed consent was obtained from the parents.

Patient 3 is a boy born to consanguineous Turkish par-
ents who, at the age of 12 months, presented with febrile
seizures, developmental delay and hypotonia. During the
subsequent years, he was noted to suVer from recurrent
epileptic seizures during febrile infections and focal motor
seizures without fever. At present, the patient shows severe
psychomotor retardation with no verbal communication
and he is unable to walk independently. No further seizures
have occurred on treatment with valproate. Informed con-
sent was obtained from the parents.

Patient 4 is a girl born to consanguineous Turkish par-
ents who presented shortly after birth with amniotic infec-
tion syndrome, respiratory insuYciency and pulmonary
hypertonia, leading to intubation, application of surfactant
factor, nitric oxide and high frequency oscillatory ventila-
tion until the seventh day of life. Neurological examination
showed muscular hypotonia and sucking weakness from
the Wrst day of life. Seizures were not reported, but EEG
showed multifocal spike discharges. At the age of
5 months, the developmental status was 6 weeks. Facial
and skeletal abnormalities included long eyelashes, thick
eyelids, retrognathia, depressed nasal bridge, short neck,
palmar crease and short extremities with radiological signs
of dysostosis multiplex. Informed consent was obtained
from the parents.

Patient 5 is a boy from non-consanguineous Dutch par-
ents who showed irritability and hypertonia from birth. He
123
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had transient respiratory problems and feeding diYculties.
During subsequent months, hypertonia and hyperreXexia
changed into severe hypotonia and areXexia. Growth fol-
lowed the 50th centile for height and the 97th centile for
head circumference. He was profoundly retarded. At
3 years he showed macrocephaly, prominent forehead,
hypertelorism, downward slanted palpebral Wssures, low
nasal bridge, full nasal tip, anteverted nares, long and
prominent philtrum, open mouth appearance, everted lower
vermillion, a highly arched palate and large lobules
(Fig. 1). Eruption of his dentition was delayed, nails were
short and thin, and X-rays showed epiphyseal dysplasia of
the femoral head. Ophthalmologic examination showed
myopia, astigmatism and nystagmus. Informed consent was
obtained from the parents.

Analysis of urine and plasma samples of the patients
showed strongly elevated levels of uracil and thymine. The
DPD activity in PBM cells or Wbroblasts proved to be unde-
tectably low in all patients indicating a complete deWciency
of DPD. Analysis of the DPD activity in the parents of
patient 5 showed that the DPD activity in PBM cells of the
mother (3.9 nmol/mg/h) was decreased compared with
controls (9.9 § 2.8 nmol/mg/h) and comparable to that
observed for other obligate heterozygotes (van Kuilenburg
et al. 2002b). Surprisingly, a normal DPD activity
(9.5 nmol/mg/h) was detected in PBM cells from the father.

Molecular studies

Analysis of the genomic sequences of all exons of DPYD,
including their Xanking sequences, revealed no pathogenic
mutations in patients 1–4. However, exon 12 and its
Xanking sequences could not be ampliWed with PCR in
patients 1, 2 and 3 whereas exons 14–16 could not be
ampliWed in patient 4. In patient 5, apparent homozygosity
for the c.299_302delTCAT (formerly known as the
c.295_298delTCAT mutation) in exon 4 was observed.
Analysis of DPYD from the mother demonstrated that she
was heterozygous for the c.299_302delTCAT mutation
whereas in the father the mutation could not be detected.
Biological parenthood was conWrmed using multiplex
genotyping (data not shown).

To investigate the presence of a deletion of one or more
exons of DPYD, MLPA was performed in all patients and
four controls (Fig. 2). These results suggested a deletion of
exon 12 in patients 1, 2 and 3, a deletion of exons 14–16 in
patient 4, and loss of heterozygosity of the entire DPYD
gene in patient 5. A normal MLPA pattern was observed in
the parents of patient 5.

Sequence analysis of DPYD showed that the patients 1, 2
and 3 were homozygous for a 13.8 kb deletion ranging
from c.1,340–3,473 to c.1,524 + 10,154 (c.1,340–
3,473_c.1,525 + 10,154del13812) (Fig. 3). In addition, a
short repeat sequence present in intron 12 was inserted
between intron 11 and intron 12 (Fig. 3b). cDNA analysis
showed that this large genomic deletion led to the synthesis
of an aberrant transcript lacking exon 12 (c.1,340_
1,524del).

