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Abstract
Mitochondria are organelles with double-membrane structure of inner and outer membrane, which provides main energy 
support for cell growth and metabolism. Reactive oxygen species (ROS) mainly comes from mitochondrial and can cause 
irreversible damage to cells under oxidative stress. Thus, mitochondrial homeostasis is the basis for maintaining the normal 
physiological function of cells and mitophagy plays a pivotal role in the maintenance of mitochondrial homeostasis. At pre-
sent, to enhance the sensitivity of cancer cells to radiotherapy and chemotherapy by regulating mitochondria has increasingly 
become a hot spot of cancer therapy. It is particularly important to study the effect of ionizing radiation (IR) on mitochondria 
and the role of mitophagy in the radiosensitivity of cancer cells. Most of the existing reviews have focused on mitophagy-
related molecules or pathways and the impact of mitophagy on diseases. In this review, we mainly focus on discussing the 
relationship between mitophagy and radiosensitivity of cancer cells around mitochondria and IR.
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Abbreviations
ROS	� Reactive oxygen species
IR	� Ionizing radiation
ATP	� Adenosine triphosphate
OMM	� Outer mitochondrial membrane
IMM	� Inner mitochondrial membrane
TCA​	� Tricarboxylic acid cycle
NOX	� NADPH oxidase
RNS	� Reactive nitrogen species
ΔΨm	� Mitochondrial membrane potential
mtDNA	� Mitochondrial DNA
rRNAs	� Ribosomal RNAs
tRNAs	� Transfer RNAs
CaMK	� Calcium ion/calmodulin kinase
FC	� Flow cytometry
LC3	� Light chain 3

ATG​	� Autophagy-related protein
SLRs	� SQSTM1-like receptors
LIR	� LC3-interacting region
ULK1	� Unc-51-like kinase 1
PGAM5	� Phosphoglycerate mutase family member 5
Bcl-2	� B-cell lymphoma-2
CL	� Cardiolipin

Introduction

Mitochondria are double-membrane organelles present in 
most eukaryotic cells, and mitochondria are the main sites 
of intracellular oxidative phosphorylation and formation of 
adenosine triphosphate (ATP) (Herst et al. 2017; Pfanner 
et al. 2019). It can be divided into four functional areas: 
outer mitochondrial membrane (OMM), membrane space, 
inner mitochondrial membrane (IMM) and matrix from the 
outside to the inside. As shown in Fig. 1, the IMM possesses 
a several-fold larger surface than the OMM, resulting in an 
invagination of so-called cristae membranes that harbor the 
oxidative phosphorylation system, including the respira-
tory complexes I–IV and the F1FO-ATP synthase for ATP. 
Therefore, major metabolic pathways of mitochondria con-
cern the energy metabolism, such as the tricarboxylic acid 
cycle (TCA) also known as citric acid cycle or Krebs cycle, 
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and the metabolism of amino acids, lipids and nucleotides 
(Pfanner et al. 2019). Besides, mitochondria are involved 
in processes, such as heme biosynthesis, calcium buffering, 
apoptosis, and innate immune surveillance (Franco-Iborra 
et al. 2018; Ni et al. 2015). The metabolism of mitochondria 
mentioned above produces a large amount of ROS, includes 
the superoxide anion (O2

−), hydrogen peroxide (H2O2), 
hydroxyl radical (·OH), and singlet oxygen (1O2) (Han et al. 
2018).

Recent studies showed that ROS levels correlate with 
the radiosensitivity of cells. There are two major sources 
for ROS production in cells: mitochondria, which gener-
ate ROS as a by-product of respiration; NADPH oxidase 
(NOX), which actively produces superoxide across the 
membranes of neutrophils and phagosomes (Li et al. 2015). 
On the other hand, intracellular ROS remains at a relatively 
low level and is precisely controlled by endogenous free 
radical scavengers, such as superoxide dismutase, catalase, 
and the glutathione peroxidase and thioredoxin reductase 
systems (Venardos et al. 2007; Finkel and Holbrook 2000). 
Antioxidants capable of scavenging excessive ROS may 
help maintain oxidative homeostasis and prevent related 
damages. Various factors, such as toxins, oxidants and IR, 
can increase ROS level sharply and make the anti-oxidation 
defense systems in a weak position, leading to disruption 

of the balance between generation and elimination of ROS 
and consequently progression of diseases and even eventual 
death (Dalle-Donne et al. 2001; Yu et al. 2006; Motoori et al. 
2001; Ayaka et al. 2012).

