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did not derive from high- versus low-grade serous carci-
nomas and were unrelated to histological (ovarian vs. fal-
lopian) origin. Interestingly, there was considerable over-
lap between identified prognostic signature and a recently 
described invasion-associated signature related to stromal 
desmoplastic reaction. Several genes from this signature 
were validated by quantitative PCR; two of them—DSPG3 
and LOX—were validated both in the initial and independ-
ent sets of samples and were significantly associated with 
OS and disease-free survival.
Conclusions  We distinguished two molecular subgroups 
of serous ovarian cancers characterized by distinct OS. 
Among differentially expressed genes, some may poten-
tially be used as prognostic markers. In our opinion, unsu-
pervised methods of microarray data analysis are more 
effective than supervised methods in identifying intrinsic, 
biologically sound sources of variability. Moreover, as his-
tological type of the tumor is the greatest source of vari-
ability in ovarian cancer and may interfere with analyses 
of other features, it seems reasonable to use histologically 
homogeneous groups of tumors in microarray experiments.

Keywords  Ovarian cancer · Gene expression analysis · 
Prognostic biomarkers · Singular value decomposition 
(SVD) · Dermatan sulfate proteoglycan 3 (DSPG3) · Lysyl 
oxidase (LOX)

Introduction

In most gene expression studies, data analysis is carried out 
using so-called supervised methods that rely on the arbi-
trary division of analyzed samples into classes that are then 
compared in order to identify differentially regulated genes 
and molecular pathways. This approach works well when 
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OS than those with lower expression. The two clusters 
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performing simple in  vitro experiments with well-defined 
experimental variables (e.g., Fiszer-Kierzkowska et  al. 
2011; Olbryt et al. 2014). However, human tumor samples 
are more complex, and the major drawback of supervised 
methods is that stratification of these samples using arbi-
trarily chosen criteria may not accurately reflect the true 
biological checkpoints underlying the feature of interest. In 
addition, criteria for classifying the same feature can vary 
between studies. These methodological issues are rarely 
acknowledged, although they may be among the major rea-
sons why microarray studies in cancer research have low 
reproducibility and fail to find new molecular markers.

In our previous study, using similar set of ovarian can-
cer samples, we carried out supervised analyses in relation 
to several clinicopathological features in order to deline-
ate the molecular background of ovarian cancer chemore-
sistance and identify biomarkers suitable for predicting 
patient prognosis. However, only four of 18 genes that were 
selected as possible markers for chemotherapy response 
and survival were validated by quantitative PCR in the 
initial set of samples (Lisowska et al. 2014), and only one 
gene—cytoplasmic linker-associated protein 1—was vali-
dated in an independent set of ovarian tumors with respect 
to overall survival (OS) and disease-free survival (DFS). 
In addition, the majority of significant genes identified in 
these previous supervised analyses were not confirmed in 
other studies, as revealed by literature search.

In the present study, we analyzed the microarray data from 
101 ovarian cancer samples by singular value decomposition 
(SVD), an unsupervised method of data analysis that allows 
to reveal the major sources of variability in a complex dataset. 
In contrast to supervised methods, in SVD, no prior assump-
tions are made (i.e., there are no arbitrarily defined classes) 
and data can organize themselves. In this way, SVD enables 
class detection in analyzed dataset, e.g., identification of novel 
subgroups of cancers or patients and/or co-expressed genes.

This approach showed that the greatest source of vari-
ability in our dataset was attributable to the histological 
type of ovarian cancer. Interestingly, it appeared that the 
next major source of variability was linked to patients’ OS. 
The genes associated with the latter were mostly related 
to the regulation of the extracellular matrix (ECM), cell 
motility, adhesion, and immunological response. Patients 
with higher expression of these genes had shorter OS than 
those with lower expression. A similar gene set was previ-
ously detected in a computational study of microarray data 
derived from several types of cancer (Kim et  al. 2010); 
these authors postulated that this signature is acquired dur-
ing molecular evolution of the cancer during progression 
from lower to higher stages and results from tumor infiltra-
tion by cancer-associated fibroblasts (CAFs). However, we 
present evidence that this signature may be expressed by 
ovarian cancer cells themselves.

Materials and methods

Clinical samples

Surgical samples were obtained during primary sur-
gery, then snap-frozen in liquid nitrogen and stored at 
−80  °C. The tissue samples were collected at the Maria 
Skłodowska-Curie Memorial Cancer Center and Institute of 
Oncology in Warsaw, Poland. Only samples from patients 
without neoadjuvant chemotherapy were used in this study 
as chemotherapy may seriously affect gene expression pro-
file. Tissue samples with stromal cell contamination level 
lower than 15 % were selected from a larger collection of 
tumors.

Initially, we analyzed 101 ovarian cancer specimens: 
74 serous, 12 endometrioid, 9 clear cell, and 6 undifferen-
tiated. Patients were diagnosed at FIGO stages II-IV. The 
tumors were graded in a four-grade scale, according to the 
criteria given in Barber et al. (1975). All these tumors were 
tested for somatic p53 mutation and majority of them were 
mutated (64 samples with mutation and 8 without) (Dan-
sonka-Mieszkowska et  al. 2006). The patients were also 
tested for BRCA1 gene mutation and 18 patients from this 
group had hereditary BRCA1 mutation, one patient had 
somatic BRCA1 mutation, while 54 patients had no muta-
tion (Rzepecka et al. 2012). These and other data are given 
in Table 1.

More in-depth analyses were done using only serous 
and undifferentiated samples with complete data concern-
ing overall survival (OS) and disease-free survival (DFS). 
There were 68 serous and 4 undifferentiated tumors 
(Table 2).

