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Abstract
Purpose  In mCRC, disease dynamics may play a critical role in the understanding of long-term outcome. We evaluated 
depth of response (DpR), time to DpR, and post-DpR survival as relevant endpoints.
Methods  We analyzed DpR by central review of computer tomography images (change from baseline to smallest tumor 
diameter), early tumor shrinkage (≥ 20% reduction in tumor diameter at first reassessment), time to DpR (study randomiza-
tion to DpR-image), post-DpR progression-free survival (pPFS = DpR-image to tumor progression or death), and post-DpR 
overall survival (pOS = DpR-image to death) with special focus on BRAF status in 66 patients and primary tumor site in 86 
patients treated within the VOLFI-trial, respectively.
Results  BRAF wild-type (BRAF-WT) compared to BRAF mutant (BRAF-MT) patients had greater DpR (− 57.6% vs. 
− 40.8%, p = 0.013) with a comparable time to DpR [4.0 (95% CI 3.1–4.4) vs. 3.9 (95% CI 2.5–5.5) months; p = 0.8852]. 
pPFS was 6.5 (95% CI 4.9–8.0) versus 2.6 (95% CI 1.2–4.0) months in favor of BRAF-WT patients (HR 0.24 (95% CI 
0.11–0.53); p < 0.001). This transferred into a significant difference in pOS [33.6 (95% CI 26.0–41.3) vs. 5.4 (95% CI 5.0–5.9) 
months; HR 0.27 (95% CI 0.13–0.55); p < 0.001]. Similar observations were made for patients stratified for primary tumor 
site.
Conclusions  BRAF-MT patients derive a less profound treatment response compared to BRAF-WT patients. The difference 
in outcome according to BRAF status is evident after achievement of DpR with BRAF-MT patients hardly deriving any 
further disease control beyond DpR. Our observations hint towards an aggressive tumor evolution in BRAF-MT tumors, 
which may already be molecularly detectable at the time of DpR.
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Introduction

Colorectal cancer (CRC) represents one of the most com-
monly diagnosed cancers in the Western World (Boyle and 
Langman 2000).

Within the entity of metastatic colorectal cancer (mCRC), 
there are substantial differences in tumor biology (i.e., RAS-
mutant tumors, BRAF-mutant tumors, tumors with micro-
satellite-instability or Her2/neu expression) that determine 
treatment choices and outcome (Douillard et  al. 2013; 
Heinemann et al. 2014; Kopetz et al. 2019; Overman et al. 
2018; Sartore-Bianchi et al. 2016; Van Cutsem et al. 2016). 
Additionally, primary tumor location has a functional role 
as a biomarker with impact on prognosis and efficacy of 
EGFR-antibody-based therapy (Arnold et al. 2017; Holch 
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et al. 2017; Modest et al. 2014). Besides molecularly defined 
subgroups, different tumor biology can also be characterized 
by dynamics in early treatment response, usually described 
as early tumor shrinkage (ETS) or depth of response (DpR)-
parameters which are also known to affect long-term sur-
vival (Cremolini et al. 2015a; Douillard et al. 2015; Gies-
sen et al. 2013; Heinemann et al. 2015; Modest et al. 2013; 
Modest et al. 2017; Piessevaux et al. 2009; Piessevaux et al. 
2013; Stintzing et al. 2016). The association of ETS and 
DpR with long-term survival is interpreted as an early iden-
tification of treatment-sensitive tumors, therefore, maybe 
also providing a valuable tool in the context of secondary 
resection of metastases (Modest et al. 2020). To the best of 
our knowledge, the dynamics and clinical course of mCRC 
beyond these early endpoints (i.e., ETS and in particular 
DpR) have been explored less rather in terms of a definition 
of endpoints related to progression-free survival (Chibaudel 
et al. 2011). In particular, (progression-free) survival out-
comes after DpR that might reflect the ability of a disease 
to overcome a certain treatment are potentially representing 
an interesting assessment to identify tumors with biological 
aggressiveness despite initial disease control.