Mitochondrial homeostasis is particularly important for 
ROS level and maintained by an intricate balance between 
fission, fusion, mitochondrial biogenesis, and mitophagy 
(Chan 2012; Hoitzing et al. 2015). Mitophagy as a kind of 
selective autophagy is one of the main pathways for mito-
chondrial quality and quantity control. The word autophagy 
is derived from the Greek roots “auto” (self) and “phagy” 
(eating) (Li et al. 2020). As the name implies, mitophagy 
is an intracellular degradation pathway in eukaryotes, 
which depends on lysosomes, resulting in some damaged or 
excess aging mitochondria being swallowed and degraded. 
Previous studies have shown that ROS is closely related to 
autophagy (Yang et al. 2008; Pyo et al. 2008; Dadakhujaev 
et al. 2008; Chen et al. 2008a, b). And mitophagy also can be 
further stimulated by oxidative stress. Upon stress or injury, 
mitophagy prevents the accumulation of damaged mitochon-
dria and the increased level of ROS leading to oxidative 
stress and cell death (Ashrafi and Schwarz 2013).

In summary, we hold the opinion that there is also a rela-
tionship between mitophagy and the radiosensitivity of cells, 
but there is no related review of this issues at present. Next, we 

Fig. 1   Schematic diagram of mitochondrial structure and the distribution of mitophagy-related molecular receptors on mitochondria. SLRs 
SQSTM1-like receptors; OMM outer mitochondrial membrane; IMM inner mitochondrial membrane; ROS reactive oxygen species
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will discuss the effects of IR on cancer cells and mitochondria, 
and the effects of mitophagy on the radiosensitivity of cancer 
cells.

Effects of IR on cancer cells

ROS and DNA

The killing effects of IR on cells are divided into direct and 
indirect effects. IR could cause irreparable single-strand or 
double-strand breaks of DNA, resulting in cell death, which 
belong to the direct effects of IR. Indirect effects refer to the 
reaction of IR with water molecules in cancer cells to form 
oxygen free radicals, causing oxidative stress, which is more 
damaging to cells. Among them, oxidative stress is larger 
and more serious to cells. Oxidative stress is defined as the 
imbalance between oxidants-ROS, Reactive Nitrogen Spe-
cies (RNS) and antioxidants. Under oxidative stress, exces-
sive accumulation of ROS could further aggravate oxidative 
damage using mitochondria as primary targets and destroy 
cellular proteins, lipids and DNA, resulting in fatal cell dam-
age, which in turn involves a variety of pathology, such as 
aging, cancer, metabolic syndrome, neurodegenerative dis-
eases, cardiovascular disease, diabetes, and so on (Ichimiya 
et al. 2020; Rodolfo et al. 2018; Drake et al. 2017).

Radiosensitivity

The radiosensitivity of tumor cells is related to many fac-
tors, such as type of tumor cells, presence of cancer stem 
cells, type of radiation, and tumor microenvironment. More 
and more studies have shown that mitochondria also play 
an important role in the radiosensitivity of cells, energy 
metabolism, mitochondrial apoptosis, mitophagy, regulation 
of redox homeostasis, and calcium influx all play an indis-
pensable role in this process (Lynam-Lennon et al. 2014; 
Yuehua et al. 2018; Yang et al. 2021). Mitochondria are 
the main source of energy for cell growth and proliferation. 
Various external stimuli lead to mitochondrial damage and 
loss of oxidative phosphorylation function, which will affect 
cell metabolic activities and eventually lead to cell apoptosis 
or death. This is also the main mechanism of action of many 
chemotherapy drugs at present. Therefore, mitochondria are 
increasingly becoming an important target for studying the 
effect of enhancing tumor killing.

Effects of IR on mitochondria

Elevated ROS levels

As mentioned above, ROS is a key medium of mitochondrial 
damage induced by IR, and one of the main sources of ROS 

is the respiratory chain of IMM (Addabbo et al. 2009; Zorov 
et al. 2014; Turrens 2003). ROS production of mitochondria 
will increase in cells after being irradiated. Hosoki et al. 
revealed that the cellular level of ROS increased in HeLa 
S3 cells during post-irradiation (Ayaka et al. 2012). Motoori 
et al. used di-hydro-rhodamine 123 to detect mitochondrial 
ROS and radiation incubation using flow cytometry with 
a fluorescent probe showed a radiation-induced elevation 
in mitochondrial ROS in human hepatoma cells (Motoori 
et al. 2001). Zhang et al. showed that small airway epithelial 
exposed to 10α particles through the cytoplasm resulted in 
an increase in fluorescence intensity of superoxide produc-
tion at 2 h post irradiation at a level that was three times that 
of control (Zhang et al. 2013).