RNA isolation

Total RNA was isolated from 3 to 5 sections (20 µm thick) 
of frozen tumor using RNeasy Mini Kit (Qiagen) with 
simultaneous on column DNase I digestion. RNA purity 
and concentration were estimated with ND-1000 spectro-
photometer (NanoDrop Technologies). RNA quality was 
assessed using Agilent platform: RNA 6000 Nano LabChip 
Kit, RNA Integrity Number software, and the Agilent 2100 
Bioanalyzer (Agilent Technologies). The samples with RIN 
values above 7 (full range 0–10) were accepted for further 
processing.

Oligonucleotide microarrays

We used HG U133 Plus 2.0 GeneChip oligonucleotide 
arrays (Affymetrix). Total RNA (8 μg) was used for syn-
thesis of double-stranded cDNA. Biotinylated cRNA was 
synthesized with the BioArray High Yield RNA Transcript 
Labeling Kit (Enzo Diagnostics). Both cDNA and cRNA 
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were purified with GeneChip Sample Cleanup Module 
(Affymetrix). cRNA (16 μg) was fragmented and hybrid-
ized to the microarray for 16 h at 45 °C. The microarrays 
were stained, washed, and subsequently scanned with 
GeneChip Scanner 3000 (Affymetrix). Data were acquired 
using GCOS 1.2 software (Affymetrix). The preprocess-
ing was performed by robust multi-array analysis (RMA, 
Bioconductor). Raw preprocessed data together with 
detailed descriptions of the samples are available at Gene 
Expression Omnibus repository under accession no Series 
GSE63885.

Reverse transcription and quantitative PCR

Half a μg of total RNA was taken for cDNA synthesis 
using Omniscript RT Kit (Qiagen), random primers (4 μM, 
Sigma-Aldrich), oligo(dT) primer (1 μM, QBiogene Inc.), 
and RNase inhibitor (10 U, Fermentas). The reaction was 

performed in 20 µl of total volume, according to manufac-
turer’s protocol, using thermocycler UNO II (Biometra). 
The cDNA was diluted tenfold and a 5 μl aliquot was taken 
for real-time PCR performed using Taqman 2x PCR Mas-
ter Mix (Roche), Exiqon probe (100 nM) and appropriate 
primers (200  nM each; Supplementary Table  1) designed 
using dedicated software from the Roche Web site. The 
reaction was carried out using ABI PRISM 7700 Sequence 
Detection System (Applied Biosystems) at the following 
conditions: 2 min at 50 °C, 10 min at 95 °C, 40 cycles of 
15  s at 95  °C, 1  min at 60  °C, and 1  min at 72  °C. The 
experiments were performed in triplicates. The relative 
amount of cDNA copies was calculated using the modified 
Pfaffl model (Pfaffl 2001) (Q = E�Ct, where E is reaction 
efficiency and ΔCt = Ct calibrator – Ct sample). The calibrator 
sample was a mixture of several samples of total RNA of 
known concentration. The gene expression was normalized 
to the expression of three genes: ATP6V1, HADHA, and 

Table 1   Characteristics of patients and tumor samples analyzed by microarray

BRCA1 breast cancer 1, CHT chemotherapy response, described as clinical status of the patient after first-line treatment, CR complete remission, 
FIGO Federation of Gynecology and Obstetrics, G2–G4 tumor grades 2–4, P progression, PR partial remission, R0 residual tumor <1 cm, R1 
residual tumor between 1 and 5 cm, R2 residual tumor >5 cm, SD stable disease, TP53 tumor protein 53
a  Tumors were classified as highly sensitive for DFS  >  732  days, moderately sensitive for 732  days  >  DFS  >  180  days, and resistant for 
DFS < 180 days

Characteristics
(total no.)

Numbers of samples

Histology (101) Serous 74 Endometrioid 12 Clear cell 9 Undifferentiated 6

CHT response (72) CR 48 PR 14 SD 3 P 7

Platinum sensitivitya (72) Highly sensitive 12 Moderately sensitive 27 Resistant 33

FIGO stage (72) FIGO II 3 FIGO III 59 FIGO IV 10

Tumor grade (77) G2 10 G3 48 G4 19

Residual tumor (72) R0 15 R1 36 R2 21

BRCA1 mutation (72) Mutation 19 No mutation 53

TP53 mutation (72) Mutation 64 No mutation 8

Table 2   Distribution of the features for high-grade serous ovarian carcinomas in two clusters of serous and undifferentiated cancers with dis-
tinct overall survival (OS)

BRCA1 breast cancer 1, FIGO International Federation of Gynecology and Obstetrics

Feature Cluster 2 (short OS) Cluster 1 (long OS) Fisher’s exact test p value

No. of samples % of samples No. of samples % of samples

Grade 2 1 1.4 7 9.7 0.42

Grades 3 + 4 21 29.2 43 59.7

p53 mutation 20 27.8 44 61.1 1.0

p53 no mutation 2 2.8 6 8.3

BRCA1 mutation 4 5.6 15 20.8 0.39

BRCA1 no mutation 18 25 35 48.6

Lower advanced stage (FIGO IIB–IIIB) 2 2.8 12 16.6 0.20

Higher advanced stage (FIGO IIIC–IV) 20 27.8 38 52.8

Total 22 30.5 50 69.5
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UBE2D2, selected by GeNorm program (ver. 3.5). After 
quality assessment, all data samples were used for final 
analysis.

Singular value decomposition (SVD)

SVD is a standard method of linear algebra that may be 
used for revealing the major sources of variability in ana-
lyzed microarray dataset. By decomposition of data matrix 
into singular values (“patterns”), it allows to group the genes 
based on their gene expression profiles. As a result, small 
sets of original genes (modes) are selected and then hierar-
chical clustering of genes and samples for each gene modes 
is applied and presented on heat map plot (Simek and Kim-
mel 2003). The microarray analyses were performed using 
R environment (ver. 3.02) with the Bioconductor packages 
and MATLAB environment (ver. R2009B).