The randomized, open-label phase II VOLFI study (AIO 
KRK0109) evaluated the efficacy and safety of adding the 
EGFR-inhibitor panitumumab to triplet chemotherapy with 
fluorouracil/folinic acid, oxaliplatin, and irinotecan (FOL-
FOXIRI) in untreated RAS-wild-type mCRC patients (Mod-
est et al. 2019b). A central review allowing for DpR and 
ETS calculation was available for the trial, also providing an 
opportunity to investigate on tumor dynamics beyond DpR.

The aim of our study is to evaluate to which extent estab-
lished (DpR, ETS) and exploratory endpoints related to best 
response assessment (time to DpR from randomization as 
well as progression-free and overall survival from time of 
DpR) can be used to characterize patients with known dif-
ferences in tumor biology within the trial. In this regard, we 
evaluated the study cohort of patients according to BRAF 
mutational status and primary tumor location as established 
prognostic (and predictive) markers in mCRC. Furthermore, 
we analyzed patterns of progression (new lesions, progres-
sion of target lesions, etc.) and their association with the 
aforementioned prognostic markers in the trial.

Methods

We performed an exploratory analysis of the randomized, 
open-label phase II VOLFI study (AIO KRK0109) that 
evaluated the efficacy and safety of adding panitumumab to 
triplet chemotherapy with fluorouracil/folinic acid, oxalipl-
atin, and irinotecan (FOLFOXIRI) in untreated RAS-wild-
type mCRC patients.

A total of 96 patients were enrolled in this study to either 
receive chemotherapy according FOLFOXIRI protocol in 
the control arm or modified FOLFOXIRI (mFOLFOXIRI) 
plus panitumumab in the experimental arm.

The study was conducted in accordance with the ethical 
standards of the institutional and national research com-
mittee and with the 1964 Helsinki Declaration and its later 
amendments or comparable ethical standards. The ethical 
approval of the underlying VOLFI-trial was provided by the 
ethics committee of the Landesärztekammer Baden-Würt-
temberg in Germany. For further information, please refer to 
the published trial data and original publication (ClinicalTri-
als.gov, NCT01328171) (Modest et al. 2019b).

Patients

A clinical database was established including the follow-
ing information for each patient: treatment arm, age, sex, 
performance status according to Eastern Cooperative Oncol-
ogy Group (ECOG), tumor characteristics (primary tumor 
location, onset of metastases, metastatic sites), laboratory 
parameters (carcinoembryonic antigen, lactate dehydroge-
nase), molecular characteristics (RAS and BRAF status), 
prior antitumor treatment (adjuvant chemotherapy, sur-
gery), and survival parameters (PFS, OS). Study patients 
were stratified for BRAF status and primary tumor location, 
respectively. Primary tumor location was considered “left” 
if the primary was located in the splenic flexure or distal, 
whereas the “right”-sided primaries were located proximal 
of the splenic flexure.

Treatment

Treatment details are described previously (Modest et al. 
2019b). Briefly, patients treated within the experimental arm 
received FOLFOXIRI and panitumumab in the final dosing 
cohort as follows: irinotecan 150 mg/m2, oxaliplatin 85 mg/
m2, folinic acid 200 mg/m2, fluorouracil 3000 mg/m2 within 
48 h plus panitumumab 6 mg per kilogram of body weight. 
Patients receiving FOLFOXIRI without panitumumab in the 
control arm were treated as follows: irinotecan 165 mg/m2, 
oxaliplatin 85 mg/m2, folinic acid 200 mg/m2, and fluoroura-
cil 3200 mg/m2 within 48 h. Therapy in both treatment arms 
was repeated every 2 weeks until progression, occurrence of 
unacceptable toxicity, achievement of tumor resectability or 
up to a maximum of 12 treatment cycles.