Mitochondrial membrane potential (ΔΨm) 
depolarization

The IMM is distributed with many proton pumps, whose 
function is to pump intra-matricial protons (H+) into the 
outer side of the inner membrane, thus forming ΔΨm across 
the inner membrane to maintain the normal function of mito-
chondria. When mitochondria are exposed to IR, it can lead 
to obstacles in the electron transport process of the respira-
tory chain and affect the formation of H+ transmembrane 
gradient, which will lead to a decrease in the ΔΨm of the 
original external positive and internal negative, that is, ΔΨm 
depolarization. Mitochondrial depolarization signals cause 
autophagy-related proteins, such as PINK, to stabilize the 
OMM and accumulate, initiating the process of mitophagy 
(Ashrafi and Schwarz 2013).

Mitochondrial DNA (mtDNA) damage

Human mtDNA is a circular double-stranded molecule with 
a full length of 16,569 bp and it can be divided into heavy 
chain and light chain.

MtDNA accounts for only 1–2% of the total human 
DNA, it has no intron and contains 37 genes encoding 13 
polypeptides, 2 ribosomal RNAs (rRNAs), and 22 transfer 
RNAs (tRNAs) (Mishra and Chan 2014; Anderson et al. 
1981). There is also the only two non-coding regions, 
namely D-loop and the replication start point of the light 
chain, the former is the main regulatory region of mtDNA 
replication and transcription. The part of nuclear DNA 
that is involved in protein coding accounts for only 1% of 
the total human DNA, so scholars generally believe that 
damage of mtDNA is more likely to lead to disease than 
nuclear DNA (Birney et al. 2007). Specifically, it is as 
follows: (1) mtDNA is bare and lacks histone protection; 
(2) The high fat/DNA value in mitochondria makes lipo-
philic carcinogens preferentially aggregate on mtDNA; (3) 
mtDNA is in a state of continuous synthesis throughout 
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the cell cycle, which is susceptible to external interference 
and poor stability; (4) The high concentration of oxygen 
in mitochondria is easy to produce oxygen free radicals 
and hydrogen peroxide, and due to the scarce synthesize 
glutathione, mtDNA is susceptible to oxidative damage; 
(5) High frequency of replication mismatch; (6) With 
the not-so-perfect mechanism for repairing DNA dam-
age (West and Shadel 2017; Yoshida et al. 2012; Clayton 
et al. 1974; Robert et al. 1975; Croteau et al. 1999; Larsen 
et al. 2005; Heddi et al. 1999; Penta et al. 2001). To sum 
up, the damage of mtDNA will be more obvious when 
cells are exposed to IR. Many scholars also have confirmed 
that ROS can cause more extensive and lasting damage 
to mtDNA, and mtDNA depletion can also in turn affect 
cellular oxidative stress (Yakes and Houten 1997; Azzam 
et al. 2012; Kim et al. 2008; Zhou et al. 2011; Kobashi-
gawa et al. 2011; Garza-Lombó et al. 2020).

Mitochondria swelling

Mild mitochondrial swelling under physiologic condi-
tions regulates metabolism and function of mitochondria, 
whereas excessive swelling causes mitochondrial dysfunc-
tion (Makarov et al. 2020). The abnormal accumulation of 
ROS could upregulate inositol triphosphate, resulting in the 
opening of inositol triphosphate receptor-calcium ion chan-
nels on the endoplasmic reticulum membranes, calcium ions 
are released from the endoplasmic reticulum. The high level 
of calcium ion/calmodulin kinase (CaMK) in the cytoplasm 
can open the L-type voltage-gated calcium ion channel of 
the plasma membrane and the inflow of extracellular cal-
cium ions, which further induces the opening of the mito-
chondrial bilayer membrane permeable pores, making the 
mitochondria swell and rupture (Orrenius et al. 2015).

Mitophagy

As we can see from the above, ROS plays a particularly 
important role in the effects of IR on cells and mitochon-
dria, and mitochondria are the main sites to product ROS. In 
addition to ROS, other IR-induced alterations in mitochon-
dria can also initiate a series process, such as mitochondrial 
elimination, fission and fusion, and mitochondrial biogen-
esis, to maintain mitochondria homeostasis. Whole mito-
chondrial elimination is accomplished by a selective form 
of autophagy: mitophagy. The activation of mitophagy is 
closely related to the redox of cells, such as hypoxic environ-
ment and IR, can put cells under oxidative stress and induce 
the occurrence of mitophagy. Next, we made a review of 
mitophagy-related molecular receptors and pathways.

