Skip to main content
Log in

Two cases with transient lipoprotein lipase (LPL) activity impairment: evidence for the possible involvement of an LPL inhibitor

  • Original Paper
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Two independent severe hypertriglyceridemic infants with transiently impaired lipoprotein lipase (LPL) activity were observed and the causes were explored. Both infants were female, born prematurely with low birth weight and developed hypertriglyceridemia (Fredrickson type V hyperlipidemia: high VLDL and low LDL/HDL) a few months after birth. While mass levels of their post-heparin plasma LPL and apoprotein C-II (apo C-II), a physiological activator of LPL, were normal, their post-heparin plasma LPL activities were remarkably impaired. Both of their mothers' post-heparin plasma LPL activities were slightly or moderately impaired as well, without a decrease in the LPL mass level. No mutations in the genes for LPL and apo C-II were detected in either patient. In an in vitro study with their serum at onset, we could not detect any distinct circulating inhibitors for LPL. There was no data supporting infection or autoimmune diseases, which might have an impact on LPL activity, during the follow-up period. Levels of their plasma triglyceride (TG) and total cholesterol (TC) were decreased quickly by a dietary intervention with medium-chain triglyceride (MCT) milk and kept normal even after stopping the intervention at around age 1 year. However, their low post-heparin LPL activity persisted and returned to normal at around age 2 years. Their low HDL cholesterol levels persisted even after recovery of the TG and TC levels, although lecithin:cholesterol acyltransferase (LCAT) and cholesterol-ester-transfer protein (CETP), two key enzymes of HDL metabolism, were normal throughout the course. The exact reasons why their post-heparin LPL activities were impaired for a certain period and why their HDL cholesterol levels have remained low are still unclear. Conclusion: Transiently impaired LPL activity with no defect in LPL enzyme induced severe hypertriglyceridemia in infants. The transient occurrence of inhibitor(s) for LPL was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

LPL:

Lipoprotein lipase

HTGL:

Hepatic triglyceride lipase

TG:

Triglycerides

TC:

Total cholesterol

VLDL:

Very low-density lipoprotein

HDL:

High-density lipoprotein

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Benlian P, De Gennes JL, Foubert L, Zhang H, Gagne SE, Hayden M (1996) Premature atherosclerosis in patients with familial chylomicronemia by mutations in the lipoprotein lipase gene. N Engl J Med 335: 848–854

    Article  CAS  PubMed  Google Scholar 

  2. Berger GM (1986) Clearance defects in primary chylomicronemia: a study of tissue lipoprotein lipase activities. Metabolism 35: 1054–1061

    Article  CAS  PubMed  Google Scholar 

  3. Brunzell JD, Miller NE, Alaupovic P, Hilaire RJ, Wang CS, Sarson DL, Bloom SR, Lewis B (1983) Familial chylomicronemia due to a circulating inhibitor of lipoprotein lipase activity. J Lipid Res 24: 12–19

    CAS  PubMed  Google Scholar 

  4. Bucher H, Rampini S, James RW, Pometta D, Funke H, Wiebusch H, Assmann G (1977) Marked changes of lipid levels during puberty in a patient with lipoprotein lipase deficiency. Eur J Pediatr 156: 121–125

    Article  Google Scholar 

  5. Chait A, Brunzell JD (1983) Severe hyperlipidemia: role of familial and acquired disorders. Metabolism 32: 209–214

    Article  CAS  PubMed  Google Scholar 

  6. Chait A, Robertson HT, Brunzell JD (1981) Chylomicronemia syndrome in diabetes mellitus. Diabetes Care 4: 343–348

    Article  CAS  PubMed  Google Scholar 

  7. Das HK, Jackson CL, Miller DA, Left T, Breslow JL (1987) The human apolipoprotein C-II gene sequence contains a novel chromosome 19-specific minisatellite in its third intron. J Biol Chem 262: 4187–4193