Disease and toxicity assessments

Tumor assessments were performed using computed tomog-
raphy (CT) or magnetic resonance imaging (MRI) and sub-
sequently analyzed according to Response Evaluation Cri-
teria in Solid Tumors (RECIST version 1.1). After initial 
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assessment within 21 days prior to the study start, reassess-
ments were performed every four cycles of treatment. After-
wards, assessments were carried out until the patient’s death 
or up to a maximum of 5 years. Adverse events were docu-
mented according to The National Cancer Institute Common 
Terminology Criteria for Adverse Events (version 4.0).

Survival endpoints and parameters indicating 
dynamics in treatment response and disease 
progression

Progression-free survival (PFS) was defined as time from 
study randomization to tumor progression or death from any 
cause. Overall survival (OS) was measured from randomiza-
tion to death from any cause. Patients without progression or 
death were censored at the last day of follow-up.

We evaluated the depth of response (change from base-
line to smallest tumor diameter), early tumor shrinkage 
(> 20% reduction in tumor diameter at first reassessment) 
as described in the previous publication, time to DpR (study 
randomization to DpR-image), post-DpR PFS (pPFS = DpR 
image to tumor progression or death from any cause), and 
post-DpR OS (pOS = DpR image to death from any cause) 
by central review of computed tomography images (Modest 
et al. 2019b). Figure 1 contains a simplified model of the 
above-mentioned parameters.

In case of radiological disease progression in accordance 
with RECIST version 1.1, we described progression accord-
ing to the localization of disease progression: new lesion/s, 
progression of target lesion/s, progression of non-target 
lesion/s, new lesion/s and progression of target lesion/s, new 
lesion/s and progression of non-target lesion/s, progression 

of target and non-target lesions, and new lesion/s and pro-
gression of target and non-target lesions.

Statistical analysis

All statistical analyses were performed using SPSS version 
25.0 software (IBM Corporation, Amonk, NY, USA). In 
univariate analyses, Chi-square tests were used to evaluate 
whether there is an association between BRAF mutational 
status or primary tumor location and the aforementioned 
parameters indicating dynamics in treatment response and 
disease progression. The two-sided significance level was 
set to 0.05 with a 95% confidence interval. Survival was 
expressed by Kaplan–Meier method and compared by log-
rank testing as well as Cox regression model.

Results

Patient and tumor characteristics

Out of 96 patients treated within the VOLFI-trial, BRAF 
mutational status was available for 76 patients. Of those, 
66 patients had been included in the central radiological 
review. Out of the 66 patients, 54 presented with BRAF-
WT and 12 with BRAF-MT mCRC. For all patients in the 
full analysis set (N = 96), information on localization of 
primary tumor were available and of those, 86 patients (70 
patients with left-sided colorectal cancer and 16 patients 
with right-sided tumor) were included in the central 
response evaluation. A consort diagram illustrating the 
study population is shown in Fig. 2. Due to overlappings 

Fig. 1   Simplified theoretical model of parameters indicating dynamics in treatment response. DpR depth of response, pPFS post-DpR progres-
sion-free survival, pOS post-DpR overall survival, DpR A/B × 100%



2684	 Journal of Cancer Research and Clinical Oncology (2020) 146:2681–2691

1 3

between patients analyzed for BRAF mutational status 
and patients analyzed for primary tumor localization, the 
sum of the digits indicated in Fig. 2 is higher than the 
total number of patients with central response evaluation 
(N = 86).

Please also refer to Table 1 for baseline tumor and 
patient characteristics depending on BRAF mutational 
status and primary tumor location.

Dynamics in treatment response and disease 
progression according to BRAF mutational status

BRAF-WT compared to BRAF-MT mCRC patients had 
greater DpR (− 57.6% vs. − 40.8%, p = 0.013) with a 
comparable time to DpR (BRAF-WT 4.0 months (95% 
CI 3.1–4.4 months) vs. BRAF-MT 3.9 months (95% CI 
2.5–5.5 months); p = 0.885) as shown in Fig. 3a.

