Skip to main content
Log in

Characterisation and differentiation of pathogenic and non-pathogenic Acanthamoeba strains by their protein and antigen profiles

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Free-living amoebae of the genus Acanthamoeba are the causative agents of Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis. Acanthamoebae occur ubiquitously in the environment and are thus a constant cause of antigenic stimulation. In a previous study we have shown that compared to control sera, AK patients exhibit markedly lower immunoreactivities to whole cell antigen of Acanthamoeba spp. As the pathogenicity of acanthamoebae primarily relies on the excretion of proteins, it was the aim of the present study to investigate the immunoreactivity of metabolic antigen from different Acanthamoeba strains of varying pathogenicity. Three Acanthamoeba strains, one highly pathogenic, one non-pathogenic but thermophilic and one non-thermophilic non-pathogenic, were used for antigen extraction. The antigen was harvested before and after contact with human cells and all strains were tested with AK sera and with sera from healthy individuals. It was shown that the somatic protein profiles of the Acanthamoeba strains correlated to the morphological groups, and that within morphological group II—the group associated with AK—the profiles of the metabolic antigens correlated to strain pathogenicity. Moreover, it was shown that the control sera showed markedly higher immunoreactivities than the sera of the AK patients and that this immunoreactivity was generally higher to the non-pathogenic strains than to the pathogenic strain. Altogether our results once again raise the question of whether there is an immunological predisposition in AK. To our knowledge this is the first study on the immunoreactivity of metabolic antigen of acanthamoebae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alizadeh H, He YG, McCulley JP, Ma D, Stewart GL, Via M, Haehling E, Niederkorn JY (1995) Successful immunization against Acanthamoeba in a pig model. Cornea 14:180–186

    CAS  PubMed  Google Scholar 

  • Blackman HJ, Rao NA, Lemp MA, Visvesvara GS (1984) Acanthamoeba keratitis successfully treated with penetrating keratoplasty: suggested immunogenic mechanisms of action. Cornea 3:125–130

    CAS  PubMed  Google Scholar 

  • Cerva L (1989) Acanthamoeba culbertsoni and Naegleria fowleri: occurrence of antibodies in man. J Hyg Epidemiol Microbiol Immunol 33:99–103

    CAS  PubMed  Google Scholar 

  • Cerva L, Serbus C, Skocil V (1973) Isolation of limax amoebas from the nasal mucosa of man. Folia Parasitol 20:97–103

    CAS  PubMed  Google Scholar 

  • Chappell CL, Wright JA, Coletta M, Newsome AL (2001) Standardized method of measuring Acanthamoeba antibodies in sera from healthy human subjects. Clin Diagn Lab Immunol 8:724–730

    Article  CAS  PubMed  Google Scholar 

  • Cohen E, Fulton J, Hoffman C, Rapuano C, Laibson P (1996) Trends in contact lens-associated corneal ulcers. Cornea 15:566–570

    CAS  PubMed  Google Scholar 

  • Cursons RT, Brown TJ, Keys EA, Moriarty KM, Till D (1980) Immunity to pathogenic free-living amoebae: role of humoral antibody. Infect Immun 29:401–407

    CAS  PubMed  Google Scholar 

  • De Jonckheere JF (1991) Ecology of Acanthamoeba. Rev Infect Dis 13:S385-S387

    PubMed  Google Scholar 

  • De Jonckheere JF, Michel R (1988) Species identification and virulence of Acanthamoeba strains from human nasal mucosa. Parasitol Res 74:314–316

    PubMed  Google Scholar 

  • Donzis PB, Mondino BJ, Weissman BA, Bruckner DA (1987) Microbial contamination of contact lens care systems. Am J Ophthalmol 104:325–333

    CAS  PubMed  Google Scholar 

  • Ferrante A (1991) Free-living amoebae: pathogenicity and immunity. Parasite Immunol 13:31–47

