Skip to main content
Log in

BAC end sequences corresponding to the B4 resistance gene cluster in common bean: a resource for markers and synteny analyses

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In common bean, a complex disease resistance (R) gene cluster, harboring many specific R genes against various pathogens, is located at the end of the linkage group B4. A BAC library of the Meso-american bean genotype BAT93 was screened with PRLJ1, a probe previously shown to be specific to the B4 R gene cluster, leading to the identification of 73 positive BAC clones. BAC-end sequencing (BES) of the 73 positive BACs generated 75 kb of sequence. These BACs were organized into 6 contigs, all mapped at the B4 R gene cluster. To evaluate the potential of BES for marker development, BES-derived specific primers were used to check for linkage with two allelic anthracnose R specificities Co-3 and Co-3 2, through the analysis of pairs of Near Isogenic Lines (NILs). Out of 32 primer pairs tested, two revealed polymorphisms between the NILs, confirming the suspected location of Co-3 and Co-3 2 at the B4 cluster. In order to identify the orthologous region of the B4 R gene cluster in the two model legume genomes, bean BESs were used as queries in TBLASTX searches of Medicago truncatula and Lotus japonicus BAC clones. Putative orthologous regions were identified on chromosome Mt6 and Lj2, in agreement with the colinearity observed between Mt and Lj for these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashfield T, Danzer JR, Held D, Clayton K, Keim P, Saghai Maroof MA, Webb PM, Innes RW (1998) Rpg1, a soybean gene effective against races of bacterial blight, maps to a cluster of previously identified disease resistance genes. Theor Appl Genet 96:1013–1021

    Article  CAS  Google Scholar 

  • Ashfield T, Bocian A, Held D, Henk AD, Marek LF, Danesh D, Penuela S, Meksem K, Lightfoot DA, Young ND, Shoemaker RC, Innes RW (2003) Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS-LRR genes. Mol Plant-Microbe Interact 16:817–826

    Article  PubMed  CAS  Google Scholar 

  • Ameline-Torregrosa C, Wang BB, O’Bleness MS, Deshpande S, Zhu HY, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-Leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:5–21

    Article  PubMed  CAS  Google Scholar 

  • Bannerot H (1965) Résultat de l’infection d’une collection de haricots par six races physiologiques d’anthracnose. Ann Amélior Plantes 15:201–222

    Google Scholar 

  • Barrus MF (1911) Variation of varieties of beans in their susceptibility to anthracnose. Phytopathology 1:190–195

    Google Scholar 

  • Barrus MF (1915) An anthracnose-resistant red kidney bean. Phytopathology 5:303–311

    Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang XH, Mudge J, Vasdewani J, Scheix T, Spannagl M, Monaghan E, Nicholson C, Humphray SJ, Schoof H, Mayer KFX, Rogers J, Quetier F, Oldroyd GE, Debelle F, Cook DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y, Young ND (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 103:14959–14964

    Article  PubMed  CAS  Google Scholar 

  • Cheung F, Town CD (2007) A BAC end view of the Musa acuminata genome. BMC Plant Biol 7:29

    Article  PubMed  CAS  Google Scholar 

  • Chin DB, Arroyo Garcia R, Ochoa OE, Kesseli RV, Lavelle DO, Richelmore RW (2001) Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa). Genetics 157:831–849

    PubMed  CAS  Google Scholar 

  • Choi HK, Mun JH, Kim DJ, Zhu HY, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294

    Article  PubMed  CAS  Google Scholar 

  • Correa RX, Costa MR, Good-God PI, Ragagnin VA, Falejro FG, Moreira MA, De Barros EG (2000) Sequence characterized amplified regions linked to rust resistance genes in the common bean. Crop Sci 40:804–807

    CAS  Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 11:387–395

    Article  Google Scholar 

  • Febrer M, Cheung F, Town CD, Cannon SB, Young ND, Abberton MT, Jenkins G, Milbourne D (2007) Construction, characterization, and preliminary BAC-end sequencing analysis of a bacterial artificial chromosome library of white clover (Trifolium repens L.). Genome 50:412–421

    Article  PubMed  CAS  Google Scholar 

  • Ferrier Cana E, Geffroy V, Macadre C, Creusot F, Imbert Bollore P, Sevignac M, Langin T (2003) Characterization of expressed NBS-LRR resistance gene candidates from common bean. Theor Appl Genet 106:251–261

    PubMed  CAS  Google Scholar 

  • Ferrier Cana E, Macadre C, Sevignac M, David P, Langin T, Geffroy V (2005) Distinct post-transcriptional modifications result into seven alternative transcripts of the CC-NBS-LRR gene JA1tr of Phaseolus vulgaris. Theor Appl Genet 110:895–905