Mitophagy‑related molecular receptors 
(shown in Fig. 1)

Various metabolic activities in cells are transmitted by 
signaling pathways and molecules, and in recent years, 
great progress has been made in the study of mitophagy 
mechanism. Microtubule associated protein 1 light chain 
3 (LC3) is the most used autophagy marker. LC3 gene 
is the mammalian homologous gene of autophagy-related 
protein8 (ATG8), which encodes three proteins: LC3A, 
LC3B and LC3C. During autophagy, LC3B cleaves to 
soluble protein LC3B-I, which combines with phos-
phatidylethanolamine to form LC3B-II. LC3B-II can 
accumulate in large quantities on the surface of neonatal 
autophagosomes, which is one of the reliable markers of 
autophagy (Zhihong et al. 2013). When mitophagy starts, 
LC3B-II binds to the proteins on mitochondria, causing 
autophagosomes to wrap damaged mitochondria to form 
mitochondrial autophagosomes, which is a key step in the 
occurrence of mitophagy. There are a variety of mitophagy 
receptors on the mitochondrial membrane, which are listed 
in Table 1. When cells are irradiated to cause mitochon-
drial injury or depolarization, such as the most common 
oxidative stress, changes in the mitochondria themselves 
will stimulate the changes of autophagic proteins, initiat-
ing mitophagy.

SQSTM1‑like receptors

Mitochondrial receptor proteins act as junctions between 
autophagosomes and mitochondria, one of which is called 
SQSTM1-like receptors (SLRs). In addition to interact-
ing with LC3, these proteins have domains that bind to 
ubiquitin, through which autophagosomes and mitochon-
dria are connected. Currently, SLRs include SQSTM1, 
CALCOCO2/NDP52, OPTN, NBR1, and CALCOCO3/
TAX1BP1.

SQSTM1/p62 assists selective macro-autophagy and 
acts as a molecular sentinel in the auto-phagosome mem-
brane for the recognition, sequestration, and degradation 
of intracellular wastes. In addition, p62 is defined as the 
odd-jobber protein, able to orchestrate autophagy, coor-
dinate stem cell differentiation, quench inflammation and 
actively participate in tumor stroma recovery through 
immune cells recruitment and anti-metastatic activity 
(Sabbieti et al. 2022).

CALCOCO family proteins are the newly found selec-
tive autophagy receptors, which include CALCOCO1, 
CALCOCO2/NDP52, and CALCOCO3/TAX1BP1 (Chen 
et al. 2022). NDP52 is a member of the nucleus point fam-
ily and is distributed in both the cytoplasm and nucleus. 
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The amino end is the SKICH30 domain, the central region 
is the curly spiral domain, and the carboxyl end is com-
posed of one LIM domain and two zinc finger structures 
(Morriswood et al. 2007). It is the primary receptor for 
PINK1/Parkin-mediated mitophagy. The ubiquitin kinase 
PINK1 recruits NDP52 and Optineurin to mitochondria 
to directly activate mitophagy independent of Parkin 
(Michael et al. 2015). In addition, NDP52 is also involved 
in xenophagy and immune response (Sharma et al. 2018; 
Leymarie et al. 2017). TAX1BP1 is a selective macro-
autophagy/autophagy receptor that plays a central role in 
host defense against pathogens and regulation of the innate 
immune system. TAX1BP1 can also perform a variety of 
auxiliary functions, affecting the biogenesis and matura-
tion of auto-phagosomes (Chen et al. 2022). Other study 
has shown that TAX1BP1 also plays a role in the negative 
regulation of cell growth and apoptosis (Verstrepen et al. 
2011).

OPTN, like NDP52, it functions as a pink1 downstream 
protein and contains several structural domains, includ-
ing two coiled-coil domains, a leucine zipper domain, an 
LC3-interacting region (LIR), a ubiquitin-binding domain 
and a zinc finger domain. OPTN-mediated autophagy-
dysfunction is closely related to a variety of diseases, such 

as Neurodegenerative diseases, Neurodegenerative dis-
eases, Cancer, and Nephropathy. Other study has shown the 
HACE1–optineurin axis promotes tumor suppression in an 
ubiquitin-dependent fashion (Liu et al. 2014). And OPTN 
play distinctive roles in different diseases, depending on its 
primary molecular function in each respective condition 
(Qiu et al. 2022).

