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It is applied to develop optimized G-CSF schedules for a 
variety of clinical scenarios.
Results Clinical trial results showed validity of model pre-
dictions regarding alternative G-CSF schedules. We propose 
modifications of G-CSF treatment for the chemotherapies 
‘BEACOPP escalated’ (Hodgkin’s disease), ‘ETC’ (breast 
cancer), and risk-adapted schedules for ‘CHOP-14’ (aggres-
sive non-Hodgkin’s lymphoma in elderly patients).
Conclusions We conclude that we established a model of 
human granulopoiesis under chemotherapy which allows 
predictions of yet untested G-CSF schedules, comparisons 
between them, and optimization of filgrastim and peg-
filgrastim treatment. As a general rule of thumb, G-CSF 
treatment should not be started too early and patients could 
profit from filgrastim treatment continued until the end of 
the chemotherapy cycle.

Keywords Cytotoxic drugs · Filgrastim · Pegfilgrastim · 
Leukopenia · Neutropenia · Risk-adapted treatment

Background

The haematopoietic growth factor G-CSF is routinely used 
in cancer therapy to prevent or ameliorate leukopenic con-
ditions. Its effectiveness has been shown in several stud-
ies (Kosaka et al. 2015; Lee et al. 2013; Vogel et al. 2005; 
Altwairgi et al. 2013; Dale 2002, 2003; Kuderer et al. 2007; 
Crawford et al. 1991; Bohlius et al. 2008; Sung et al. 2007; 
Cooper et al. 2011; Mhaskar et al. 2014; Clark et al. 2003, 
2005). Although G-CSF is expensive, its application often 
results in an overall cost-reduction due to the reduced num-
ber of severe events (Zagonel et al. 1994; Wang et al. 2016).

With the introduction of G-CSF support, more intense 
chemotherapies became feasible in order to improve 
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outcome of patients (Trumper et al. 2008; Untch et al. 2011a, 
b; Pettengell et al. 1992; Pfreundschuh et al. 2004a, b, 2008; 
Diehl et al. 2003; Sieber et al. 2003; Blayney et al. 2003, 
2005). A number of G-CSF pharmaceuticals are in use dif-
fering in both, pharmacokinetic and pharmacodynamic prop-
erties (Kuwabara et al. 1994, 1996a, b; Yang et al. 2004; 
Zamboni 2003; Molineux 2002; Houston et al. 1999). Vari-
ous generics are available or under development.

Several in vivo modes of action of G-CSF are known, 
namely increased proliferation, accelerated maturation and 
improved release of mature bone marrow granulopoietic 
cells (Lord et al. 1989; Schmitz et al. 1993). In combination 
with the relatively short half-life of blood granulocytes and 
the bone-marrow suppressive effects of cytotoxic chemo-
therapy, application of G-CSF results in complex dynamics 
of blood granulocytes which cannot easily be predicted. As a 
consequence, optimal G-CSF support for a given chemother-
apy and patient population is a non-trivial task. It depends 
on a large number of variable therapy parameters such as the 
type of cytotoxic drugs, granulotoxic risk factors of patients, 
type of G-CSF derivative applied and its dosing and timing 
(Bennett et al. 2013).

In clinical trials, it is practically impossible to control for 
each of these factors. Therefore, only limited attempts were 
made to compare the efficacy of different G-CSF schedules 
in the context of clinical trials (Danova et al. 2009; Holmes 
et al. 2002; Loibl et al. 2011; Lyman et al. 2009; Vose et al. 
2003; Zwick et al. 2011; Faber et al. 2006; Crawford et al. 
1997; Leonard et al. 2015). However, available clinical trials 
showed that considerable improvements can be expected by 
optimized G-CSF schedules. Since such trials are both, cost 
and time-intensive, there is relevant need to predict the out-
come of alternative G-CSF schedules prior to clinical appli-
cation. On the basis of large clinical and experimental data 
sets, we developed a comprehensive biomathematical model 
of human granulopoiesis including detailed information on 
injection, pharmacokinetics and pharmacodynamics of both, 
chemotherapeutic drugs and three G-CSF derivatives namely 

filgrastim, pegfilgrastim and the experimental drug Maxy-
G34 (Scholz et al. 2005, 2009a, 2009b, 2012; Chua et al. 
2014; Engel et al. 2004; Schirm et al. 2013, 2014b). The 
model was validated in several settings and is now ready to 
make clinically relevant predictions regarding G-CSF sched-
ules optimized for given chemotherapeutic regimens.