In addition, BRAF-WT patients achieved a higher rate 
of median early tumor shrinkage (ETS) at time of first 
radiological reassessment in comparison with BRAF-MT 
patients [85.2% (95% CI 72.9–93.4%) vs. 33.3% (95% CI 
9.9–65.1%); p = 0.001].

Post-DpR PFS (pPFS) was 6.5  months (95% 
CI 4.9–8.0  months) versus 2.6  months (95% CI 
1.2–4.0 months) in favor of BRAF-WT patients [hazard 
ratio: 0.24 (95% CI 0.11–0.53); p < 0.001] as shown in 
Fig. 4a.

In accordance with pPFS, post-DpR OS (pOS) was also 
significantly prolonged in BRAF-WT (33.6 months, 95% 
CI 26.0–41.3 months) as compared to BRAF-MT patients 
[5.4 months (95% CI 5.0–5.9 months); hazard ratio: 0.27 
(95% CI 0.13–0.55); p < 0.001]. Please refer to Fig. 4b.

Dynamics in treatment response and disease 
progression according to primary tumor location

Patients with left-sided primary tumor achieved greater 
DpR compared to patients with right-sided primary tumor 
[− 56.8% (95% CI − 75.3 to 92.9%) vs. -30.6% (95% CI 
− 15.2 to 64.6%); p = 0.018] with a comparable time to DpR 
[left-sided: 3.9 months (95% CI 2.9–4.2 months) vs. right-
sided: 3.9 months (95% CI 2.5–5.1 months); p = 0.666] as 
shown in Fig. 3b.

In addition, patients with left-sided tumor achieved a 
higher rate of median ETS at the time of first radiological 
reassessment compared to patients with right-sided tumor 
(85.7% vs. 37.5%; p < 0.001).

pPFS was 5.3 months (95% CI 3.6–7.0 months) versus 
2.5 months (95% CI 0.8–4.1 months) in favor of patients 
with left-sided tumor localization [hazard ratio 0.36 (95% 
CI 0.17–0.75); p = 0.004]. Please refer to Fig. 4c.

pOS numerically favored patients with left- versus 
right-sided tumors, but did not reach the level of statisti-
cal significance [left-sided tumors: 31.8 months, 95% CI 
23.3–40.3 months vs. right-sided tumors: 11.8 months (95% 
CI 3.0–20.6 months); hazard ratio: 0.59 (95% CI 0.31–1.12); 
p = 0.104] as shown in Fig. 4d.

Disease progression patterns according to BRAF 
mutational status and primary tumor location

In the group of BRAF-WT patients and patients with left-
sided primary tumor, there was a higher percentage of 
patients without disease progression during the observation 
period compared to BRAF-MT patients and patients with 
right-sided primary tumor, respectively (BRAF-WT vs. 

Fig. 2   Consort diagram of study population. Information on BRAF mutational status were available for 66 patients with central response evalu-
ation
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Table 1   Baseline tumor and patient characteristics

ECOG performance status according to Eastern Cooperative Oncology Group

BRAF Primary tumor site

Mutant (N = 12) Wild type (N = 54) Left-sided (N = 70) Right-sided (N = 16)

Median age (range), years 60 (32–71) 59.5 (33–76) 58 (31–77) 62 (32–72)
Sex
 Male 6 (50.0%) 38 (70.4%) 50 (71.4%) 9 (56.3%)
 Female 6 (50.0%) 16 (29.6%) 20 (28.6%) 7 (43.8%)

Treatment arm
 FOLFOXIRI 7 (58.3%) 16 (29.6%) 22 (31.4%) 8 (50.0%)
 mFOLFOXIRI + panitumumab 5 (41.7%) 38 (70.4%) 48 (68.6%) 8 (50.0%)