NBR1 was discovered as a selective autophagy receptor 
due to its interaction with and similarity in domain organiza-
tion to p62 and direct binding to ATG8 proteins and ubiqui-
tin (Kirkin 2009). NBR1 and p62 share an N-terminal PB1 
domain, the ZZ zinc finger domain, LIR motif, and C-ter-
minal UBA domains. In addition, NBR1 contains the four 
tryptophan domains involved in protein–protein interactions, 
two coiled-coil domains, and an amphipathic helix domain 
not found in p62 (Rasmussen et al. 2022). Besides, it also 
plays an important role in cancer metastasis and immune 
evasion (Yamamoto et al. 2020; Marsh and Debnath 2020).

In addition to SLRs, some mitochondrial membrane pro-
teins can also bind directly to LC3 without relying on ubiq-
uitin. The common feature of these proteins is the conserved 
key region, which could directly bind to ATG8/LC3 or other 
proteins in the family. The following proteins are classified 
and described according to the location in mitochondria:

Table 1   Mitophagy-related molecular receptors

SLRs SQSTM1-like receptors; OMM outer mitochondrial membrane; IMM inner mitochondrial membrane

Type Mitophagy receptor Location Is it 
ubiquitin-
dependent?

Other features References

SLRs SQSTM1/p62 OMM Yes Coordinate stem cell differentiation, 
quench inflammation and tumor 
stroma recovery

Sabbieti et al. (2022)

CALCOCO2/NDP52 OMM Yes Xenophagy and immune response Leymarie et al. (2017), Michael et al. 
(2015), Morriswood et al. (2007)

OPTN OMM Yes Tumor suppression Qiu et al. (2022)
NBR1 OMM Yes Cancer metastasis and immune evasion Kirkin (2009), Rasmussen et al. (2022)
TAX1BP1 OMM Yes Negative regulation of cell growth and 

apoptosis
Kim et al. (2008)

Interact 
with LC3 
directly

PHB2 IMM No Maintain the stability of mitochondrial 
genome

Yan et al. (2020)

CL IMM No Regulate cellular apoptosis McMillin and Dowhan (2002)
PINK1 OMM No – –
Parkin OMM No – –
FUNDC1 OMM No Mitochondrial quality control Chen et al. (2016a, b)
NIX/BNIP3L OMM No Regulate cellular apoptosis Lampert et al. (2019)
BNIP3 OMM No Regulate cellular apoptosis Zhang and Ney (2009)
Bcl2L13 OMM No regulate cellular apoptosis Meng et al. (2021)
FKBP8 OMM No Regulate cellular apoptosis Misaka et al. (2018)
AMBRA1 OMM No Tumor inhibition Di Rita et al. (2018), Liu et al. (2017), 

Sun et al. (2018) Sun et al. (2019)
NLRX1 OMM No Regulate cellular death, apoptosis and 

inflammation
Imbeault et al. (2014), Soares et al. 

(2014)
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OMM proteins

FUNDC1 is a 155-amino acid macromolecular protein 
with 3 transmembrane domains, in addition, the N-terminal 
domain exposed to the cytoplasm contains a domain LIR 
that interacts with LC3 (Qiu et al. 2022). Under normal 
circumstances, phosphorylated FUNDC1 is present in the 
OMM, and when in a hypoxic environment, unc-51-like 
kinase 1 (ULK1) phosphorylated Ser17 on FUNDC1, and 
phosphoglycerate mutase family member 5 (PGAM5) 
dephosphorylates Ser13, thereby promoting FUNDC1 LIR 
interacts with LC3 to initiate mitophagy occurring. Other 
study has shown that FUNDC1 is also involved in regulat-
ing mitochondrial fission and fusion to help mitochondrial 
quality control (Chen et al. 2016a, b).

NIX, also known as BNIP3L, is a member of the B cell 
lymphoma-2 (Bcl-2) family and has 56% homology with 
BNIP3. It is a mitochondrial autophagy receptor located in 
the outer membrane of the mitochondria. During the matu-
ration of mammalian erythrocytes, Nix-mediated mito-
chondrial autophagy plays an important role in the removal 
of mitochondria (Ashrafi and Schwarz 2013). The related 
mechanism may be that NIX acts as an autophagy receptor 
to recruit autophagy-related molecules to initiate autophagy 
(Zhang and Ney 2009). In addition, NIX is similar to BNIP3 
in function, and its C-terminal transmembrane domain 
induces apoptosis by interacting with Bcl-2 and BCL-XL 
(Diwan et al. 2007; Zhang and Ney 2009). NIX protein can 
not only induce apoptosis but also mediate mitochondrial 
autophagy (Dorn 2010).