In this paper, we present our approach for develop-
ing optimized dosing and timing schedules of G-CSF for 
a variety of applications, i.e. for different chemotherapy 
schedules, risk groups of patients and usage of filgrastim or 
pegfilgrastim. Different measures of treatment outcome are 
considered. We also show examples of model predictions 
validated in the context of clinical trials.

Methods

Model of human granulopoiesis

We first introduce our biomathematical model of human 
granulopoiesis under chemotherapy and G-CSF support 
which is used to optimize G-CSF treatment during cyto-
toxic chemotherapy later. The model consists of a set of 
coupled differential equations describing time dependence of 
major bone marrow cell stages, circulating cells, cytokines 
at various sites, corresponding stimulation of bone marrow 
and toxic effects of chemotherapy. Treatments with G-CSF 
(filgrastim, pegfilgrastim) and chemotherapy (10 different 
chemotherapies, 33 different schedules for treatments for 
a variety of cancers) are modelled (Schirm et al. 2014b). 
Without any therapeutic intervention, a stable steady-state of 
all cell and cytokine compartments is achieved. The general 
structure of the model is shown in Fig. 1.

Equations can be attributed to three major mechanisms 
namely cell kinetics of bone marrow granulopoiesis, 
pharmacokinetics and pharmacodynamics of endogenous 
G-CSF and G-CSF pharmaceuticals (filgrastim, pegfil-
grastim) and chemotherapy action. We briefly describe 

Fig. 1  Schematic representa-
tion of human granulopoiesis 
model under chemotherapy and 
G-CSF treatment. Boxes rep-
resent major cell- or cytokine 
compartments of the model. We 
modelled two G-CSF deriva-
tives, filgrastim and pegfil-
grastim. Arrows represent cell/
cytokine fluxes and interactions
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these major parts of the model and corresponding bio-
logical assumptions in the following.

The cell kinetic granulopoiesis model is explained in 
detail in Scholz et al. (2012). Here, we briefly sketch the 
main assumptions:

1. Granulopoietic cells originate from a pluripotent stem 
cell compartment. Cell division can create new stem 
cells or cells committed to granulopoietic lineage. All 
other haematopoietic lineages are neglected.

2. Subsequent proliferation and maturation of granulopoi-
etic cells are described by transitions of cells from the 
stem cell compartment to the proliferating compartments 
of progenitor cells, proliferating precursors (PGB), and 
finally, maturing precursor cells which are unable to pro-
liferate (MGB). For the latter, a postmitotic amplifica-
tion is assumed which describes a loss of mature granu-
locytes in bone marrow due to apoptosis (Mackey et al. 
2003). Finally, granulocytes are released to circulation 
(GRA). The system is regulated by several feed-back 
loops of which G-CSF is the strongest mediator.

3. The changes of the compartment sizes dC(t)
dt

 in compart-
ments X are determined by balance equations of cell 
influx rate Cin

X
(t) from the preceding compartment, cell 

amplification A(t) (if applicable), cell efflux dependent 
on the transition time T(t), and loss rate �X

total
(t) caused 

by cytotoxic chemotherapy and named toxicity function 
in the following (Schirm et al. 2014b):

Increased G-CSF serum concentration results in higher 
amplification rate and longer transition time in the com-
partment PGB, and reduced transition time and apoptosis 
rate in MGB.

Pharmacokinetic model of G‑CSF applications

The most frequently used derivatives filgrastim and peg-
filgrastim differ substantially in their pharmacokinetic 
properties. This is addressed by a general pharmacokinetic 
model of G-CSF injections developed for humans recently 
(Scholz et al. 2012):

1. Three compartments are modelled: G-CSF is injected 
into the subcutaneous compartment. In the central 
compartment, G-CSF is haematologically active. The 
peripheral compartment represents reversible binding of 
G-CSF (Scholz et al. 2005, 2012).

dC
X
(t)

dt
= C

in

X
(t) × A(t) −

C
X
(t)

T(t)
− �

X

total
(t)C

X
(t).

2. The influx of G-CSF from the subcutaneous compart-
ment into the central compartment is delayed (Kota et al. 
2007). This is modelled by splitting the subcutaneous 
compartment into two subcompartments.

3. Reversible bindings of G-CSF are modelled by transi-
tions between central and peripheral compartment using 
first-order kinetics (Kuwabara et al. 1996b).