    CAS  PubMed  Google Scholar 

  • Gast RJ, Ledee DR, Fuerst PA, Byers TJ (1996) Subgenus systematics of Acanthamoeba: four nuclear 18S rDNA sequence types. J Eukaryot Microbiol 43:498–504

    CAS  PubMed  Google Scholar 

  • He YG, Niederkorn JY, McCulley JP, Stewart GL, Meyer DR, Silvany R, Dougherty J (1990) In vivo and in vitro collagenolytic activity of Acanthamoeba castellanii. Invest Ophthalmol Vision Sci 31:2235–2240

    CAS  Google Scholar 

  • Khan NA, Jarroll EL, Paget TA (2002) Molecular and physiological differentiation between pathogenic and nonpathogenic Acanthamoeba. Curr Microbiol 45:197–202

    Article  CAS  PubMed  Google Scholar 

  • Klink F van, Leher H, Jager MJ, Alizadeh H, Taylor W, Niederkorn JY (1997) Systemic immune response to Acanthamoeba keratitis in the Chinese hamster. Ocul Immunol Inflamm 5:235–244

    PubMed  Google Scholar 

  • Kong H-H, Kim T-H, Chung d -I (2000) Purification and characterization of a secretory serine proteinase of Acanthamoeba healyi isolated from GAE. J Parasitol 86:12–17

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lam DS, Houang E, Fan DS, Lyon D, Seal D, Wong E (2002) Incidence and risk factors for microbial keratitis in Hong Kong: comparison with Europe and North America. Eye 16:608–618

    Article  CAS  PubMed  Google Scholar 

  • Leher H, Alizadeh H, Taylor WM, Shea AS, Silvany RS, Van Klink F, Jager MJ, Niederkorn JY (1998a) Role of mucosal IgA in the resistance to Acanthamoeba keratitis. Invest Ophthalmol Vision Sci 39:2666–2673

    CAS  Google Scholar 

  • Leher H, Kinoshita K, Alizadeh H, Zaragoza FL, He Y, Niederkorn J (1998b) Impact of oral immunization with Acanthamoeba antigens on parasite adhesion and corneal infection. Invest Ophthalmol Vision Sci 39:2237–2243

    Google Scholar 

  • Leher H, Silvany R, Alizadeh H, Huang J, Niederkorn JY (1998c) Mannose induces the release of cytopathic factors from Acanthamoeba castellanii. Infect Immun 66:5–10

    CAS  PubMed  Google Scholar 

  • Leher H, Zaragoza F, Taherzadeh S, Alizadeh H, Niederkorn JY (1999) Monoclonal IgA antibodies protect against Acanthamoeba keratitis. Exp Eye Res 69:75–84

    Article  CAS  PubMed  Google Scholar 

  • Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16:273–307

    Article  PubMed  Google Scholar 

  • Marciano-Cabral F, Toney DM (1998) The interaction of Acanthamoeba spp. with activated macrophages and with macrophage cell lines. J Euk Microbiol 45:452–458

    CAS  PubMed  Google Scholar 

  • Martinez AJ, Visvesvara GS (1997) Free-living, amphizoic and opportunistic amebas. Brain Pathol 7:583–598

    CAS  PubMed  Google Scholar 

  • Mathers W, Stevens G Jr, Rodrigues M, Chan CC, Gold J, Visvesvara GS, Lemp MA, Zimmerman LE (1987) Immunopathology and electron microscopy of Acanthamoeba keratitis. Am J Ophthalmol 103:626–635

    CAS  PubMed  Google Scholar 

  • Mattana A, Tozzi MG, Costa M, Delogu G, Fiori PL, Cappuccinelli P (2001) By releasing ADP, Acanthamoeba castellanii causes an increase in the cytosolic free calcium concentration and apoptosis in wish cells. Infect Immun 69:4134–4140