BNIP3 and NIX are both members of the Bcl-2 family 
containing only the BH3 domain subfamily (Lampert et al. 
2019). BNIP3 and NIX were found to be a class of pro-apop-
totic proteins (Fei et al. 2004), which are highly expressed 
in cancer cells and cardiomyocytes under hypoxic condi-
tions and are closely related to cell death. Then these two 
proteins were found that both of them also play an important 
role in promoting mitophagy of cell survival. BNIP3 induces 
the release of Beclin-1 by competitively binding Bcl-2 with 
the autophagy core protein Beclin-1, and then activates 
autophagy. In addition, there is a conservative LIR that rec-
ognizes auto-phagosome LC3 at the N-terminal of BNIP3, 
which can promote mitophagy. Several studies have shown 
that elevated mitochondrial ROS increases the expression of 
BNIP3/NIX to trigger mitophagy (Chourasia et al. 2015; Li 
et al. 2015; Hu et al. 2016).

Bcl2L13 is also a member of the Bcl-2 protein family 
and is in the OMM. It has four conserved BH structures 
and one transmembrane structure of the Bcl-2 family (Meng 
et al. 2021). Bcl2L13 is a newly reported mitophagy recep-
tor, which is a homologous protein of mitophagy-related 
gene ATG32, which mediates the clearance of damaged 
mitochondria (Murakawa et al. 2015.). In addition, like all 

members of the Bcl-2 protein family, Bcl2L13 has the func-
tion of regulating apoptosis (Meng et al. 2021).

FKBP8 is a member of the FK506-binding protein family 
and the only member of the family with a transmembrane 
domain, which enables it to be located on the membrane, 
such as mitochondria and endoplasmic reticulum (Misaka 
et al. 2018; Shirane et al. 2003). In addition, FKBP8 has 
four domains: peptidyl-prolyl cis–trans isomerase domain, 
TPR sequence, calmodulin-binding site and glutamate-rich 
region. FKBP8 can regulate mitophagy by combining LIR 
with autophagosome marker protein LC3 (Bhujabal et al. 
2017). Different from other autophagy receptors, FKBP8 can 
transfer from mitochondria to endoplasmic reticulum during 
mitophagy, to avoid being degraded by auto-phagosomes 
together with damaged mitochondria. The mechanism of this 
escape remains to be studied. In addition, FKBP8 can regu-
late apoptosis through peptidyl-prolyl cis–trans isomerase 
domain, TPR sequence, calmodulin-binding site, and apop-
tosis regulator Bcl-2 (Edlich and Lücke 2011).

AMBRA1 is composed of 1300 amino acids with a 
molecular weight of about 130 kDa. When mitochondria 
are damaged, the depolarization of mitochondrial membrane 
potentials significantly increases the interaction between 
Parkin and Ambra1. Ambra1 are recruited around the depo-
larized mitochondria in a Parkin-dependent manner, acti-
vating the PI3KIII complex and promoting its clearance 
through autophagy. In addition, Ambra1-LC3 interaction can 
transport damaged mitochondria to autophagosomes, which 
is essential for amplifying Parkin-mediated mitochondrial 
clearance. Ambra1 can mediate mitophagy in human neu-
roblastoma SH-SY5Y cells, thus inhibiting oxidative stress 
and apoptosis induced by 6-hydroxydopamine and rotenone 
(Di Rita et al. 2018). Many studies have shown that Ambra1-
mediated autophagy may be an important mechanism of 
drug resistance. At the same time, Ambra1 may also play a 
role in tumor inhibition by regulating other signal pathways 
(Liu et al. 2017; Sun et al. 2019, 2018).

NLRX1 (nucleotide-binding domain and leucine-rich-
repeat-containing protein X1) belongs to the NLR family of 
intracellular sensors that regulate major cellular pathways 
including cell death and inflammation (Imbeault et al. 2014). 
In addition, study has shown that it is also related to cellar 
apoptosis (Soares et al. 2014).