4. Endogenous production of G-CSF is regulated by the 
demand of mature granulocytes (Scholz et al. 2005).

5. Bioavailability of G-CSF is assumed to be dose-depend-
ent. Thus, a part of the applied G-CSF is removed from 
the injection compartment by a Michaelis–Menten 
kinetic.

6. From the central compartment, G-CSF is irreversibly 
removed by two processes: a first-order kinetic describ-
ing the unspecific renal elimination (Kuwabara et al. 
1996b) and a Michaelis–Menten kinetic describing the 
specific elimination by circulating granulocytes.

7. Differences in G-CSF derivatives filgrastim and peg-
filgrastim are modelled by different settings of phar-
macokinetic and pharmacodynamics parameters, i.e. 
parameters of the G-CSF-mediated regulatory feed loops 
(Harris and Chess 2003; Sarkar et al. 2003; Veronese 
and Mero 2008; Scholz et al. 2009b). Parameter values 
for filgrastim and endogenous G-CSF are the same.

Chemotherapy model

The impact of cytotoxic chemotherapy on haematopoiesis is 
modelled by drug, drug-dose and cell-stage specific toxicity 
functions in the following way (Schirm et al. 2014b):

1. A set of concatenated first-order transitions is used to 
model a delayed maximum of cell damage after the 
injection of chemotherapeutic drugs (Schirm et  al. 
2013).

2. When chemotherapeutic drugs were applied for the first 
time, we assume a somewhat higher toxicity than for 
further injections.

3. If multiple drugs are applied simultaneously, we add the 
corresponding toxicity functions to calculate the overall 
toxic effect.

4. Depletion of lymphocytes (LY) is phenomenologically 
modelled by an additional toxicity equation with two 
parameters.

5. The chemotherapy effect is assumed to be reversible. All 
cell-kinetic parameters remain unchanged.

6. Often, prednisone is applied to avoid tumour lysis syn-
drome. Prednisone is assumed to cause a prolonged 
half-life of granulocytes, and therefore, it temporarily 
increases granulocyte counts.
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Data and model calibration

The model was parametrized on the basis of clinical data 
of 10 different chemotherapies. These chemotherapies are 
used to treat patients with NHL (non-Hodgkin’s disease), 
HD (Hodgkin’s lymphoma), BRCA (breast cancer), NSCLC 
(non-small cell lung cancer), and DLBCL (diffuse large B 
cell lymphoma). An overview is presented in Table S1 in 
Additional file 1. Data were retrieved from published fig-
ures using the software tool “YCASD” (Gross et al. 2014) 
or directly from the clinical trial databases of cooperating 
clinical study groups. Model equations contain parameters 
for which often no direct biological data are available. 
This especially applies for parameters quantifying chemo-
therapy toxicity on bone marrow. These parameters were 
determined by fitting the model to the above-mentioned 
data sets as described elsewhere (Rechenberg 1973, 1994). 
Model parameters were validated on the basis of data sets 
not used for parameter fitting (Schirm et al. 2014b; Scholz 
et al. 2012).

Application to risk groups

Several risk factors associated with the degree of leukope-
nia under chemotherapy have been identified and validated 
in different settings. This comprises for example pre-ther-
apeutic risk factors such as age, sex, WHO performance 
status as well as intra-therapeutic risk factors such as toxic 
response in the first therapy cycle. A risk model accounting 
for these factors was proposed by Ziepert et al. (2008) for 
CHOP chemotherapy. The risk model is implemented in a 
web-based tool (see http://www.toxcalculator.com). We used 
the tertiles of the risk score to divide our study population 
into low, medium and high-risk group and propose different 
G-CSF schedules for them in the following.

In order to apply our model to different risk groups, we 
assume that parameters regarding pharmacokinetics and 
pharmacodynamics of G-CSF as well as cell-kinetic param-
eters are constant among risk groups, but the parameters 
regarding chemotherapy toxicity might differ. This is moti-
vated by observed heterogeneities regarding metabolism of 
cytotoxic drugs (Bruno et al. 1997; Kloft et al. 2006; Bennett 
et al. 1987; Sulkes and Collins 1987; Iyer and Ratain 1999; 
Rushing et al. 1994).

Applying this paradigm, we can derive risk-specific tox-
icity parameters of patients by fitting the predictions of the 
model to available data of the subgroups (Table S2 in Addi-
tional file 1).