    Google Scholar 

  8. Drash AL (1991) Genetic forms of dyslipidemia in children. Ann N Y Acad Sci 623: 222–238

    Article  CAS  PubMed  Google Scholar 

  9. Feoli-Fonseca JC, Levy E, Godart M, Lambert M (1998) Familial lipoprotein lipase deficiency in infancy: clinical, biochemical, and molecular study. J Pediatr 133: 417–423

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Otin AL, Civeira F, Peinado-Onsurbe J, Gonzalvo C, Llobera M, Pocovi M (1999) Acquired lipoprotein lipase deficiency associated with chronic urticaria. A new etiology for type I hyperlipoproteinemia. Eur J Endocrinol 141: 502–505

    Article  CAS  PubMed  Google Scholar 

  11. Glueck CJ, Levy RI, Glueck HI, Gralnick HR, Greten H, Fredrickson DS (1969) Acquired type I hyperlipoproteinemia with systemic lupus erythromatosis, dysglobulinemia, and heparin resistance. Am J Med 47: 318–324

    Article  CAS  PubMed  Google Scholar 

  12. Glueck CJ, Lang J, Hamer T, Tracy T (1994) Severe hypertriglyceridemia and pancreatitis when estrogen replacement therapy is given to hypertriglyceridemic women. J Lab Clin Med 123: 59–64

    CAS  PubMed  Google Scholar 

  13. Goldberg IJ, Peterniti JR Jr, Franklin BH, Ginsberg HN, Ginsberg-Fellner F, Brown WV (1983) Transient lipoprotein lipase deficiency with hyperchylomicronemia. Am J Med Sci 286: 28–31

    Article  CAS  PubMed  Google Scholar 

  14. Gouni I, Oka K, Etienna J, Chan L (1993) Endotoxin-induced hypertriglyceridemia is mediated by suppression of lipoprotein lipase at a post-transcriptional level. J Lipid Res 34: 139–146

    CAS  PubMed  Google Scholar 

  15. Hayashi R, Tajima S, Yamamoto A (1986) Purification and characterization of lipoprotein lipase from post-heparin plasma and its comparison with purified bovine milk lipoprotein lipase. J Biochem 100: 319–331

    Article  CAS  PubMed  Google Scholar 

  16. Hixon JE, Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 31: 545–548

    Google Scholar 

  17. Ikeda Y, Takagi A, Ohkaru Y, Nogi K, Iwanaga T, Kurooka S, Yamamoto A (1990) A sandwich-enzyme immunoassay for the quantification of lipoprotein lipase and hepatic triglyceride lipase in human post-heparin plasma using monoclonal antibodies to the corresponding enzymes. J Lipid Res 31: 1911–1924

    CAS  PubMed  Google Scholar 

  18. Irevius PH, Ostlund-Lindqvist AM (1976) Lipoprotein lipase from bovine milk. Isolation procedure, chemical characterization, and molecular weight analysis. J Biol Chem 251: 7791–7795

    Google Scholar 

  19. Jackson RL, Ponce E, McLean LR (1980) Comparison of the triacylglycerol hydrolase activity of human post-heparin plasma lipoprotein lipase and hepatic triacylglycerol lipase: a monolayer study. Biochemistry 25: 1166–1170

    Article  Google Scholar 

  20. Kato H, Nakanishi T, Arai H, Nishida HI, Nishida T (1989) Purification, microheterogeneneity, and stability of human lipid transfer protein. J Biol Chem 264: 4082–4087

    CAS  PubMed  Google Scholar 

  21. Kihara S, Matsuzawa Y, Kubo M, Nozaki S, Funahashi T, Yamashita S, Sho N, Tarui S (1989) Autoimmune hyperchylomicronemia. N Engl J Med 320: 1255–1259

    Article  CAS  PubMed  Google Scholar 

  22. Kiyohara T, Kiriyama R, Zamma S, Inazu A, Koizumi J, Mabuchi H, Chichibu K (1998) Enzyme immunoassay for cholesteryl ester transfer protein in human serum. Clin Chim Acta 271: 109–118