    Article  CAS  PubMed  Google Scholar 

  • Mattana A, Cappai V, Alberti L, Serra C, Fiori PL, Cappuccinelli P (2002) ADP and other metabolites released from Acanthamoeba castellanii lead to human monocytic cell death through apoptosis and stimulate the secretion of proinflammatory cytokines. Infect Immun 70:4424–4432

    Article  CAS  PubMed  Google Scholar 

  • McClellan K, Howard K, Mayhew E, Niederkorn J, Alizadeh H (2002) Adaptive immune responses to Acanthamoeba cysts. Exp Eye Res 75:285–293

    Article  CAS  PubMed  Google Scholar 

  • Mergeryan H (1991) The prevalence of Acanthamoeba in the human environment. Rev Inf Dis 13:S390-S391

    Google Scholar 

  • Michel R, Röhl R, Schneider H (1982) Isolation of free-living amoebae from nasal mucosa of healthy individuals. Zbl Bakt Hyg 176:155–159

    CAS  Google Scholar 

  • Moore MB, McCulley JP, Luckenbach M, Gelender H, Newton C, McDonald MB, Visvesvara GS (1985) Acanthamoeba keratitis associated with soft contact lenses. Am J Ophthalmol 100:396–403

    CAS  PubMed  Google Scholar 

  • Moore MB, Ubelaker JE, Martin JH, Silvany R, Dougherty JM, Meyer DR, McCulley JP (1991) In vitro penetration of human corneal epithelium by Acanthamoeba castellanii: a scanning and transmission electron microscopic study. Cornea 10:291–298

    CAS  PubMed  Google Scholar 

  • Na BK, Cho JH, Song CY, Kim TS (2002) Degradation of immunoglobulins, protease inhibitors and interleukin-1 by a secretory proteinase of Acanthamoeba castellanii. Korean J Parasitol 40:93–99

    PubMed  Google Scholar 

  • Nagington F, Watson PG, Playfair TJ, McGill J, Hones BR, Steele ADM (1974) Amoebic infection of the eye. Lancet 2:1537–1540

    Article  PubMed  Google Scholar 

  • Niederkorn JY (2002a) Immune privilege in the anterior chamber of the eye. Crit Rev Immunol 22:13–46

    CAS  PubMed  Google Scholar 

  • Niederkorn JY (2002b) The role of the innate and adaptive immune responses in Acanthamoeba keratitis. Arch Immunol Ther Exp (Warsz) 50:53–59

    Google Scholar 

  • Niederkorn JY, Alizadeh H, Leher H, McCulley JP (1999) The pathogenesis of Acanthamoeba keratitis. Microbes Infect 1:437–443

    Article  CAS  PubMed  Google Scholar 

  • Pearlman E (1997) Immunopathology of onchocerciasis: a role for eosinophils in onchocercal dermatitis and keratitis. Chem Immunol 66:26–40

    CAS  PubMed  Google Scholar 

  • Powell EL, Newsome AL, Allen, SD, Knudson GB (1994) Identification of antigens of pathogenic free-living amoebae by protein immunoblotting with rabbit immune and human sera. Clin Diagn Lab Immunol 1:493–499

    CAS  PubMed  Google Scholar 

  • Pussard M, Pons R (1977) Morphologie de la paroi kystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida). Protistologica 8:557–598

    Google Scholar 

  • Que X, Reed SL (2000) Cysteine proteinases and the pathogenesis of amebiasis. Clin Microbiol Rev 13:196–206

    CAS  PubMed  Google Scholar 

  • Radford CF, Minassian DC, Dart JK (2002) Acanthamoeba keratitis in England and Wales: incidence, outcome, and risk factors. Br J Ophthalmol 86:536–542

    Article  CAS  PubMed  Google Scholar 

  • Schaumberg DA, Snow KK, Dana MR (1998) The epidemic of Acanthamoeba keratitis: where do we stand? Cornea 17:3–10