Model simulations of new chemotherapy schedules

A key feature of the model is that new, yet untested sched-
ules of both, chemotherapy and G-CSF treatment can be 
simulated. This requires that toxicity parameters of the 
chemotherapy are available for the population of interest, 
i.e. data of patients under at least one G-CSF schedule (or 
no G-CSF) of the chemotherapy of interest are required 
allowing to estimate the toxicity parameters thereon. Then, 
alternative timing of chemotherapy or G-CSF, alternative 
derivatives and dosing of G-CSF can be simulated by the 
model. An overview of already available toxicity parame-
ters is listed in an earlier publication of our group (Schirm 
et al. 2014b).

Optimization of therapy schedules

To compare the performance of alternative G-CSF sched-
ules for a given chemotherapy schedule of a given popula-
tion of patients, we calculate a number of quantities mir-
roring the overall leukotoxicity: The area over the curve of 
white blood cells (WBCAOC) measures the area between 
simulated cell counts and the value of 4000 leukocytes/
µL. There is some evidence that the risk of infectious com-
plications in patients depends on the depth and the dura-
tion of leukopenia (Crawford et al. 2004; Li et al. 2016). 
We separately consider the duration of leukopenia (DoL) 
referring to the cumulative time of leukopenia and the 
minimal leukocyte count (MLC) referring to the minimal 
cell count throughout all chemotherapy cycles as alterna-
tive endpoints of G-CSF optimization (Fig. 2).

Fig. 2  Illustration of toxicity outcomes. We consider the area over 
the curve (WBCAOC), minimal cell count (MLC) and duration of 
low cell counts (DoL) as measures of severity of leukopenia. We treat 
4.000 leukocytes/µL as normal value for this purpose

http://www.toxcalculator.com
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Technical implementation

The model equations were programmed and solved on a 
standard personal computer using the numeric computation 
software Matlab 7.5.0.342 and the integrated Simulink tool-
box v7.0 (The MathWorks, Natick, MA). Model simulations 
were performed by numerical integration of the ODE system 
using the variable step solver from Adams and Bashford 
(ode113).

Results

Validated model predictions

In the past, we showed that our model can successfully pre-
dict the granulotoxic outcome of CHOP chemotherapy with 
G-CSF support. Some of these predictions were already 
tested in clinical trials resulting in improved filgrastim and 
pegfilgrastim schedules for CHOP chemotherapy. We pre-
sent these successful predictions in brief. For CHOP-14 ther-
apy in elderly patients we predicted that a reduced filgrastim 
schedule with applications at days (d) 6–12 of each cycle is 
also feasible compared to the standard d4–13 protocol. This 
was confirmed by retrospective analyses of the RICOVER 
trial in which both schedules were applied. We present the 
comparison of model and data for these scenarios in Fig. 3a, 
b. Interestingly, a recent simulation of Craig et al. (2015) 
also predicted that later start of filgrastim treatment could 
be advantageous for general 14 day schedules and that fewer 
injections are required in this case.

We also predicted that later applications of pegfilgrastim 
are advantageous compared to early applications in CHOP-
14 regimen of elderly NHL patients. This was confirmed in 
the pegfilgrastim trial comparing pegfilgrastim applied at d2 
with d4 which resulted in a clear advantage of the latter with 
respect to leukocyte nadir, days with leukocytes < 2 × 103/
mm3, grade 3 and 4 leukocytopenias, grade 4-only leukocy-
topenias, grade 3 and 4 infections, deaths during leukocy-
topenia and interventional antibiotics (Zwick et al. 2011). It 
turned out that our predictions were not only qualitatively 
correct, but also in good quantitative agreement with the 
observed clinical data (Fig. 3c, d).

Optimization of chemotherapy schedules 
without considering risk factors

We now use our model to make predictions regarding opti-
mal filgrastim schedules of a number of established and 
novel chemotherapy schedules. An overview of all optimized 
G-CSF schedules and corresponding WBCAOC values is 
presented in Table 1. Results for the other endpoints, DoL 
and MLC, can be found in Table S3 in Additional file 1.

BEACOPP escalated

Eight cycles of BEACOPP escalated is the German standard 
chemotherapy to treat intermediate and advanced stages of 
Hodgkin’s disease in younger patients (< 60 years). Accord-
ing to study protocols, it is recommended to apply filgrastim 
at d8–15 at each cycle. Figure 4 shows the predicted median 
leukocyte time course of this schedule. We now varied both, 
starting day of G-CSF treatment and number of injections 
in order to predict WBCAOC of these alternative schedules 
(Fig. 5a, b). It revealed that leukopenia prophylaxis could 
be improved by starting earlier (~ d6–7) and providing a 
higher number of injections (~ until the end of each cycle). 
We also considered substituting filgrastim by pegfilgrastim. 
We predict that in this case, pegfilgrastim should be applied 
at d6–7 to achieve optimal leukopenia prophylaxis. 