BRAF mutational status
 Wild type 48 (68.6%) 6 (37.5%)
 Mutant 6 (8.6%) 6 (37.5%)
 Unknown 16 (22.9%) 4 (25.0%)

Primary tumor location
 Left sided 6 (50.0%) 43 (79.6%)
 Right sided 6 (50.0%) 11 (20.4%)

ECOG performance status
 0 6 (50.0%) 35 (64.8%) 45 (64.3%) 8 (50.0%)
 1 6 (50.0%) 18 (33.3%) 23 (32.9%) 8 (50.0%)
 2 0 (0.0%) 1 (1.9%) 2 (2.9%) 0 (0.0%)

Carcinoembryonic antigen
 ≤ 50 ng/ml 7 (58.3%) 24 (44.4%) 33 (47.1%) 8 (50.0%)
 > 50 ng/ml 5 (41.7%) 28 (51.9%) 35 (50.0%) 8 (50.0%)
 Unknown 0 (0.0%) 2 (3.7%) 2 (2.9%) 0 (0.0%)

Lactate dehydrogenase
 ≤ 250 U/l 6 (50.0%) 23 (42.6%) 31 (44.3%) 8 (50.0%)
 > 250 U/l 6 (50.0%) 28 (51.9%) 36 (51.4%) 8 (50.0%)
 Unknown 0 (0.0%) 3 (5.6%) 3 (4.3%) 0 (0.0%)

Tumor-related symptoms
 Yes 8 (66.7%) 24 (44.4%) 32 (45.7%) 9 (43.8%)
 No 4 (33.3%) 29 (53.7%) 37 (52.9%) 7 (56.3%)
 Unknown 0 (0.0%) 1 (1.9%) 1 (1.4%) 0 (0.0%)

Metastatic sites
 Liver 10 (83.3%) 50 (92.6%) 65 (92.9%) 12 (75.0%)
 Lung 2 (16.7%) 13 (24.1%) 18 (25.7%) 5 (31.3%)
 Peritoneum 4 (33.3%) 2 (3.7%) 3 (4.3%) 4 (25.0%)
 Distant lymph node/s 1 (8.3%) 11 (20.4%) 15 (21.4%) 3 (18.8%)

Primary surgery
 Yes 5 (41.7%) 27 (50.0) 34 (48.6%) 10 (62.5%)
 No 6 (50.0%) 26 (48.1%) 35 (50.0%) 5 (31.3%)
 Unknown 1 (8.3%) 1 (1.9%) 1 (1.4%) 1 (6.3%)

Adjuvant chemotherapy
 Yes 0 (0.0%) 6 (11.1%) 8 (11.4%) 0 (0.0%)
 No 11 (91.7%) 47 (87.0%) 61 (87.1%) 15 (93.8%)
 Unknown 1 (8.3%) 1 (1.9%) 1 (1.4%) 1 (6.3%)
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BRAF-MT: 48.1% vs. 25.0%; p = 0.144; left-sided vs. right-
sided primary tumor: 44.3% vs. 31.3%; p = 0.340).

Most of the patients developed progressive disease in tar-
get lesions irrespective of BRAF mutational status and pri-
mary tumor location (BRAF-WT: 24.1%, BRAF-MT: 25.0%, 
left-sided primary tumor: 25.7%, right-sided primary tumor: 
25.0%).

There was a trend towards higher frequency of disease 
progression in target and non-target lesions in BRAF-MT 
patients and patients with right-sided primary tumor (BRAF-
MT vs. BRAF-WT: 25.0% vs. 3.7%, right-sided vs. left-sided 
tumor: 18.8% vs. 8.6%). Notably, the frequency of disease 
progression presenting with new tumor lesions was com-
parable in all analyzed subsets of the trial. Please refer to 
Table 2 for further details.