SVD was initially performed on the whole dataset, then 
using only serous and undifferentiated tumors. We decided 
to focus on the genes from the first mode of SVD done on 
serous and undifferentiated tumors. However, this set of 
ovarian cancers contained two series of surgical samples col-
lected in different periods of time: 32 samples were collected 
in mid-1990s and 40 samples were collected in early 2000s  . 
To avoid artifacts resulting from data heterogeneity, we did 
SVD in each series separately and choose only the tran-
scripts that were common in both analyses (151 probe sets).

Gene set enrichment analysis

Biological significance of all genes connected with two 
clusters with distinct survival (Fig. 3.) was performed using 
gene set enrichment analysis (GSEA) (Subramanian et al. 
2005) with c2: curated gene set collections from Molecu-
lar Signatures Database (MSigDB) (Liberzon et al. 2011). 
In detail, we applied two independent tests: the LS permu-
tation test and the Efron–Tibshirani gene set analysis test 
(GSA). We considered a GSEA category significantly dif-
ferentially regulated if significance level in either of the 
tests was less than 0.05 after Benjamini–Hochberg false 
discovery rate (FDR) multiple test correction. The inter-
section of the GSA test and the LS permutation test was 
used. Analyses were performed using R (ver. 3.0.2) statisti-
cal environment with the Bioconductor software (ver. 2.13) 
and BRB-ArrayTools (developed by Dr. Richard Simon 
and the BRB-ArrayTools Development Team; ver. 4.4.0).

Overall survival (OS) and disease‑free survival (DFS) 
analyses

OS and DFS analyses were performed by the Kaplan–
Meier method and compared between groups using the log-
rank test. Differences in characteristics between groups of 

patients, according to the clusters obtained in microarray 
analysis and to quantitative PCR estimated gene expression 
levels, were evaluated by the χ2 test. A p value of <0.05 
was considered statistically significant. The quantitative 
PCR validation was performed using the learning set and 
the test set samples. In the learning set, we have used the 
same samples as in the microarray experiment, and in the 
test set, we have used an independent set of 33 ovarian can-
cer samples. The analyses of survival time were performed 
using R Statistical Software.

Results

Histological tumor type is the major factor influencing 
gene expression profiles in ovarian cancer

We analyzed global gene expression in 101 ovarian cancer 
samples with an Affymetrix DNA microarray. The major 
intrinsic sources of variability in gene expression profiles 
were identified by SVD. The first SVD mode contained 
92 probe sets, corresponding to 69 genes (Supplementary 
Table 2). A gene ontology analysis using GOHyperG Bio-
conductor Package revealed that the corresponding tran-
scripts were primarily associated with cellular metabolism 
and proliferation along with signaling pathways that are 
implicated in development and reproduction. When we 
performed hierarchical clustering of the samples based on 
transcript expression levels, we observed that the cluster-
ing pattern was related to the histological type of tumor 
(Fig.  1). The left branch of the dendrogram contained all 
clear-cell tumors and all but one endometrioid tumors, as 
well as 23 serous tumors. The majority of clear-cell and 
endometrioid tumors were clustered together and showed 
common gene expression patterns that were distinct from 
those of other tumor samples. This was consistent with 
observations made in another microarray study (Marquez 
et al. 2005).

The right branch of the dendrogram contained mostly 
serous tumors (51 samples) and only one endometri-
oid tumor. Undifferentiated tumors were present in both 
branches; all but one were dispersed among and showed 
similar molecular profiles to neighboring serous tumors. 
The similarity in gene expression profiles between serous 
and undifferentiated cancers was also seen previously when 
supervised methods were applied (Lisowska et al. 2014).

Extracellular matrix and immunological response 
constitute a second major source of variability 
in ovarian cancer

A second SVD mode representing the next major source of 
variability in the molecular profiles of the analyzed samples 
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consisted of 116 probe sets corresponding to 77 genes 
(Supplementary Table  3). These transcripts were mainly 
associated with ECM organization, cell motility, adhe-
sion, and immunological response. The clustering based on 
expression levels of these probe sets did not reveal any dis-
cernible patterns (not shown).

Interestingly, when we repeated the SVD by taking 
into account only serous and undifferentiated tumors, the 
above-described gene signature re-emerged as the first 
SVD mode. In this setting, genes that were previously 
found in the second SVD mode now appeared in the first 
mode (Fig. 2).

After additional filtering of this gene signature (see 
Methods), we obtained 151 probe sets representing 111 
unique sequences, among them 96 characterized genes 
(Table 3, Supplementary Table 4).

We investigated the cellular and molecular processes that 
may be affected by the differential expression of these 151 tran-
scripts. Gene set enrichment analysis was performed based on 
MSigDB content (Supplementary Table 5). Among significantly 
affected signaling pathways we found, e.g., Biocarta: Fibrinoly-
sis_Pathway, LYM_Pathway, CTL_Pathway and TCRA_Path-
way; KEGG: ECM_Receptor_Interaction, Ribosome, and 
Focal_Adhesion; Reactome: Chondroitin_Sulfate_Biosynthesis, 
Collagen_Formation, Glycosaminoglycan_Metabolism, ECM_
Organization, Degradation_of_ECM, Metabolism_of_Proteins, 
Translation, and Peptide_Chain_Elongation. There were also 
multiple curated gene sets overrepresented, which were found 
by other researchers to be related with cancer biology and tumor 
response to the therapy, e.g., Alonso_Metastasis_EMT_Up, 

Anastassiou_Cancer_Mesenchymal_Transition_Signature, 
Charafe_Breast_Cancer_Basal_vs_Mesenchymal_Down, 
Cowling_MYCN_Targets, Croonquist_NRAS_vs_Stromal_
Stimulation_Down, Dasu_IL6_Signalling_Down, Hernan-
dez_Mitotic_Arrest_by_Docetaxel, Mahajan_Response_to_
IL1A_Down, Mishra_Carcinoma_Associated_Fibroblast_Up, 
Nakamura_Cancer_Microenvironment_Up, Pid_AVB3_Integ-
rin_Pathway, etc.