ETC

The ETC regimen is used as adjuvant chemotherapy of 
breast cancer patients in the German Breast Group (Moebus 
et al. 2010). It consists of three consecutive cycles of epiru-
bicin (E), paclitaxel (T), and finally, cyclophosphamide (C). 
Filgrastim was recommended to be applied at d3–10 of each 
cycle (Fig. 4). We predict that leukopenia prophylaxis can 
be clearly improved if G-CSF is applied at d6–13 (Fig. 5c, 
d, Table 1, Table S3). If pegfilgrastim is used instead of 
filgrastim, it should be applied at d6 of each cycle (Fig. S1).

However, since haematotoxic risk differs considerably 
between the chemotherapeutic drugs (lowest for T, high-
est for C), it appears to be worthwhile to modify G-CSF 
schedules according to the drug currently applied. We 
implemented a stepwise optimization for this sequential 
chemotherapy taking the different cytotoxicities of the drugs 
into account: in cycles 1–3, G-CSF should be applied from 
d6–10. In cycles 4–9, optimal G-CSF therapy starts on d7 
with 8 injections (Fig. S1 in Additional file 1). The optimal 
WBCAOC is 0.57, while that of the current standard therapy 
is 14.9. The optimization assuming the same G-CSF sched-
ule in each cycle (d7–14) yields 0.70. Thus, the improve-
ment by cycle-specific G-CSF schedules is only moderate 
compared to the optimal unique G-CSF schedule, which 
probably does not outweigh the higher organizational effort.

CHOP‑12

Densification of CHOP chemotherapy from cycle duration 
21 to cycle duration 14 resulted in improved outcomes of 
elderly NHL patients (Pfreundschuh et al. 2004a). This den-
sification was only possible by intense leukopenia prophy-
laxis with either filgrastim or pegfilgrastim. By model simu-
lation, we analysed whether a further time intensification 
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(CHOP-12) is feasible with respect to leukopenic risk and 
predict corresponding optimal G-CSF treatment.

We predict that CHOP-12 is best accompanied by G-CSF 
at d7-12 after chemotherapy start and that this results in 
tolerable toxicity. However, mild cumulative toxicity at later 
therapy cycles is observed (Fig. 5e, f).

Optimization of G‑CSF schedules considering 
individual risk factors

G-CSF schedules proposed for the previous chemotherapies 
were optimized for medians of patients, i.e. patient’s hetero-
geneity in toxic response was ignored so far. Here, we pro-
vide predictions for risk-adapted therapies using a recently 
proposed statistical model of leukopenia risk of elderly 

Fig. 3  Validation of model predictions. We compare model and data 
for six cycles of CHOP-14 for elderly patients either treated with 
filgrastim at cycle days 4–13 (a) or 6–12 (b). Dots represent patient 
medians, squares correspond to chemotherapy administrations, “+” 
correspond to days with G-CSF injections. Model predictions fit well 
to data of the RICOVER-60 trial and the NHL-B trial and show that 
the reduced G-CSF schedule is feasible (Schirm et al. 2014b; Zeynal-

ova et  al. 2013; Pfreundschuh et  al. 2004a, 2008). We further pre-
dicted that later pegfilgrastim application is advantageous for CHOP-
14 chemotherapy of elderly NHL patients. This was compared in a 
randomized trial of pegfilgrastim day 2 (c) vs. day 4 (d) (Zwick et al. 
2011). Again, a good agreement of model and data was observed 
(Schirm et al. 2014b)
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patients under CHOP treatment. Patients were divided into 
three risk groups according to tertiles of the risk score.

Assuming that interindividual heterogeneity in toxic 
response can be traced back to differences in chemotherapy 
toxicity parameters rather than cell-kinetic parameters, we 
estimated these parameters for the three risk groups consid-
ered. Resulting agreement of model and data can be found 
in Fig. 6.

Estimated toxicity parameters can be used to make risk-
specific predictions regarding specific optimal G-CSF 
schedules. We conclude that for the highest risk group, fil-
grastim treatment should be started around d6–8 after start 
of therapy cycle with at least eight injections (Fig. 7a, b). For 
the medium- and low-risk groups, timing is less important 
and 6, respectively, 4 injections result in sufficient recovery 
(Fig. 7c–f).