    Article  PubMed  CAS  Google Scholar 

  • Flor HH (1955) Host–parasite interaction in flax rust. Its genetics and other implications. Phytopathology 45:680–685

    Google Scholar 

  • Fouilloux G (1976) L’anthracnose du haricot (Colletotrichum lindemuthianum, Sacc et Magn.): nouvelles sources de résistance et nouvelles races physiologiques. Ann Amélior Plantes 26:443–453

    Google Scholar 

  • Fouilloux G (1979) New races of bean anthracnose and consequences on our breeding programs. In: Maraitre H, Meyer JA (eds) Disease of tropical food crops. Université Catholique de Louvain la Neuve, Belgium, pp 221–235

    Google Scholar 

  • Freyre R, Skroch P, Geffroy V, Adam-Blondon AF, Shirmohamadali A, Johnson WC, Llaca V, Nodari RO, Pereira PA, Tsai SM, Tohme J, Dron M, Nienhuis J, Vallejos CE, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    Article  CAS  Google Scholar 

  • Geffroy V, Creusot F, Falquet J, Sevignac M, Adam-Blondon AF, Bannerot H, Gepts P, Dron M (1998) A family of LRR sequences in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgaris and its potential use in marker-assisted selection. Theor Appl Genet 96:494–502

    Article  CAS  Google Scholar 

  • Geffroy V, Sicard D, de Oliveira JCF, Sevignac M, Cohen S, Gepts P, Neema C, Langin T, Dron M (1999) Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol Plant-Microbe Interact 12:774–784

    Article  PubMed  CAS  Google Scholar 

  • Geffroy V, Sevignac M, De Oliveira JCF, Fouilloux G, Skroch P, Thoquet P, Gepts P, Langin T, Dron M (2000) Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol Plant-Microbe Interact 13:287–296

    Article  PubMed  CAS  Google Scholar 

  • Geffroy V, Sevignac M, Billant P, Dron M, Langin T (2008) Resistance to Colletotrichum lindemuthianum in Phaseolus vulgaris: a case study for mapping two independent genes. Theor Appl Genet 116:407–415

    Article  PubMed  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  PubMed  CAS  Google Scholar 

  • Grant D, Cregan P, Shoemaker RC (2000) Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc Natl Acad Sci USA 97:4168–4173

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Parker JE (2003) Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193

    Article  PubMed  CAS  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Kami J, Poncet V, Geffroy V, Gepts P (2006) Development of four phylogenetically-arrayed BAC libraries and sequence of the APA locus in Phaseolus vulgaris. Theor Appl Genet 112:987–998

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16:2870–2894

    Article  PubMed  CAS  Google Scholar 

  • Kuang HH, Wei FS, Marano MR, Wirtz U, Wang XX, Liu J, Shum WP, Zaborsky J, Tallon LJ, Rensink W, Lobst S, Zhang PF, Tornqvist CE, Tek A, Bamberg J, Helgeson J, Fry W, You F, Luo MC, Jiang JM, Buell CR, Baker B (2005) The R1 resistance gene cluster contains three groups of independently evolving, type I R1 homologues and shows substantial structural variation among haplotypes of Solanum demissum. Plant J 44:37–51

    Article  PubMed  CAS  Google Scholar 

  • Kulikova O, Geurts R, Lamine M, Kim DJ, Cook DR, Leunissen J, de Jong H, Roe BA, Bisseling T (2004) Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma 113:276–283

    Article  PubMed  CAS  Google Scholar 

  • Lai CW, Yu Q, Hou S, Skelton RL, Jones MR, Lewis KLT, Murray J, Eustice M, Guan P, Agbayani R, Moore PH, Ming R, Presting GG (2006) Analysis of papaya BAC end sequences reveals first insights into the organization of a fruit tree genome. Mol Gen Genomics 276:1–12

    Article  CAS  Google Scholar 

  • Lamoureux D, Bernole A, Le Clainche I, Tual S, Thareau V, Paillard S, Legeai F, Dossat C, Wincker P, Oswald M, Merdinoglu D, Vignault C, Delrot S, Caboche M, Chalhoub B, Adam-Blondon AF (2006) Anchoring of a large set of markers onto a BAC library for the development of a draft physical map of the grapevine genome. Theor Appl Genet 113:344–356

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet 20:116–122

    Article  PubMed  CAS  Google Scholar 

  • Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 95:370–375

    Article  PubMed  CAS  Google Scholar 

  • Lopez C, Piegu B, Cooke R, Delseny M, Tohme J, Verdier V (2005) Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). Theor Appl Genet 110:425–431