Fig. 1   Hierarchical clustering 
of samples based on transcript 
expression levels from the first 
SVD mode. The SVD was done 
on all 101 cancer samples: 74 
serous (pink), 12 endometrioid 
(dark blue), 9 clear cell (light 
blue), and 6 undifferenti-
ated (green). Clear-cell and 
endometrioid cancers grouped 
together and showed common 
gene expression patterns that 
were distinct from those of 
the remaining tumor samples. 
Undifferentiated cancers were 
dispersed mostly among and 
had gene expression patterns 
similar to neighboring serous 
samples

Fig. 2   Relationship between SVD modes. Venn diagram shows the 
numbers of probe sets and genes (in brackets) obtained in SVD. All 
116 probe sets in the second mode of SVD carried out on all tumors 
(orange) were among the 332 in the first mode of SVD, which was 
carried out on serous and undifferentiated tumors (blue). This sug-
gests that the second mode of SVD done on all cancer samples, cor-
responded to the same biological feature(s) as the first mode of SVD 
done only on serous and undifferentiated cancers
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Table 3   List of characterized genes included in the 151-probe set signature

No. Gene symbol Gene description Fold change

1 POSTN Periostin, osteoblast-specific factor 21.69

2 COL11A1 Collagen, type XI, alpha 1 19.44

3 SFRP2 Secreted frizzled-related protein 2 18.61

4 DSPG3 Dermatan sulfate proteoglycan 3/EPYC 13.17

5 COL10A1 Collagen, type X, alpha 1 (Schmid metaphyseal chondrodysplasia) 10.24

6 ITGBL1 Integrin, beta-like 1 (with EGF-like repeat domains) 8.1

7 LOX Lysyl oxidase 7

8 HNT Neurotrimin 6.79

9 MFAP5 Microfibrillar-associated protein 5 6.36

10 FAP Fibroblast activation protein, alpha 6.22

11 THBS2 Thrombospondin 2 6.02

12 COMP Cartilage oligomeric matrix protein 5.18

13 CSPG2 Chondroitin sulfate proteoglycan 2 (versican, VCAN) 5.02

14 ASPN Asporin (LRR class 1) 4.61

15 INHBA Inhibin, beta A (activin A, activin AB alpha polypeptide) 4.56

16 CXCL14 Chemokine (C-X-C motif) ligand 14 4.5

17 LUM Lumican 4.45

18 SULF1 Sulfatase 1 4.4

19 GJB2 Gap junction protein, beta 2, 26 kDa (connexin 26) 4.39

20 VCAM1 Vascular cell adhesion molecule 1 4.22

21 CTSK Cathepsin K (pycnodysostosis) 4.18

22 MMP11 Matrix metallopeptidase 11 (stromelysin 3) 4.17

23 PRRX1 Paired related homeobox 1 4.08

24 TIMP3 TIMP metallopeptidase inhibitor 3 (Sorsby fundus dystrophy, pseudoinflammatory) 4.02

25 COL8A1 Collagen, type VIII, alpha 1 4.01

26 CXCL12 Chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) 3.95

27 SFRP4 Secreted frizzled-related protein 4 3.95

28 SERPINF1 Serpin peptidase inhibitor, clade F, member 1 3.88

29 TMEM158 Transmembrane protein 158 3.87

30 COL12A1 Collagen, type XII, alpha 1 3.85

31 COL5A2 Collagen, type V, alpha 2 3.85

32 FN1 Fibronectin 1 3.84

33 CCDC80 Coiled-coil domain containing 80 3.7

34 MEGF10 Multiple EGF-like domains 10 3.61

35 COL5A1 Collagen, type V, alpha 1 3.45

36 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 3.44

37 PLAU Plasminogen activator, urokinase 3.38

38 EDIL3 EGF-like repeats and discoidin I-like domains 3 3.28

39 EDNRA Endothelin receptor type A 3.26

40 LRRC15 Leucine-rich repeat containing 15 3.23

41 VGLL3 Vestigial like 3 (Drosophila) 3.21

42 AEBP1 AE binding protein 1 3.19

43 GLT8D2 Glycosyltransferase 8 domain containing 2 3.02

44 COLEC12 Collectin subfamily member 12 2.92

45 OLFML2B Olfactomedin-like 2B 2.88

46 CRISPLD2 Cysteine-rich secretory protein LCCL domain containing 2 2.88

47 COL1A1 Collagen, type I, alpha 1 2.85

48 TNFAIP6 Tumor necrosis factor, alpha-induced protein 6 2.83
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Table 3   continued