Table 1  Predicted WBCAOC values of different simulated G-CSF schedules, chemotherapies and risk groups

Therapy Risk group Optimal 
start of Fil

Optimal 
#Injection Fil

Optimal out-
come value Fil

Optimal 
start of Peg

Optimal out-
come value Peg

Currently used 
schedules

Current 
outcome 
value

CHOP-14 elderly High 7 8 50.51 7 57.16 Fil d4–13 72.58
Fil d6–12 77.92
Peg d2 112.45
Peg d4 91.10

Medium 9 6 2.16 7 2.81 Fil d4–13 10.47
Fil d6–12 7.55
Peg d2 38.82
Peg d4 22.14

Low 8 4 0.00 7 0.00 Fil d4–13 0.00
Fil d6–12 0.00
Peg d2 21.06
Peg d4 6.94

BEACOPP esc All 7 15 62.07 7 52.98 Fil d8–15 145.16
ETC All 7 8 0.70 6 5.34 Fil d3–10 14.86
CHOP-12 elderly All 7 6 19.12 6 20.50 – –

Fig. 4  Agreement of model and data for BEACOPP escalated and for 
ETC. We consider eight cycles of BEACOPP escalated chemother-
apy of Hodgkin’s lymphoma with filgrastim at cycle days 8–15 (left), 
and nine cycles of ETC adjuvant breast cancer chemotherapy with 

filgrastim at cycle days 3–10 (right). Dots represent patient medians, 
grey lines represent interquartile range of patient data, squares corre-
spond to chemotherapy administrations, “+” corresponds to days with 
G-CSF injections
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Pegfilgrastim should be injected around d6–7 after 
chemotherapy in the high-risk and medium-risk group. For 
the low-risk group, timing is not important (Fig. S2b, d, f 
in Additional file 1). Regarding pegfilgrastim dosing, we 

predict that the low-risk group can safely be treated with 
considerably less pegfilgrastim (Fig. S2e in Additional 
file 1). To a lesser extent, this also applies for the medium- 
and high-risk group if pegfilgrastim is administered within 

Fig. 5  Optimized G-CSF schedules for a variety of chemothera-
pies. a Optimization of eight cycles of BEACOPP escalated with fil-
grastim. b We consider eight cycles of BEACOPP escalated with fil-
grastim at cycle days 8–15 (“current clinical practice”) and filgrastim 
at cycle days 7–21 (“predicted optimum”). c, d We consider nine 
cycles of ETC with filgrastim. Current clinical practice: filgrastim at 
cycle days 3–10. Optimization with the same G-CSF schedule in all 

cycles results in a predicted optimal G-CSF treatment at days 7–14. e, 
f CHOP-12 (hypothetical chemotherapy of elderly patients): predicted 
optimal filgrastim treatment is d7–12. a, c, e The X-axis denotes the 
starting day of filgrastim. The Y-axis shows the number of filgrastim 
injections. The colour corresponds to the calculated WBCAOC 
(blue: lower WBCAOC, red: high WBCAOC). Background colour: 
WBCAOC obtained without G-CSF treatment
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the above-mentioned optimal time interval (Fig. S2a, c in 
Additional file 1).

Discussion

Although the haematopoietic growth factor G-CSF is rou-
tinely applied in clinical practice since many years, its opti-
mal use in a given clinical situation is often unknown or 
not well investigated. The reason is that the performance of 
alternative G-CSF schedules is difficult to predict in view 
of the strong interaction of chemotherapy-induced leukope-
nia, pharmacokinetic properties of G-CSF and the resulting 
effects on bone marrow leukopoiesis.

In view of the large number of variable therapy options 
(dosing and scheduling of cytotoxic drugs and G-CSF, dif-
ferent G-CSF pharmaceuticals, individual risk factors of 
patients), it is practically impossible to study this problem 
solely on the basis of clinical trials. Thus, there is a strong 
need for predictive modelling of G-CSF applications. Pastor 
et al. (2015) proposed a statistical model, while Quartino 
et al. (2014) proposed a semi-mechanistic model for this 
purpose. Craig et al. (2015) used their granulopoiesis model 
to explore alternative filgrastim schedules for general 14-day 
chemotherapy cycles. Here we propose to use our recently 
established biomathematical model of human granulopoiesis 
under G-CSF and chemotherapy treatments to address this 
task. Our model is based on biological assumptions on bone 

Fig. 6  Agreement of model and data for CHOP-14 considering 
three risk groups and four G-CSF schedules. We consider six cycles 
of CHOP-14 chemotherapy of non-Hodgkin’s lymphoma for elderly 
patients (age > 60) at low leukopenic risk (a–d), medium leukopenic 
risk (e–h), and high leukopenic risk (i–l). Data and model prediction 

are compared for filgrastim on days 4–13 or 6–12 and pegfilgrastim 
on day 2 or 4. Dots represent patient medians, squares correspond to 
chemotherapy administrations, “+” corresponds to days with G-CSF 
injections
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marrow haematopoiesis, PK and PD effects of G-CSF injec-
tions and the cytotoxic effects of chemotherapy.