Analysis of the cDNA coding for DPD showed that
patient 4 was homozygous for a deletion of exon 14–16
(c.1,741_2,058del) encoding the amino acids 581–686
(Fig. 4a). Analysis of DPYD showed that patient 4 had a dele-
tion of approximately 122 kb ranging from 36 kb upstream
exon 14 to 19.5 kb downstream of exon 16 (Fig. 4b).

Cytogenetic analyses

FISH analysis in patient 5 and his parents showed only one
signal on chromosome 1p in the patient whereas both chro-
mosomes were labelled in the parents (Fig. 5a), indicating a
de novo deletion of DPYD. In addition to DPYD, also the
Xanking genes PTBP2 and SNX7 were deleted in the
patient. Subsequent chromosome analysis with high resolu-
tion banding revealed a deletion of band p21 in the short
arm of chromosome 1 (Fig. 5b).

Array-based CGH was performed to delineate the
boundaries and size of the 1p21 deletion. Detailed analysis
of the chromosome 1 region showed a deleted region of
approximately 14 Mb situated between 1p13.3 and 1p21.3
(Fig. 5c). In this region, 57 diVerent genes were localised

Fig. 1 Patient 5 at age 3 years. Note the macrocephaly, prominent
forehead, low nasal bridge, anteverted nares, open mouth appearance,
full lower vermillion, and large lobules. Informed consent was
obtained from the parents
123
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(UCSC Human Genome Browser Gateway http://genome.
ucsc.edu/).

Discussion

Numerous mutations have been found in DPYD from DPD
deWcient patients but no patients have been described with
genomic deletions of one or multiple exons (van Kuilen-

burg et al. 1999, 2002a, 2004). Here, we show the presence
of large intragenic rearrangements of DPYD and a de novo
interstitial deletion del(1)(p13.3p21.3) encompassing
DPYD, in Wve patients.

Recently, it has been shown that a region of high geno-
mic instability is located at chromosome 1p21-22 and the
common fragile site FRAIE is located within DPYD (Hor-
mozian et al. 2007). The entire genomic region of the
FRA1E common fragile site extends from intron 8 to 18 of

Fig. 2 Analysis of copy number 
changes in DPYD using MLPA. 
The results of the MLPA analy-
sis are shown for patient 2 (a), 
patient 4 (b) and patient 5 (c). 
The quantitative analysis of the 
copy number of the 23 coding 
exons and 4 intronic sequences 
of DPYD and 9 control probes 
speciWc for DNA sequences out-
side DPYD was performed in the 
patient (square) and compared 
to that observed in a control 
(diamond). The solid lines repre-
sent the cut-oV values indicative 
for ampliWcation (relative copy 
number >1.3) or deletion (rela-
tive copy number <0.7) of that 
particular sequence
123
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DPYD with the region of the highest fragility encompassing
the central part of DPYD including exons 13–16
(Hormozian et al. 2007). Thus, the presently described
deletions involving exon 12 and 14–16 are located within
FRA1E. A variation in the DPYD copy number was
observed in a panel of human tumour xenografts (Kobunai
et al. 2007). Copy-number variations (CNVs) are observed
frequently in phenotypically normal individuals (Iafrate
et al. 2004; Redon et al. 2006). The most common CNV
occurring in 49% of studied individuals encompassed the
amylase alpha 1a/2a locus (AMY1A–AMY2A) at 1p13.3 and
another CNV was identiWed at locus 1p21.3 (Iafrate et al.
2004). Thus, the interstitial 1p13.3–21.3 deletion in the
present patient 5 encompasses the entire region between
these two CNVs. It remains uncertain whether the presence
of the c.299_302delTCAT mutation on the other allele has
had any inXuence in the origin of the interstitial deletion of
chromosome 1p in patient 5. The occurrence of de novo
point mutations or deletions combined with a mutation on
the other allele has also been described for patients suVer-

ing from tyrosinase deWciency and Hutchinson-Gilford pro-
geria syndrome (Coupry et al. 2001; Eriksson et al. 2003).