No. Gene symbol Gene description Fold change

49 CTHRC1 Collagen triple helix repeat containing 1 2.74

50 EVI2A Ecotropic viral integration site 2A 2.73

51 SNAI2 Snail homolog 2 (Drosophila) 2.72

52 FBN1 Fibrillin 1 2.69

53 PDLIM3 PDZ and LIM domain 3 2.69

54 GUCY1A3 Guanylate cyclase 1, soluble, alpha 3 2.67

55 DCN Decorin/DSPG2 2.65

56 MMP2 Matrix metallopeptidase 2 (gelatinase A, 72 kDa type IV collagenase) 2.64

57 ALDH1A3 Aldehyde dehydrogenase 1 family, member A3 2.61

58 FYB FYN binding protein (FYB-120/130) 2.57

59 COL3A1 Collagen, type III, alpha 1 (Ehlers–Danlos syndrome type IV) 2.55

60 SDC1 Syndecan 1 2.54

61 HSD17B6 Hydroxysteroid (17-beta) dehydrogenase 6 2.54

62 CDH11 Cadherin 11, type 2, OB-cadherin (osteoblast) 2.51

63 FNDC1 Fibronectin type III domain containing 1 2.43

64 MOXD1 Monooxygenase, DBH-like 1 2.43

65 PLN Phospholamban 2.41

66 ISLR Immunoglobulin superfamily containing leucine-rich repeat 2.37

67 TWIST1 Twist homolog 1 (Drosophila) 2.37

68 SPARC Secreted protein, acidic, cysteine-rich (osteonectin) 2.37

69 ZFHX1B Zinc finger homeobox 1b 2.35

70 THBS1 Thrombospondin 1 2.33

71 LR8 LR8 protein 2.33

72 MSRB3 Methionine sulfoxide reductase B3 2.32

73 FRMD6 FERM domain containing 6 2.23

74 TMEM46 Transmembrane protein 46 2.21

75 LY96 Lymphocyte antigen 96 2.19

76 HOXA3 Homeobox A3 2.18

77 WASPIP Wiskott–Aldrich syndrome protein interacting protein 2.16

78 MICAL2 Microtubule associated monooxygenase, calponin and LIM domain containing 2 2.15

79 SAMSN1 SAM domain, SH3 domain and nuclear localization signals, 1 2.15

80 RAB31 RAB31, member RAS oncogene family 2.13

81 CALD1 Caldesmon 1 2.11

82 DEPDC7 DEP domain containing 7 2.09

83 BGN///TSHZ1 Biglycan///teashirt family zinc finger 1 2.06

84 LOXL2 Lysyl oxidase-like 2/ENTPD4 2.02

85 F2R Coagulation factor II (thrombin) receptor 1.98

86 TFEC Transcription factor EC 1.97

87 SLAMF8 SLAM family member 8 1.96

88 CYP7B1 Cytochrome P450, family 7, subfamily B, polypeptide 1 1.96

89 LAMA4 Laminin, alpha 4 1.96

90 COL6A3 Collagen, type VI, alpha 3 1.94

91 OLFML1 Olfactomedin-like 1 1.93

92 PLXNC1 Plexin C1 1.89

93 QKI Quaking homolog, KH domain RNA binding (mouse) 1.85

94 NEXN Nexilin (F actin binding protein) 1.82

95 SMOC2 SPARC related modular calcium binding 2 1.82

96 HEPH Hephaestin 1.71

Genes are sorted by fold change; 10 genes selected for quantitative PCR validation are marked in bold
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Two clusters of ovarian cancers with distinct survival

Hierarchical clustering based on the expression of the afore-
mentioned 151 transcripts revealed two unequal clusters of 
ovarian cancer samples (defined by two major sub-branches 
of dendrogram), with strikingly different molecular profile 
(Fig. 3a). Cluster 1 (right sub-branch of dendrogram) was 
larger (50 samples) and characterized by lower expres-
sion values of those genes. Cluster 2 (left sub-branch) was 
smaller (22 samples) and showed higher expression values. 
We found that samples representing those two clusters did 
not differ with any of the following features: tumor stage, 
tumor grade, response to chemotherapy, residual tumor 
size, germline breast cancer (BRCA)1 mutation, somatic 
p53 mutation, or p53 protein accumulation. However, the 

Kaplan–Meier analysis revealed that patients from the two 
clusters exhibited statistically significant difference in OS 
(Fig. 3b). For DFS, we observed similar trend, although it 
was not statistically significant (not shown).

Factors involved in clustering pattern and difference 
in survival

We investigated whether the 151-probe set signature and 
corresponding clustering pattern were due to the poten-
tially different cellular origin of ovarian cancers (i.e., ovar-
ian or fallopian epithelial). We used previously reported 
microarray data that included different histological types 
of ovarian cancer as well as normal ovarian and normal 
tubal epithelial samples (Marquez et  al. 2005). We used 

Fig. 3   a Hierarchical clustering 
based on the expression of the 
151-probe set signature revealed 
two clusters of ovarian cancer 
with distinct molecular profiles. 
Four undifferentiated and 68 
serous samples with complete 
clinical and molecular data 
were used for clustering. b The 
Kaplan–Meier survival analysis 
of patient OS was carried out 
using the log-rank test for each 
cluster. The two clusters were 
characterized by different OS 
(p = 0.021). Patients who had 
tumors with higher expression 
of the 151 transcripts (cluster 
2) had shorter OS [median 
value = 735, 1 quartile range 
(QR) = 652, 3 QR = 897], 
while those with tumors show-
ing lower expression of these 
genes (cluster 1) had longer 
OS (median value = 1194.5, 1 
QR = 767.25, 3 QR = 1867.75)
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our 151-probe set signature for hierarchical clustering of 
20 serous cancers, five ovarian surface epithelial samples, 
and 4 fallopian tube epithelial samples from the Marquez 
study. We predicted that if our signature detects differences 
between serous ovarian cancers originating from distinct 
epithelia, the clustering pattern would reveal the relation-
ship between them and corresponding normal epithelium. 
However, we did not observe any such pattern (Fig. 4).

We also assessed whether the observed clustering pat-
terns and differences in survival were related to the malig-
nant potential of tumors. We applied to our data a previ-
ously reported gene signature (Ouellet et  al. 2005) that 
distinguished between low malignant potential versus inva-
sive epithelial tumors. Interestingly, we obtained an almost 
identical clustering pattern as when we used our 151-
probe set signature, with patient OS differing significantly 
between the two clusters (Fig. 5); this pattern contained 21 
and 51 samples, only three of which were clustered dif-
ferently from what was observed using our signature. The 
obtained clustering pattern was primarily based on the 
expression of three probe sets for collagen type XI alpha 
(COL11A)1 and one for matrix metalloproteinase (MMP)2. 
Notably, these were the only genes that were common to 
the Ouellet signature and ours. In addition, only these four 

probe sets behaved consistently in relation to our expres-
sion data, showing low and high expression in clusters 1 
and 2, respectively.