Discussion

The presence of BRAF mutation and/or right-sided primary 
tumor are associated with unfavorable survival in patients 
with mCRC (Clarke and Kopetz 2015; Yahagi et al. 2016). 
The aim of this manuscript is to use established early 

response assessments such as ETS and DpR as well as 
time-to-DpR and survival beyond DpR as novel parameters 
related to these endpoints to elucidate to which extent the 
negative prognostic impact of BRAF mutation and right-
sided tumor localization can be characterized by these 
parameters.

In the VOLFI trial, both ETS and DpR were more favora-
ble in patients with positive prognostic markers (BRAF-
WT and left-sided primary tumor). However, time-to-DpR 
(maybe indicating initial treatment sensitivity) was compa-
rable in all analyzed subgroups. Our results concerning the 
impact of tumor localization on early efficacy are supported 
by two retrospective analyses reporting higher frequencies 
of ETS in mCRC patients with left-sided primary tumors 
compared to those with right-sided tumors (Kohne et al. 
2019; Peeters et al. 2018). In addition, DpR was also more 
pronounced in left-sided tumors in a post hoc analysis of 
PRIME and PEAK study (Peeters et al. 2018) while this 
was not evident in a smaller study cohort treated with FOL-
FIRI plus panitumumab in the first-line setting (Kohne et al. 
2019). It should be noted that in the underlying trial and also 
in general there is a relevant association of BRAF-mutation 
with right-sided primary tumor localization affecting our 
overlapping findings (Kohne et al. 2019; Roth et al. 2010; 
Tran et al. 2011).

More striking than the observed disparities in ETS and 
DpR are substantial survival differences in our analysis 
occurring after DpR. In the VOLFI trial, patients with 
BRAF-MT mCRC and patients with right-sided primary 
tumor hardly derive any further disease control beyond DpR. 
The fact that DpR nearly directly precedes disease progres-
sion and, therefore, treatment failure, especially in patients 
with BRAF-MT mCRC, is alarming and could stimulate 
alertness in the clinical management—particularly regard-
ing the frequency of radiological control of tumor dynam-
ics—of these patients. Biologically, this finding suggests 
that mechanisms of resistance might be already ongoing 
despite observed tumor control or even radiological remis-
sions. This resistance can be either interpreted as primary 
resistance following clonal selection of preexisting chemo-
therapy-resistant cells responsible for disease progression 
after DpR, or alternatively as rapid tumor evolution. This 
in turn hints to the hypothesis that BRAF-MT tumors are 
somewhat less sensitive to chemotherapy-based antitumor 
treatment in terms of ETS and DpR but the major difference 
of disease control seems to be mediated by rapidly develop-
ing treatment resistance. From a biological perspective, the 
hypothesis of secondary resistance is supported by previ-
ously described mechanisms of resistance against BRAF-
inhibitor based therapy in BRAF mutant mCRC (Ahronian 
et al. 2015; Corcoran et al. 2012; Hazar-Rethinam et al. 
2018; Prahallad et al. 2012). From a clinical point of view, 
the idea of secondary resistance is supported by a pooled 

Fig. 3   a, b Time to DpR according to BRAF mutational status and 
primary tumor site. WT wild type, MT mutant
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analysis of several clinical trials that reports on the poor 
prognosis in patients with BRAF mutant mCRC after failure 
to first-line therapy and the consecutive challenge to ensure 
the transfer to second-line therapy (Seligmann et al. 2017).