The model was developed on the basis of large clini-
cal and literature data sets (Schirm et al. 2013, 2014a, 
b). To apply the model, it is necessary to estimate the 

bone marrow toxicity of an applied cytotoxic drug or drug 
combination, which can be achieved by studying time-
series data of patients treated under this condition. By this 
approach, we were able to quantify bone marrow toxici-
ties of a total of 10 drugs and 33 schedules (Schirm et al. 

Fig. 7  Risk-specific G-CSF schedules for CHOP-14 chemotherapy 
of elderly patients. Optimization is performed for cycles 2–6 since 
first cycle toxicity is included into the risk model. a, b High-risk, c, 
d medium-risk, e, f low-risk group. a, c, e The colour corresponds 
to the predicted WBCAOC (blue: lower WBCAOC—lower toxicity, 

red: high WBCAOC—higher toxicity). The X-axis corresponds to the 
starting day of filgrastim treatment. The Y-axis represents the number 
of filgrastim injections. Background colour: toxicity obtained without 
G-CSF treatment. Panels b, d and f show the WBC time course of the 
predicted optimal schedule in comparison to the current standard
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2014b). After quantifying the toxicity, the performance 
of alternative G-CSF schedules can be simulated by the 
model. We already applied this method in the planning 
phase of a number of clinical trials. Data collected under 
the newly proposed schedules showed that our predic-
tions are in good agreement with the data. In view of 
these encouraging results, we propose additional opti-
mized G-CSF schedules here. The proposed schedules are 
intended to be verified in clinical trials.

Different G-CSF derivatives are in practical use. Here 
we focused on filgrastim and pegfilgrastim which are gen-
erally considered as equally potent to prevent leukope-
nia if properly applied. A few studies and meta-analyses 
indicate advantages for pegfilgrastim (Clark et al. 2003, 
2005; Cooper et al. 2011; Mhaskar et al. 2014; Lambertini 
et al. 2015). Indeed, pegfilgrastim can be applied more 
easily increasing compliance. But filgrastim can be dosed 
more precisely allowing individual adaptations. This is 
especially relevant for risk-adapted G-CSF treatments. 
Moreover, it is supposed that the amount of pegfilgrastim 
injected by a single standard syringe might be too high 
for some patients (Ishiguro et al. 2008; Djulbegovic et al. 
2013; Masuda et al. 2015). Therefore, going beyond pure 
variation of starting time of pegfilgrastim, we also con-
sidered scenarios with reduced dosage of pegfilgrastim.

We studied different outcomes to assess the resulting 
cytotoxic outcome of a schedule, namely WBCAOC, DoL 
and MLC. Pros and cons of these outcomes are discussed 
elsewhere (Scholz et al. 2006) and we propose WBCAOC 
as the most reasonable choice. This allows us to compare 
different G-CSF schedules with respect to their expected 
cytotoxic outcome, and finally, to optimize the schedules. 
The relationship between the degree of chemotherapy-
induced leukopenia and resulting risk for infections is 
well-established (Colotta et al. 1992; Bennett et al. 2013; 
Li et al. 2016).

As practical applications of our model, we considered 
for example different starting times of pegfilgrastim for the 
adjuvant breast cancer chemotherapy ETC in the patient 
population studied in Moebus et al. (2010). According 
to our simulations, we predict that the application at d4 
after chemotherapy is superior to d2 and that d6 is opti-
mal. However, the differences are small. Moreover, the 
strongest leukopenic risk is expected for the cycles with 
cyclophosphamide applications. Here, the nadir occurs in a 
narrow time interval which might be difficult to capture in 
a clinical trial. This could explain the results of Loibl et al. 
(2011) who observed a (non-significant) trend towards bet-
ter performance of the d4 schedule compared to d2.