Candidate prognostic markers

We analyzed patients with serous and undifferentiated can-
cers based on standard clinical prognostic factors (tumor 
grade, disease stage, and residual tumor size) and found 
that prognosis was similar for whole group. However, 
molecular profiles delineated two subgroups with different 
OS (Fig. 3). Patients with shorter survival had tumors with 
higher expression of the 151 probe sets, while those with 
longer survival had tumors with lower expression, sug-
gesting that corresponding genes are potential prognostic 
markers.

We examined 10 genes from the 151-probe set signature 
in terms of their ability to predict patient OS. Genes were 
selected arbitrarily, considering two factors: significant dif-
ferences in expression level between clusters (fold change, 
FC) and/or established/suggested role in cancer. The major-
ity of selected genes met the criterion of FC > 5, with only 
inhibin beta A (INHBA) and plasminogen activator uroki-
nase (PLAU) showing lower FC values (Table 4).

Fig. 4   Hierarchical clustering 
of cancer and normal samples 
from (Marquez et al. 2005) 
based on the expression levels 
of our 151-probe set signature 
[only 73 probe sets matched due 
to the older version of the array 
used in (Marquez et al. 2005)]. 
Serous ovarian cancers from 
Marquez study were divided 
into two clusters; however, nor-
mal controls were not, and there 
was no relationship between 
the expression patterns of either 
cluster and particular type of 
normal control
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We first performed quantitative PCR measurement of 
genes expressed in the RNA samples that were analyzed 
by microarray (learning set). Five genes were positively 
validated with respect to OS: lysine oxidase (LOX), micro-
fibrillar-associated protein (MFAP)5, fibroblast activating 
protein (FAP), dermatan sulfate proteoglycan (DSPG)3, 
and COL11A1 (Table  4; Supplementary Fig.  1). We then 
verified 10 selected genes in the independent set of ovarian 
cancer samples (test set) and found LOX and DSPG3 to be 
significant. In addition, periostin (POSTN) and PLAU were 
associated with OS in the test set while secreted frizzled-
related protein (SFRP)2, thrombospondin 2, and INHBA 
were close to significance (Table 4; Supplementary Fig. 2).

We then analyzed gene expression with respect to DFS 
in the learning and test sets. In the former, DSPG3 was 

significant, whereas COL11A1, LOX, and MFAP5 showed 
similar trend and were close to significance (Table 4; Sup-
plementary Fig. 3). DSPG3 was also significant in the test 
set along with LOX, while MFAP5 and SFRP2 were close 
to significance (Table 4; Supplementary Fig. 4).

In summary, two genes—i.e., DSPG3 and LOX—were 
significantly associated with OS and DFS in the learning 
and test sets of ovarian cancer samples. Several other genes 
showed trend toward significance.

Discussion

Many microarray studies rely only on supervised analyses 
that compare predefined classes of samples. In this study, we 

Fig. 5   a Hierarchical cluster-
ing of serous and undifferenti-
ated cancer samples from our 
experiment using a previously 
reported gene signature for the 
malignant potential of ovarian 
tumors (Ouellet et al. 2005). 
The clustering pattern was very 
similar to that obtained using 
our 151-probe set signature 
owing to the expression patterns 
of the only two genes common 
to the two signatures (COL11A1 
and MMP2). Similar expres-
sion patterns were observed for 
laminin beta 1 and homeobox 
B7, but other genes showed 
random patterns. Dots indicate 
tumor samples that were clus-
tered in a different manner from 
the analysis carried out using 
our signature: red and black 
dots indicate samples that were 
previously included in clusters 
2 and 1, respectively. b Kaplan–
Meier survival analysis of 
patient OS (log-rank test) based 
on cluster (P = 0.015)
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used singular value decomposition, an unsupervised method 
of data analysis that does not need predefining any classes. 
It identifies, by itself, the strongest, intrinsic sources of vari-
ability in the analyzed dataset, which can be then examined 
in relation to clinicopathological features and biological 
significance. In addition, SVD technique allows detection 
and elimination of unwanted “noise” in the microarray data 
resulting from technical variability or from other undefined 
sources of heterogeneity. This approach allowed successful 
characterization of the analyzed set of ovarian cancers and 
identification of several potential prognostic biomarkers.

Histological type of tumor influences gene expression 
in ovarian cancer

When we applied SVD to samples comprising different 
histological types of ovarian cancer, we observed that the 
first SVD mode—which represents the greatest source of 
variability in gene expression patterns—was associated 
with histological type. These results are in accordance with 
our previous supervised analyses, which showed that the 
histological type of a tumor was the factor which caused 
the greatest change in gene expression (3526 differentially 
expressed probe sets; FDR < 10 %) (Lisowska et al. 2014). 
In contrast, in breast cancer, we found only 11 probe sets 
that were differentially expressed between two histologi-
cal types (ductal and medullary; FDR < 10 %) (Dudaladava 
et al. 2006; Lisowska et al. 2011). Therefore, it seems that 
the histological type of a tumor is not a universal source of 
variability in gene expression patterns in cancer. In ovar-
ian cancer, these differences may be enhanced by the dis-
tinct cellular origin of histological tumor types; a growing 

body of evidence suggests that clear-cell and endometri-
oid cancers develop from endometriosis, while serous and 
undifferentiated tumors originate from tubal or ovarian epi-
thelium (Chan et al. 2012; Erickson et al. 2013; Jones and 
Drapkin 2013; Kurman and Shih Ie 2011).

Our results also lead to some practical conclusions. We 
observed that there were many genes shared between clear-
cell and endometrioid but not serous cancer (Lisowska 
et al. 2014). On the other hand, serous and undifferentiated 
tumors had near-identical gene expression profiles, as con-
firmed by SVD. Therefore, based on their molecular simi-
larity, we merged serous and undifferentiated tumors into a 
single group, whereas clear-cell and endometrioid cancers—
representing molecular entities distinct from the two former 
types of tumor—were excluded from further analyses.