IMM proteins

PHB2 belongs to the anti-proliferative protein family 
PHBs, which mainly encodes two protein members, PHB1 
and PHB2 in the human genome. PHB1 and PHB2 can be 
combined as heterodimers to form a rosette palisade pro-
tein complex anchored in the IMM, which is involved in 
maintaining the stability of mitochondrial structure, regu-
lating mitochondrial dynamics and mitochondrial crest 
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morphology, regulating mitochondrial differentiation and 
development, and maintaining the stability of mitochon-
drial genome (Merkwirth and Langer 2009). PHB2 contains 
transmembrane domain (amino acid 1–36), central prohibitin 
domain (amino acid 36–201) and overlapping coiled helix 
domain (amino acid 188–264) for mitochondrial localiza-
tion. In addition, PHB2 also contains estrogen receptor bind-
ing domain. It is mainly located in mitochondria, but also in 
cytoplasm, nucleus and plasma membrane (Kuramori et al. 
2009). Prohibitin-2 can stabilize PINK1 on the OMM to 
mediate the PINK1-parkin pathway and promote mitophagy 
(Yan et al. 2020). When the OMM is damaged and the IMM 
is exposed, it can directly bind to LC3 to assist in the timely 
phagocytosis and degradation of damaged mitochondria by 
lysosomes (Wei et al. 2017).

Cardiolipin (CL), is a kind of mitochondrial-specific 
phospholipid, which is mainly distributed on the IMM. It 
is composed of two phosphoric acid molecules and three 
glycerol molecules, and then connected with four fatty acid 
molecules. CL can produce negative curvature elastic stress 
in lipid bilayer membrane, so it plays a key role in maintain-
ing a certain curvature of mitochondrial inner membrane 
crest (Ikon and Ryan 2017). Chu et al. confirmed that CL can 
be transported from the IMM to the OMM after mitochon-
drial injury, which directly interacts with LC3 and mediates 

mitophagy (deArriba et al. 2013; Fernandez et al. 2002; Chu 
et al. 2013). In addition, cardiolipin–cytochrome C complex 
can also regulate apoptosis (McMillin and Dowhan 2002).

Mitophagy‑related signaling pathways 
(shown in Fig. 2)

PINK1‑parkin pathway

PINK1-parkin is currently one of the most classic signaling 
pathways of mitophagy. PINK1 is a 581 amino acid protein 
with serine/threonine protein kinase activity, consisting of 
an N-terminal mitochondrial targeting motif that contains 
a transmembrane domain (110 amino acids long), a highly 
conserved kinase domain with three insertions in the N 
lobe, and a C-terminal autoregulatory sequence (Kumar 
et al. 2017). PINK1 is synthesized in the cytoplasm and is 
very low in normal mitochondria, but it could accumulate in 
the OMM when mitochondria are under depolarizing state, 
which could act as molecular receptors for damaged mito-
chondria. Then it phosphorylates Parkin and ubiquitin to 
recruit them to the damaged mitochondria, leading to the 
ubiquitination of mitochondrial proteins and the initiation 

Fig. 2   Process and related pathways of mitophagy. Note: (1) mito-
chondrial damage leads to mitochondrial depolarization and induces 
the activation of mitophagy-related proteins; (2) autophagosomes 
wrap damaged mitochondria to form mitochondrial autophagosomes; 

(3) lysosome fusion to form mitochondrial autophagy lysosomes; (4) 
degradation and recycling of related substances; (a) PINK1-parkin 
pathway; (b) Parkin-independent pathway; (c) direct interaction of 
LC3 with IMM/OMM proteins
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of mitophagy. Parkin is a downstream protein of PINK1, an 
E3 ubiquitin ligase composed of 465 amino acids encoded 
by the PRKN gene, which mainly mediates substrate ubiqui-
tination, regulates protein degradation and signal transduc-
tion. PINK1 acts as a key sensor of mitochondrial damage, 
whereas Parkin amplifies this damage signal by facilitating 
the formation of ubiquitin chains, which recruit more Parkin 
to the damaged mitochondria. Phosphorylated parkin cas-
cades amplify ubiquitination signals and initiate mitophagy. 
Lin et al. found that PINK1-parkin pathway of mitophagy 
protects cells via decreasing mitochondrial ROS (Lin et al. 
2019).

Additionally, parkin-dependent ubiquitination of OMM 
proteins is necessary for mitophagy, it probably acts as a 
priming event that allows the OMM localized NIPSNAP1 
and NIPSNAP2 to recruit the autophagy receptors. Several 
studies have shown that NIPSNAP1 and NIPSNAP2 will 
locate in the OMM when mitochondria are depolarized by 
external stimulation, sending out “eat me” signals to recruit 
ATG8-family proteins and ubiquitin-dependent SLRs to 
mediate more powerful mitophagy (Abudu et  al. 2019; 
Princely Abudu et al. 2019).

Parkin‑independent pathway

The depolarization of the mitochondrial membrane makes 
PINK1 stable in the OMM. PINK1 can directly exert its own 
kinase activity without parkin, phosphorylate and activate 
ubiquitin proteins, and then ubiquitinate the proteins related 
to autophagy. Polyubiquitin chain plays the role of promot-
ing mitophagy (Ordureau et al. 2014).