For the BEACOPP escalated regimen to treat advance 
stage Hodgkin’s lymphoma (Diehl et al. 2003), we pre-
dict that pegfilgrastim is optimally applied at d6–7 after 

chemotherapy. However, this would still fall into the 
period of procarbacine treatment.

We also propose optimized filgrastim treatment for three 
scenarios: for BEACOPP escalated, we predict that starting 
1 day earlier and increasing the number of G-CSF injec-
tions would result in improved leukopenia prophylaxis. For 
the ETC chemotherapy mentioned above, we predict that 
filgrastim d7–14 after chemotherapy is clearly superior to 
the current standard d4–11. But since the haematotoxic risk 
clearly depends on the applied drugs, we also considered dif-
ferent filgrastim schedules for cycles 1–3 (epirubicin), 4–6 
(paclitaxel) and 7–9 (cyclophosphamide), respectively. How-
ever, only small improvements were predicted compared to 
the d7–14 schedule.

Since time-intensified CHOP is advantageous for the 
treatment of high-grade non-Hodgkin’s lymphoma in elderly 
patients (Pfreundschuh et al. 2004a; Roesch et al. 2014; 
Rosch et al. 2016), we designed a regimen with six cycles 
of CHOP repeated every 12 days (CHOP-12). We predict 
that with optimal filgrastim support at d7–12, the toxicity 
might be tolerable but slightly cumulates over six cycles.

Another application of the model is the development of 
risk-adapted G-CSF schedules as recommended (Kuderer 
et al. 2006; Georgala and Klastersky 2015). This is achieved 
under the assumption that risk groups differ in sensitivity to 
chemotherapeutic drugs rather than response to G-CSF treat-
ment (Chatta et al. 1994). We established a statistical model 
of leukopenia risk, depending on pre-therapeutical (i.e. age, 
sex) and intra-therapeutical (observed toxicity in first cycle) 
risk factors for patients of high-grade non-Hodgkin’s lym-
phoma in the past (Ziepert et al. 2008). However, the risk 
score did not result in recommendations regarding individu-
alized G-CSF regimen so far. We addressed this issue in our 
paper by dividing patients into tertiles for which we propose 
specific G-CSF schedules. Indeed, we could detect some 
potential for risk-dependent filgrastim treatment: For the 
optimal schedules, number of filgrastim injections differed 
between four for the low-risk group, six for the medium-risk 
group and eight for the high-risk group. No optimization 
potential was detected for single pegfilgrastim injections 
(optimum d6–7 after chemotherapy for all risk groups). This 
approach can be generalized to other therapy schedules for 
which a leukopenia risk score is available.

As a general recommendation observed throughout our 
scenarios, we conclude that filgrastim and pegfilgrastim 
treatment should not be started too early after chemotherapy. 
The major reason is that G-CSF releases the bone marrow 
reserve of granulocytes which should be avoided if the num-
ber of granulocytes is still sufficiently high. However, this 
might be applicable only for intense chemotherapies with 
a high risk of leukopenia (Whitworth et al. 2009; Cheng 
et al. 2014). Moreover, filgrastim should not be stopped 
too early. Even if granulocytes are recovered, we predict a 
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benefit of maintained G-CSF treatment in the subsequent 
chemotherapy cycle. According to our model simulations, 
we also expect that there is some potential to reduce the dose 
of single pegfilgrastim injections without loss of efficacy. 
However, this prediction must be considered with caution 
since it is based on extrapolation of absorption kinetics.

A limitation of our method is that we only consider the 
number of leukocytes and not the clinically more relevant 
outcome of infection. Although there are strong relationships 
between leukocyte counts and risk for infection (Bennett 
et al. 2013; Colotta et al. 1992), our method does not account 
for leukocyte function or other measures to prevent infec-
tions such as prophylactic antibiotic treatment or hospitaliza-
tion. Another limitation is that we optimized G-CSF therapy 
for the medians of patient populations or risk groups while 
patient extremes are most relevant. We aim at addressing 
this issue by modelling individual time courses in the future.

Conclusions

We conclude that we established a biomathematical model 
of human granulopoiesis under chemotherapy which allows 
predictions of yet untested G-CSF schedules, comparisons 
between them, and with it, optimization of filgrastim and 
pegfilgrastim treatment. Some model predictions were 
already validated in clinical trials. We provided a number 
of additional suggestions for optimized G-CSF schedules 
for chemotherapies of different diseases and risk groups. 
As a general rule of thumb, G-CSF treatment should not be 
started too early and patients could profit from filgrastim 
treatment continued until the end of the chemotherapy cycle.
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