Large differences in gene expression profiles between vari-
ous histological types of ovarian cancer have already been 
noted in other microarray studies, but to our knowledge, they 
have never been regarded as a confounding factor when ana-
lyzing other features. Moreover, in many studies, a search 
for molecular mechanisms underlying tumor features such as 
chemoresistance has been carried out across different histolog-
ical types (Helleman et al. 2006; Jazaeri et al. 2005). We pre-
sume that such studies would produce more reliable results if 
carried out on a histologically homogeneous group of samples.

The 151‑probe set signature overlaps with an 
invasion‑associated signature related to stromal 
desmoplastic reaction

The second major source of variability identified by SVD 
was associated with the expression of a set of genes related 

Table 4   Results of quantitative 
PCR validation of selected 
genes

p < 0.05 is indicated in bold; p < 0.10 is indicated in italics. Survival analyses in the learning set were car-
ried out in relation to the threshold expression between the two cancer sample clusters. In the test set, sur-
vival was analyzed in relation to median expression
a  Set of samples used for microarray experiment (n = 72)
b  Set of samples from the independent group of ovarian cancer patients (n = 33)

Gene symbol Gene name Overall survival
(p value)

Disease-free survival
(p value)

Learning seta Test setb Learning set Test set

POSTN Periostin 0.3933 0.0077 0.7152 0.0259

COL11A1 Collagen type XI alpha 1 0.0020 0.1355 0.0647 0.2254

SFRP2 Secreted frizzled-related protein 2 0.8918 0.0715 0.6884 0.0574

DSPG3 Dermatan sulfate proteoglycan 3 0.0032 0.0140 0.0328 0.0053

ITGBL1 Integrin beta-like 1 0.2123 0.2989 0.9827 0.7200

LOX Lysine oxidase 0.0099 0.0363 0.0592 0.0485

MFAP5 Microfibrillar-associated protein 5 0.0016 0.1246 0.0671 0.0974

FAP Fibroblast activating protein 0.0025 0.1921 0.2637 0.7907

INHBA Inhibin beta A 0.1581 0.0855 0.2797 0.2435

PLAU Plasminogen activator urokinase 0.2092 0.0347 0.4369 0.1347
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to the ECM, cell motility, adhesion, and immunological 
response. This signature emerged as a second SVD mode 
when all histological types of tumor were analyzed, and 
became a dominant hallmark when only serous/undif-
ferentiated tumors were taken into account. Interest-
ingly, we found considerable match of this gene signature 
with a gene set described in the study (Kim et  al. 2010), 
which analyzed several tumor expression datasets with 
clinical staging information, available in the public data-
bases, among them ovarian dataset (Bignotti et  al. 2007). 
Described gene set was co-expressed with COL11A1 and 
was reportedly observed in different types of cancer (ovar-
ian, colon, breast, pancreatic, and gastric).

In our 151-probe set signature, 68 probe sets (repre-
senting 42 genes) were found to overlap with a previously 
reported 100-probe set signature, i.e., “Aggregate list of top 
genes associated with COL11A1” (Kim et al. 2010) (Sup-
plementary Table 4); 68 % of these probe sets were present 
in our signature. These authors postulated that this signa-
ture was a hallmark of invasion-associated desmoplastic 
reaction, which is acquired by various cancers at a different 
clinical stages (e.g., at stage IIIC in ovarian and stage II in 
colorectal cancer). Indeed, we observed a greater propor-
tion of highly advanced stages within cluster 2, which had 
shorter survival; however, this difference was not signifi-
cant (Table 2).

Several genes from this signature were validated by 
quantitative PCR, suggesting that they can be potentially 
useful as prognostic markers. The slight discrepancy in the 
validation results between the two sets of samples may be 
due to the small size of the independent set. Second rea-
son may be connected with different median survival times 
of the patients from learning set (earlier cohort of patients: 
some treated with platinum/cyclophosphamide, some with 
taxane/platinum regimen, TP) and from the test set (patients 
uniformly treated with TP) (Supplementary Fig. 5).

The two identified clusters are unrelated to the cellular 
origins of ovarian cancer

Serous ovarian cancers are increasingly viewed as having 
mixed epithelial etiology (ovarian or tubal) (Erickson et al. 
2013). We therefore assessed whether the two clusters of 
cancer with distinct OS identified in our study were of dif-
ferent cellular origins. Only one study to date has investi-
gated the gene signature of normal cells of origin in ovarian 
cancer (Merritt et al. 2013). A comparison of gene expres-
sion profiles between normal fallopian and normal ovarian 
epithelia revealed 632 probe sets overexpressed in the for-
mer and 525 overexpressed in the latter;  patients who had 
tumors with a fallopian signature had significantly shorter 
OS and DFS than those with an ovarian signature. How-
ever, we found only one fallopian signature gene in our 151 

probe sets. We also examined, using previously published 
microarray data (Marquez et  al. 2005), whether our 151-
gene probe set signature can discriminate between ovar-
ian and fallopian epithelial samples and identify fallopian-
like and ovarian-like cancers. Obtained clustering results 
(Fig. 4) supported the view that our prognostic signature is 
unrelated to the cellular origin of ovarian cancer. Interest-
ingly, serous cancers from Marquez study formed two clus-
ters based on the expression of genes from our prognostic 
signature; however, we were unable to verify whether these 
clusters are related to OS due to the lack of survival data.

Relationship between the two clusters and high‑ 
versus low‑grade difference

Low- versus high-grade difference, also referred to as type 
I versus type II tumor difference (Vang et  al. 2009), is a 
reliable prognostic factor for serous ovarian cancer. It is 
generally accepted that low-grade serous ovarian carci-
nomas (LG-SOC) develop from benign precursors, grow 
slowly, are genetically stable, and have good prognosis. In 
contrast, high-grade serous ovarian carcinomas (HG-SOC) 
and undifferentiated carcinomas—which are characterized 
by p53 and BRCA1/2 mutations and genomic instability—
present at an advanced stage, evolve aggressively, and have 
poor prognosis.