Due to the small number of patients analyzed and the 
intensive treatment regimens applied in all patients, it is 
impossible to determine whether the unfavorable tumor 
control after DpR is specific for BRAF-MT mCRC in gen-
eral or for BRAF-MT mCRC treated with FOLFOXIRI 

Fig. 4   a–d Survival after depth of response (pPFS and pOS) accord-
ing to BRAF mutational status and primary tumor site. a Post-DpR 
PFS depending on BRAF mutational status, b post-DpR OS depend-

ing on BRAF mutational status, c post-DpR PFS depending on pri-
mary tumor location, d post-DpR OS depending on primary tumor 
location. WT wild type, MT mutant

Table 2   Disease progression patterns according to BRAF mutational status and primary tumor location

WT wild type, MT mutant

Disease progression pattern, N (%) BRAF-WT (N = 54) BRAF-MT (N = 12) Left-sided 
tumor (N = 70)

Right-sided 
tumor (N = 16)

New lesion/s 6 (11.1) 1 (8.3) 8 (11.4) 1 (6.3)
Progression of target lesion/s 13 (24.1) 3 (25.0) 18 (25.7) 4 (25.0)
Progression of non-target lesion/s 1 (1.9) 1 (8.3) 1 (1.4) 1 (6.3)
New lesion/s and progression of target lesion/s 3 (5.6) 0 (0.0) 4 (5.7) 0 (0.0)
New lesion/s and progression of non-target lesion/s 2 (3.7) 0 (0.0) 1 (1.4) 1 (6.3)
Progression of target and non-target lesions 2 (3.7) 3 (25.0) 6 (8.6) 3 (18.8)
New lesion/s and progression of target and non-target lesions 1 (1.9) 1 (8.3) 1 (1.4) 1 (6.3)
No progression 22 (48.1) 3 (25.0) 31 (44.3) 5 (31.3)
Progression including new lesions 11 (20.4) 2 (16.7) 14 (20.0) 3 (18.8)
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regimens. If the intensity of antitumor treatment plays a 
role in the evolution of mCRC—based on our observa-
tions—it should be questioned if the clinical challenge of 
treating BRAF-MT mCRC is best addressed by maximiz-
ing initial efficacy or by applying a sequential therapy that 
might induce less tumor response but is possibly associ-
ated with less aggressive tumor evolution in the course 
of disease. This perspective is supported by somehow 
inconsistent observations on BRAF-MT mCRC patients 
in current phase III trials (Cremolini et al. 2020; Cremolini 
et al. 2015b; Modest et al. 2019a). Based on findings from 
the TRIBE 1/2-trials and the XELAVIRI study, it could be 
hypothesized that clear evidence for treatment escalation 
in BRAF mutant mCRC is still lacking and less intensity is 
not necessarily associated with worse outcome.

Similar analyses from the BEACON-trial investigat-
ing a targeted combination therapy with BRAF-, MEK-, 
and EGFR inhibition in BRAF-MT mCRC patients could 
clarify to which extent tumor dynamics observed in the 
VOLFI trial are also evident with targeted tumor therapy 
(Kopetz et al. 2019).

Interestingly, no difference in the patterns of disease 
progression was observed in the VOLFI trial, likely a con-
sequence of the small number of patients analyzed. Future 
studies should evaluate if disease progression, especially 
progression including new lesions (as correlate of aggres-
sive tumor evolution and dismal prognosis), depends on 
molecular or clinical subgroups (Giessen et al. 2013; Mod-
est et al. 2017).

The presented results are limited due to the retrospec-
tive nature of the analysis and the use of novel endpoints. 
Furthermore, there were a limited number of patients in 
the analyzed subgroups precluding definite conclusions. 
The hypotheses generated in this manuscript should, there-
fore, be evaluated in larger patient cohorts.

Conclusion

BRAF-MT patients and patients with right-sided primary 
mCRC treated within the VOLFI-trial derive a less pro-
found response to treatment as compared to BRAF-WT 
patients and patients with left-sided primary tumor. In 
particular, our observations hint towards an aggressive 
tumor evolution in patients with BRAF-MT tumors, which 
may be molecularly detectable at the time of DpR. These 
findings theoretically challenge the currently practiced 
aggressive treatment strategy of FOLFOXIRI-based first-
line regimens as they may stimulate treatment resistance. 
We suggest that close monitoring of BRAF-MT patients 
may include the continuous monitoring of clonal evolution 
of the disease.
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