In patients with a complete DPD deWciency, consider-
able variation in the clinical presentation has been
observed (Au et al. 2003; Fernandez-Salguero et al. 1997;
van Kuilenburg et al. 1999, 2002a, 2005). Psychomotor
retardation and convulsive disorders are relatively frequent
manifestations whereas growth retardation, microcephaly,
dysmorphia, autism, hypotonia and ocular abnormalities are
less frequently observed (Au et al. 2003; van Kuilenburg
et al. 1999, 2002a, 2005). The most conspicuous clinical
abnormalities encountered in our patients were the severe
psychomotor retardation, epilepsy, respiratory distress in
the perinatal period, hypotonia, craniofacial dysmorphia
and skeletal abnormalities. To date, no clear genotype-
phenotype correlation has been established but it is
noteworthy that our patients with gross deletions in DPYD
presented with a severe phenotype when compared to that
observed in other DPD patients (van Kuilenburg et al.
1999, 2002a).

Fig. 3 PCR and sequence analysis of exon 12 and Xanking regions of
DPYD. a shows the PCR ampliWcation of exon 12 (Ex12) and a geno-
mic fragment (del Ex12) using PCR primers located 3.8 kb upstream
and 10.4 kb downstream of exon 12. The deletion-speciWc genomic
fragment could be detected in the patients 1, 2 and 3 and the obligate
heterozygous parents whereas exon 12 was only detected in the control
and parents of the patients. b shows the sequence of intron 11 joined to
intron 12 via a repeat sequence of 12 bp (bold and underlined). The

repeat sequence in intron 12 is underlined. The arrows indicate the
start of intron 11 and 12. c shows a schematic representation of the
deleted region and its eVect on the splicing of the DPD pre-mRNA and
the generation of a mutant DPD mRNA. The locations of the forward
primer IVS11f (c.1,340–3,819) and reverse primer IVS12r
(c.1,524 + 10,398) used to amplify the region encompassing the dele-
tion are indicated
123
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Fig. 4 cDNA analysis of exon 
14–16 and Xanking regions of 
DPYD of patient 4. a shows the 
PCR ampliWcation of a cDNA 
fragment using forward and re-
verse primers located in exon 13 
and 19, respectively, in a control 
and the patient. b shows a sche-
matic representation of the delet-
ed region and its eVect on the 
splicing of the DPD pre-mRNA 
and the generation of a mutant 
DPD mRNA

Fig. 5 Chromosomal analysis of DPYD and its Xanking genes. a
shows the FISH analysis of probe RP11-272L13 (DPYD) for patient 5
(I), his mother (II) and father (III). The arrow points at the short arm of
chromosome 1 and the green Xuorescent signal represents the probe
RP11-272L13 (DPYD). b shows the idiogram and partial karyotype
analysis of chromosome 1 of patient 5. The arrow indicates the inter-
stitial deletion of (1)(p13.3p21.3). c shows the detection of copy num-
ber changes by oligo array-based genomic hybridization. The Log2

ratio of oligos was plotted as a function of the whole genome (upper
panel) and chromosome 1 in detail (lower panel). The Y-axis repre-
sents the Log2 ratio of the intensities of test and reference DNA. On
the X-axis oligos are ordered by chromosome or Mb position on the
short arm of chromosome 1. The lines represent our selected criteria
for considering gains (+0.2) and losses (¡0.2). The arrows indicate the
chromosomal region deleted in the patient which spans approximately
14 Mb
123
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Interstitial deletions of the short arm of chromosome 1
are rare (Bisgaard et al. 2007; Dockery and Van der Wes-
thuyzen 1991; Mattia et al. 1992; Tabata et al. 1991). The
phenotypic features in the few patients described with a
comparable proximal interstitial deletion are summarised in
Table 1 and are comparable to those of patient 5.

Psychomotor retardation and seizures were often noted
in the patients. It is conceivable that defects in a number of
genes located in the deleted region of the short arm of
chromosome 1 underlie some of the clinical abnormalities

observed in patient 5. For example, the NTNG1 gene
encodes proteins providing axon guidance cues during
vertebrate nervous system development and might play a
role in late development stages of the central nervous sys-
tem (Borg et al. 2005). In addition, G protein signalling
modulator 2 (GPSM2) has been shown to regulate neuro-
blast self-renewal and the phospholipid phosphatase,
PRG-1 (LPPR4), has been shown to be involved in axon
growth and regenerative sprouting (Brauer et al. 2003; Lee
et al. 2006). Thus, haploinsuYciency of NTNG1, LPPR4

Table 1 Clinical presentation of patients with interstitial deletions of the short arm of chromosome 1

nd no data

Patient 5 Tabata et al. (1991) Dockery and van der 
Westhuyzen (1991) (twins)

Mattia et al.
(1992)

Bisgaard et al. 
(2007)