We analyzed whether the two clusters of cancers with 
different OS that were observed in our study may be related 
to the difference between HG- and LG-SOC. In general, 
high-grade tumors were prevalent in the set of cancers 
used for hierarchical clustering (Table 2). Cluster 2, which 
is associated with shorter OS, contained more high-grade 
cancers than cluster 1, although this difference was not sig-
nificant. Both clusters had similar numbers of p53-mutated 
tumors. Unexpectedly, there were more BRCA1 muta-
tions in cluster 1—which is associated with longer sur-
vival—than in cluster 2. This may result from the fact that 
tumors with BRCA1 mutation have impaired DNA repair, 
improved response to platinum compounds and thus better 
survival (Long and Kauff 2011). Taken together, these find-
ings suggest that our prognostic signature is unrelated to 
HG- versus LG-SOC difference.

The 151‑probe set signature is presumed to be 
expressed by cancer cells and to confer chemoresistance

The COL11A1-related signature may be attributed to the 
presence of CAFs within the tumor (Kim et  al. 2010). 
However, given that we made every effort to reduce the 
stromal component to below 15 %, the differential expres-
sion of the 151-gene probe sets is not likely caused by vari-
able CAF content in our samples. We also found by semi-
quantitative reverse transcription PCR (RT-PCR) that 13 
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genes from Table  3 were expressed in at least two of the 
six established ovarian cancer cell lines that were analyzed 
(Supplementary Fig. 6). We therefore presume that neither 
the COL11A1 signature (Kim et  al. 2010) nor our 151-
gene probe set prognostic signature is solely attributable to 
CAFs, but may in fact be expressed by cancer cells.

Three recent in  vitro studies (Cheon et  al. 2014; Janu-
chowski et  al. 2014; Wu et  al. 2015) also provide evidence 
that similar gene sets (collagen/stromal related) may be 
expressed by cancer cells; moreover, two of these investiga-
tions suggest that these signatures are associated with ovarian 
cancer cell chemoresistance. A 10-gene collagen remodeling 
signature linked to poor outcome in serous ovarian cancer 
was induced by transforming growth factor-β1 in two ovar-
ian cancer cell lines (OVCAR3 and A2780) (Cheon et  al. 
2014); nine of these genes overlapped with our 151-probe set 
signature. A comparison of gene expression profiles between 
wild-type and chemoresistant variants of W1 ovarian can-
cer cells identified a 10-gene signature overexpressed in the 
chemoresistant lines, with five of the genes overlapping with 
our signature (Januchowski et al. 2014). COL11A1 was found 
to be upregulated in chemoresistant variants of OVCAR4 and 
IGROV1 cell lines relative to chemosensitive counterparts 
(Wu et  al. 2015); 16 of the 30 genes overexpressed in the 
resistant cells were the same as those in our signature.

Two clinical studies have also implicated a similar 
stromal-related gene signature in ovarian cancer chem-
oresistance (Karlan et  al. 2014; Ryner et  al. 2015). One 
of these reports found that a POSTN-associated signature 
that included seven genes present also in our signature 
was linked to primary chemoresistance in ovarian can-
cer patients (Ryner et  al. 2015); although these authors 
described POSTN expression only in the peritumoral 
stroma, we detected its expression by immunohistochemis-
try in a large subset of analyzed tumors (unpublished).

When we used a signature related to the malignant potential 
of ovarian tumors (Ouellet et al. 2005) to cluster our serous/
undifferentiated cancer samples, we obtained a clustering pat-
tern almost identical like with our 151-probe set signature that 
was entirely due to the expression patterns of, COL11A1 and 
MMP2, the only two genes common to both signatures. Taken 
together, our findings suggest that COL11A1 and co-expressed 
genes may play a significant role in the molecular evolution of 
ovarian tumors from low to highly aggressive, and in acquir-
ing chemoresistance, which could explain the association 
between our 151-probe set signature and patient survival.

Conclusions

We distinguished two clusters of serous ovarian cancers char-
acterized by distinct OS using an unsupervised method of 
microarray data analysis. The two clusters did not derive from 

a high-grade versus low-grade difference in serous carcinomas, 
nor were they related to different histological origins of serous 
ovarian cancers (ovarian vs. fallopian). Our prognostic signature 
comprising 151 probe sets differentially expressed between the 
two clusters included mostly genes that were related to ECM 
structure and functions and immunological response; two of 
these—DSPG3 and LOX—were validated by quantitative PCR 
in the initial and independent sets of ovarian cancer samples and 
were associated with OS and DFS. Interestingly, our prognostic 
signature showed considerable overlap with a recently described 
invasion-associated signature related to stromal desmoplastic 
reaction that emerged in advanced stages of different cancers 
and was linked to CAFs infiltration, although our tumor samples 
had a stromal component of <15 %. We also found that ovarian 
cancer cells from established lines express several genes from 
this signature. Therefore, we presume that this gene signature is 
attributable to ovarian cancer cells and may be related to their 
acquisition of chemoresistance, as suggested by other studies.

In comparison with our previous study, we demonstrated 
that unsupervised methods of microarray data analysis 
are more effective than supervised methods in identifying 
intrinsic, biologically sound sources of variability. Thus, 
it seems that they should be more widely applied in the 
molecular profiling of cancer. We also confirmed our previ-
ous observation that histological type of the tumor is the 
greatest source of variability in ovarian cancer and may 
interfere with analyses of other features. Thus, it is reason-
able to use histologically homogeneous groups of ovarian 
cancer samples in microarray experiments.
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