    Article  PubMed  CAS  Google Scholar 

  • Lopez CE, Acosta IF, Jara C, Pedraza F, Gaitan-Solis E, Gallego G, Beebe S, Tohme J (2003) Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology 93:88–95

    Article  PubMed  CAS  Google Scholar 

  • Mammadov JA, Brooks WS, Griffey CA, Maroof MAS (2007) Validating molecular markers for barley leaf rust resistance genes Rph5 and Rph7. Plant Breed 126:458–463

    Article  CAS  Google Scholar 

  • Mendez-Vigo B, Rodriguez-Suarez C, Paneda A, Ferreira JJ, Giraldez R (2005) Molecular markers and allelic relationships of anthracnose resistance gene cluster B4 in common bean. Euphytica 141:237–245

    Article  CAS  Google Scholar 

  • Meyers BC, Chin DB, Shen KA, Sivaramakrishnan S, Lavelle DO, Zhang Z, Michelmore RW (1998a) The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell 10:1817–1832

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Shen KA, Rohani P, Gaut BS, Michelmore RW (1998b) Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 11:1833–1846

    Article  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang HH, Michelmore RW (2003) Genome-wide analysis of NBS–LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis—a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Mienie CM, Liedenberg MM, Pretorius ZA, Miklas PN (2005) SCAR markers linked to the common bean rust resistance gene Ur-13. Theor Appl Genet 111:972–979

    Article  PubMed  CAS  Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131

    Article  CAS  Google Scholar 

  • Nelson RT, Shoemaker R (2006) Identification and analysis of gene families from the duplicated genome of soybean using EST sequences. BMC Genomics 7:204

    Article  PubMed  CAS  Google Scholar 

  • Nodari RO, Koinange EMK, Kelly JD, Gepts P (1992) Towards an integrated linkage map of common bean. 1. Development of genomic DNA probes and levels of restriction fragment length polymorphism. Theor Appl Genet 84:186–192

    Article  CAS  Google Scholar 

  • Pastor-Corrales MA, Tu JC (1989) Anthracnose. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics, 2nd edn. Centro Internacional de Agricultura Tropical (CIAT), Colombia, pp 77–104

    Google Scholar 

  • Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C (2006) Characterising the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474

    Article  PubMed  CAS  Google Scholar 

  • Pryor T, Ellis J (1993) The genetic complexity of fungal resistance genes in plants. Adv Plant Pathol 10:281–305

    Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume, Lotus japonicus. DNA Res Adv. Access published online on May 28, 2008

  • Scherrer B, Isidore E, Klein P, Kim JS, Bellec A, Chalhoub B, Keller B, Feuillet C (2005) Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome. Plant Cell 17:361–374

    Article  PubMed  CAS  Google Scholar 

  • Seah S, Telleen AC, Williamson VM (2007) Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues. Theor Appl Genet 114:1289–1302

    Article  PubMed  CAS  Google Scholar 

  • Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J, Diergaarde P, van der Lee T, Bleeker M, Onstenk J, De Both M, Haring M, Mes J, Cornelissen B, Zabeau M, Vos P (1998) Dissection of the fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1068

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740

    PubMed  CAS  Google Scholar 

  • Webb CA, Richter TE, Collins NC, Nicolas M, Trick HN, Pryor T, Hulbert SH (2002) Genetic and molecular characterization of the maize rp3 rust resistance locus. Genetics 162:381–394

    PubMed  CAS  Google Scholar 

  • Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181

    Article  PubMed  CAS  Google Scholar 

  • Young RA, Kelly JD (1997) RAPD markers linked to three major anthracnose resistance genes in common bean. Crop Sci 37:940–946

    CAS  Google Scholar 

  • Zhu HY, Cannon SB, Young ND, Cook DR (2002) Phylogeny and genomic organization of the TIR and non-TIR NBS–LRR resistance gene family in Medicago truncatula. Mol Plant-Microbe Interact 15:529–539

    Article  PubMed  CAS  Google Scholar 

  • Zhu HY, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to R. W. Innes for critical reading of the manuscript. We would like to thank G. Fouilloux for helpful discussion on Co-3, Co-3 2 anthracnose disease resistance specificities. We also thank H. Bannerot for providing us with the NILs Co-3LVMy, Co-3 2LVMz and F. Confalloneri for helpful discussions on BAC fingerprinting. The research was supported by INRA-DGAP, CNRS and the French Ministère de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Geffroy.

Additional information

Communicated by M. Yano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, P., Sévignac, M., Thareau, V. et al. BAC end sequences corresponding to the B4 resistance gene cluster in common bean: a resource for markers and synteny analyses. Mol Genet Genomics 280, 521–533 (2008). https://doi.org/10.1007/s00438-008-0384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0384-8

Keywords

Navigation