Other pathway

In addition, there are some pathways that are independent 
of parkin and ubiquitin, and directly mediate the process of 
mitophagy through mitochondrial membrane proteins. The 
OMM and IMM proteins mentioned in “OMM proteins” and 
“IMM proteins” above can start the process of mitophagy 
binding to LC3 on autophagy lysosomes.

Relationship between mitophagy 
and radiosensitivity of cancer cells

According to the current research on mitophagy in cellular 
radiosensitivity, as shown in Fig. 1, there are mainly the fol-
lowing two perspectives:

On the one hand, mitophagy can enhance the radio-
resistance of cancer cells. That is, mitophagy play a pro-
tective role in irradiated tumor cells. The existence of 
mitophagy can identify and clear the damaged mitochon-
dria early, the decrease of the number of mitochondria 

inhibits the process of oxidative phosphorylation and com-
pensatively induces glycolysis, and glycolysis increases 
the contents of lactic acid, pyruvate, and ketone bodies 
in cells. These metabolites are secreted by tumor matrix 
and reused by cancer cells to meet their metabolic needs 
and maintain intracellular homeostasis. Besides, the rapid 
renewal of mitochondria leads to the presence of a large 
number of newly generated mitochondria (Wu et al. 2022). 
Several research results support the above point of view. 
Chen et  al. demonstrated through in vivo and in vitro 
experiments that the LACTB2 protein rendered naso-
pharyngeal carcinoma resistant to radiation therapy, and 
PINK1/Parkin-mediated mitophagy induced a healthier 
mitochondrial network and contributed to radio-resist-
ance of nasopharyngeal carcinoma (Chen et al. 2021). 
Yang et al. have shown that mitophagy can resist oxida-
tive stress caused by IR, and inhibition of mitophagy can 
increase the accumulation of ROS and induce cancer cell 
death (Yang et al. 2021). Wang et al. found that protein 
disulfide isomerase can inhibit radiotherapy-induced cell 
death by regulating mitophagy signaling, increasing cel-
lular radio-resistance. Cancer stem cells population has 
higher mitophagy level, which could promote tumorigen-
esis and cell survival in various tumor types by allowing 
the removal of abnormal mitochondria (Baghban et al. 
2020; Takeda et al. 2019). Fan et al. also proved that early 
oxidative stress enhanced mitophagy to protect cells, but 
mitophagy was reduced and apoptosis was increased once 
the cells had irreversible damage after long-term oxidative 
exposure (Fan et al. 2019). Wu et al. found that the level 
of mitophagy was elevated in radio-resistant A549R cells, 
and inhibition of mitophagy can increase the radiosensitiv-
ity of A549R cells (Wu et al. 2022), they believe that it is 
related to ROS and DNA damage.

On the other hand, increasing radiosensitivity of can-
cer cells. This view is mainly related to intracellular ROS 
and DNA damage. DNA damage is closely related to 
tumor occurrence and development. Ren et al. found that 
mitophagy, as an upstream signal, increases ionizing radi-
ation-induced DNA damage by downregulating or overex-
pressing key mitophagy proteins Parkin and BNIP3 (Ren 
et  al. 2023). H2O in irradiated cells can be dissociated 
to ROS including H2O2 and O⋅−

2
 , then a cascade reaction 

will tend to occur. Furthermore, mitochondria are also the 
sources of ROS. Strong external stimulation causes exces-
sive mitochondrial damage, serious imbalance of cellular 
oxidative phosphorylation, excessive accumulation of ROS, 
inducing excess mitochondria are removed and causing cell 
death. Yu and Chen et al. irradiated Hela and MCF-7 cells 
and found that radiation can induce autophagy, resulting in 
increased intracellular ROS levels and increased mitochon-
drial damage, mitophagy here increases the sensitivity of 
cells to IR (Yu et al. 2021; Chen et al. 2016a, b). In addition, 
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insufficient mitophagy can lead to the accumulation of harm-
ful substances and apoptosis or death of cells.

Conclusion

This review summarized the receptors and pathways related 
to mitophagy, and mainly discussed the relationship between 
mitophagy and radiosensitivity of cancer cells around mito-
chondria and IR. In summary, IR as an external stimulus 
can affect the occurrence and activity of mitophagy of can-
cer cells. Mitophagy plays a “Double-edged sword” role 
in the radiosensitivity of cancer cells, and the time–effect 
relationship and dose–effect relationship need to be further 
explored.
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