Deletion 1p13.3–1p21.3 1p13.3–1p22.3 1p13.3–1p22.3 1p13.3–1p22.3 1p13.3–1p21.1

Age at examination 3.5 years 2 months (died 7 months) 29 years 22 months 13 years

Birth weight 4,515 g (>P97) 3,000 g (term) 2,600 g (term) 4,000 g 3,400 g term

42 weeks 2,380 g (term) 41.5 weeks

Growth retardation/
short stature

96.5 cm (P10–P50) nd Final length 147 cm (<P5) P50 130 cm (<P5)

Final length 146 cm (<P5)

Head circumference 54 cm (P90–P97) nd 51.5 cm (P3) nd <3rd centile for age

51 cm (P3)

Large anterior fontanel + + nd nd nd

Frontal bossing + + nd nd nd

Hypertelorism + nd nd nd nd

Downslanting palpebral 
Wssures

¡ + nd ¡ nd

Epicanthal folds + + nd ¡ nd

Colobomata eye ¡ nd nd nd +

Long eyelashes ¡ ¡ nd + nd

Low set ears ¡ nd nd + +

Malformed ears ¡ ¡ + + +

Broad Xat root of nose + + nd nd +

Prominent nasal bridge 
and tip

¡ ¡ nd + +

Anteverted nares + + nd + +

Prominent philtrum + nd nd + +

High arched palate + + nd nd +

Microretrognathia ¡ + nd + nd

Low hair line ¡ + nd nd +

Short neck ¡ + nd nd nd

Widely spaced nipples ¡ + nd nd nd

Cyanotic heart diseases ¡ + ¡ ¡ ¡
Digitalised thumbs ¡ ¡ + + nd

Toe anomalies ¡ + + nd +

Prominent calcanei ¡ + ¡ nd nd

Equinovarus ¡ + + nd ¡
Psychomotor retardation + severe + severe + severe + moderate + severe

Seizures + + nd nd +

Hypotonia + nd nd + +
123
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and GPSM2 might have contributed to the severe psycho-
motor retardation in the patient. In addition, mutations in
COL11A1 gene have been identiWed in patients suVering
from Marshall syndrome and Stickler syndrome (GriYth
et al. 1998; Majava et al. 2007). The Stickler syndrome is
an autosomal dominant connective tissue disorder mainly
characterised by ocular, orofacial and articular abnormali-
ties (hereditary arthro-opthalmopathy). The Marshall syn-
drome is a rare, autosomal dominant craniofacial disorder,
which shows considerable phenotypic overlap with Stick-
ler syndrome. The facial dysmorphism such as the
hypertelelorism, anteverted nares and a prominent phil-
trum, which are often observed in patients with Marshall
syndrome were also present in the patient. Furthermore,
nail dysplasia, delayed dentition, bony abnormalities
(Meyer’s dysplasia) and severe myopia are also found in
patients heterozygous for mutations in the COL11A1 gene.
Interestingly, the vav-3 gene (VAV3) coding for a Rho
guanine nucleotide exchange factor, has been shown to
regulate osteoclast function and bone mass (Faccio et al.
2005).

Within our group of 72 patients with DPD deWciency,
we have been able to identify putative disease-causing
mutations in 61 patients by sequence analysis (van Kuilen-
burg et al. unpublished). The large intragenic rearrange-
ments and the de novo interstitial deletion of chromosome 1
were observed in 5 out of 11 DPD patients in whom
sequence analysis did not provide pathogenic mutations.
The fact that genomic deletions aVecting DPYD were
observed in 7% (5/72) of all DPD patients demonstrates
that genomic DPYD deletions are not a rare event. Further-
more, the fact that the exon 12 deletion was observed in
patients of diVerent ethnic origins indicates that this muta-
tion is not population speciWc and might be relatively fre-
quent in the general population. It has been reported that in
a signiWcant number of tumour patients with a reduced
DPD activity, no mutation could be identiWed in DPYD
(Mattison et al. 2004; van Kuilenburg et al. 2000a).
Although epigenetic regulation of the expression of DPYD
through methylation of the promoter region may provide an
explanation for some of these cases (Zhang and Diasio
2007), it is conceivable that genomic deletions encompass-
ing part of or the entire DPYD gene can also provide a
molecular explanation for patients with a phenotypically
established DPD deWciency. Therefore, we suggest that
patients with a DPD deWciency but without detectable
mutation in DPYD, and especially in those with an unusual
phenotype should be screened for such genomic DPYD
deletions.
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