    CAS  PubMed  Google Scholar 

  • Shandil RK, Vinayak VK (1990) Immunoreactivity of Entamoeba histolytica antigens with sera from amoebic patients. Med Microbiol Immunol (Berl) 179:263–269

    Google Scholar 

  • Stewart GL, Kim I, Shupe K, Alizadeh H, Silvany R, McCulley JP, Niederkorn JY (1992) Chemotactic response of macrophages to Acanthamoeba castellanii antigen and antibody-dependent macrophage-mediated killing of the parasite. J Parasitol 78:849–855

    CAS  PubMed  Google Scholar 

  • Stewart GL, Shupe K, Kim I, Silvany H, Alizadeh H, McCulley JP, Niederkorn JY (1994) Antibody-dependent neutrophil-mediated killing of Acanthamoeba c astellanii. Int J Parasitol 24:739–742

    Article  CAS  PubMed  Google Scholar 

  • Stothard DR, Schroeder-Diedrich JM, Awwad MH, Gast RJ, Ledee DR, Rodriguez-Zaragoza S, Dean CL, Fuerst PA, Byers TJ (1998) The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. J Eukaryot Microbiol 45:45–54

    CAS  PubMed  Google Scholar 

  • Streilein JW, Dana MR, Ksander BR (1997) Immunity causing blindness: five different paths to herpes stromal keratitis. Immunol Today 18:443–449

    Article  CAS  PubMed  Google Scholar 

  • Visvesvara GS, Balamuth W (1975) Comparative studies on related free-living and pathogenic amebae with special reference to Acanthamoeba. J Protozool 22:245–256

    CAS  PubMed  Google Scholar 

  • Walochnik J, Haller-Schober EM, Kölli H, Picher O, Obwaller A, Aspöck H (2000a) Discrimination between clinically relevant and nonrelevant Acanthamoeba strains isolated from contact lens wearing keratitis patients in Austria. J Clin Microbiol 38:3932–3936

    CAS  PubMed  Google Scholar 

  • Walochnik J, Obwaller A, Aspöck H (2000b) Correlations between morphological, molecular biological, and physiological characters in clinical and non-clinical isolates of Acanthamoeba spp. Appl Environ Microbiol 66:4408–4413

    Article  CAS  PubMed  Google Scholar 

  • Walochnik J, Obwaller A, Aspöck H (2001a) Immunological inter-strain crossreactivity correlated to 18S rDNA sequence types in Acanthamoeba spp. Int J Parasitol 31:163–167

    Article  CAS  PubMed  Google Scholar 

  • Walochnik J, Obwaller A, Aspöck H (2001b) Anti-Acanthamoeba IgG, IgM, and IgA immunoreactivity of Acanthamoeba keratitis patients and asymptomatic individuals. Parasitol Res 87:651–656

    Article  CAS  PubMed  Google Scholar 

  • Walochnik J, Haller-Schober EM, Kölli H, Picher O, Obwaller A, Aspöck H (2002) Acanthamoeba -Keratitis in Österreich: Klinische, mikrobiologische und epidemiologische Befunde. Mitt Österr Ges Tropenmed Parasitol 23:17–26

Download references

Acknowledgements

The authors wish to thank Dr R. Michel from the Department of Parasitology of the Central Institute of the Armed Forces Medical Services, Koblenz, Germany for providing the Acanthamoeba strains Am23, 302–2, 312–2, 45/1 and 72/2. All work was done according to the Austrian Gene Technology Law and following the NIH guidelines. Moreover, the safety regulations of the European Community for working with biologically and chemically hazardous material were strictly adhered to.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Aspöck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walochnik, J., Sommer, K., Obwaller, A. et al. Characterisation and differentiation of pathogenic and non-pathogenic Acanthamoeba strains by their protein and antigen profiles. Parasitol Res 92, 289–298 (2004). https://doi.org/10.1007/s00436-003-1041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-003-1041-0

Keywords

Navigation