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi J, Sasaki N, Tashiro J, Inadera H, Saitoh Y, Yoshida S (1993) A missense mutation (Ala334➠Thr) in exon 7 of the lipoprotein lipase gene in a case with type I hyperlipidemia. Biochem Biophys Res Commun 191: 1046–1054

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi J, Inadera H, Fujita Y, Talley G, Morisaki N, Yoshida S, Saitoh Y, Fojo SS, Brewer HB Jr (1994) A naturally occurring mutation at the second base of codon asparagine 43 in the proposed N-linked glycosylation site of human lipoprotein lipase: in vivo evidence that asparagine 43 is essential for catalysis and secretion. Biochem Biophys Res Commun 205: 506–515

    Article  CAS  PubMed  Google Scholar 

  25. Minnich A, Kessling A, Roy M, Giry C, DeLangavant G, Lavigne J, Lussier-Canan S, Davingnon J (1995) Prevalence of alleles encoding defective lipoprotein lipase in hyper-triglyceridemic patients of French-Canadian descent. J Lipid Res 36: 117–124

    CAS  PubMed  Google Scholar 

  26. Monsalve MV, Henderson H, Roederer G, Julien P, Deeb S, Kastelein JJ, Peritz L, Davlin R, Bruin T, Murthy MR (1990) A missense mutation at codon 188 of the human lipoprotein lipase gene is a frequent cause of lipoprotein lipase deficiency in persons of different ancestries. J Clin Invest 86: 728–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nauck MS, Nissen H, Hoffmann MM, Herwig J, Pullinger CR, Averna M, Geisel J, Wieland H, Marz W (1998) Detection of mutations in the apolipoprotein C-II gene by denaturing gradient gel electrophoresis. Identification of splice site variant apolipoprotein C-II Hamburg in a patient with hypertriglyceridemia. Clin Chem 448: 1388–1396

    Google Scholar 

  28. Nilsson A, Ortqvist E, Lagercrantz H, Nilsson-Ehle P, Henter JI (1996) Transient hypertriglyceridemia of infancy. Acta Paediatr 85: 1508–1510

    Article  CAS  PubMed  Google Scholar 

  29. Nozaki S, Kubo M, Matsuzawa Y, Tarui S (1984) Sensitive non-radioisotopic method for measuring lipoprotein lipase and hepatic triglyceride lipase in human post-heparin plasma. Clin Chem 30: 748–751

    CAS  PubMed  Google Scholar 

  30. Peterson J, Fujimoto WY, Brunzell JD (1992) Human lipoprotein lipase: relationship of activity, heparin affinity, and conformation as studied with monoclonal antibodies. J Lipid Res 33: 1165–1170

    CAS  PubMed  Google Scholar 

  31. Shirai K, Matsuoka N, Wong P, Fujioka S, Saito Y, Yoshida S (1989) Dyslipoproteinemia and an inhibitor of lipolytic enzymes in Weber-Christian disease. Jpn J Med 23: 366–373

    Article  Google Scholar 

  32. Streicher R, Geisel J, Weisshaar C, Avei H, Oette K, Muller-Wieland D, Knote W (1996) A single nucleotide substitution in the promotor region of the apolipoprotein C-II gene identified in individuals with chylomicronemia. J Lipid Res 37: 2599–2607

    CAS  PubMed  Google Scholar 

  33. Yamamura T, Sudo H, Ishikawa K (1979) Familial type I hyperlipoproteinemia caused by apolipoprotein C-II deficiency. Atherosclerosis 34: 53–65

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nagasaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagasaka, H., Kikuta, H., Chiba, H. et al. Two cases with transient lipoprotein lipase (LPL) activity impairment: evidence for the possible involvement of an LPL inhibitor. Eur J Pediatr 162, 132–138 (2003). https://doi.org/10.1007/s00431-002-1133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-002-1133-3

Key words

Navigation