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Abstract
Network models based on structural connectivity have been increasingly used as the blueprint for large-scale simulations of 
the human brain. As the nodes of this network are distributed through the cortex and interconnected by white matter path-
ways with different characteristics, modeling the associated conduction delays becomes important. The goal of this study 
is to estimate and characterize these delays directly from the brain structure. To achieve this, we leveraged microstructural 
measures from a combination of advanced magnetic resonance imaging acquisitions and computed the main determinants 
of conduction velocity, namely axonal diameter and myelin content. Using the model proposed by Rushton, we used these 
measures to calculate the conduction velocity and estimated the associated delays using tractography. We observed that 
both the axonal diameter and conduction velocity distributions presented a rather constant trend across different connec-
tion lengths, with resulting delays that scale linearly with the connection length. Relying on insights from graph theory 
and Kuramoto simulations, our results support the approximation of constant conduction velocity but also show path- and 
region-specific differences.

Keywords  Brain networks · MRI · White matter · Conduction delays · Microstructure

Introduction

Network models offer a powerful framework to study struc-
ture–function relationships in the human brain. Previous 
studies have highlighted similarities between structural and 
functional connectivity patterns (Honey et al., 2010; van den 
Heuvel et al., 2009), and simulation-based work has sug-
gested the idea that structure can support and shape multiple 

functional configurations (Cabral et al., 2017). From the 
point of view of combining local dynamics with global inter-
actions, these simulations can be logically separated into 
two components (Petkoski & Jirsa, 2019; Sanz-Leon et al., 
2015): first, an oscillator used to model the behavior of neu-
ronal populations in the gray matter; second, a set of rules 
describing how these oscillators interact with each other. 
The latter is where the structural connectivity estimated 
from white matter pathways comes into play. A fundamental 
and simple approach is given by the Kuramoto model (Kura-
moto, 1984), that assumes the activity of a local system can 
be represented by their phase alone (Breakspear et al., 2010). 
In applications to brain dynamics, the Kuramoto model has 
been used both for slow oscillations as in metabolic activity 
(as estimated by functional magnetic resonance imaging), 
and fast ones as in electrical activity (as measured for exam-
ple through magnetoencephalography) (Breakspear, 2017).

As the neuronal populations are distributed in space 
(i.e., through the cortical surface) and are interconnected 
by bundles of different length and with different features 
(e.g., myelination), assumptions about conduction velocity 
and therefore delays along those connections are needed 
to study global brain dynamics. As several studies focused 
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on slow oscillations, a common assumption is that such 
conduction delays are negligible (de Lange et al., 2019; 
Gollo et al., 2017; Schmidt et al., 2015). In studies focused 
on faster oscillations, the conduction velocity is usually 
assumed to be constant, and therefore the delays scale line-
arly with the connection lengths (Cabral et al., 2011,2014). 
An alternative approach assumes instead that the delays 
are constant (Roberts et al., 2019), with higher conduction 
velocity compensating for longer connections. The valida-
tion of these assumptions is nontrivial: directly measuring 
delays not only involves invasive recordings with direct 
electrical stimulation (Silverstein et al., 2020), but also an 
extensive sampling effort over the whole cortex. An addi-
tional factor to consider is where the recordings and the 
stimulation are performed, as interfacing with the cortical 
surface leads to longer delays compared to directly access-
ing the white matter pathways (Shimono & Hatano, 2018).

Microstructural models fitted to magnetic resonance 
imaging (MRI) data provide a non-invasive alternative to 
directly measuring conduction delays. Such models exploit 
the sensitivity of MRI to biophysical quantities to estimate 
microscopic features of the neural tissue, and some of these 
features are determinants of conduction velocity. The first 
and fundamental determinant is the axonal diameter, as in 
myelinated axons conduction velocity is proportional to the 
inner (i.e., without accounting for the myelin sheath) diam-
eter. Using diffusion MRI and ultra-high gradients (Huang 
et al., 2020; Jones et al., 2018), it is possible to estimate the 
axonal diameter in the human brain (at least for the larg-
est ones), and recent studies have shown measures in line 
with the underlying histology (Huang et al., 2020; Veraart 
et al., 2020) and with good scan-rescan reliability (Veraart 
et al., 2021). Another important determinant of conduction 
velocity is the myelin content. The presence of the myelin 
sheath itself not only changes conduction dramatically, but 
also its amount increases velocity non-linearly (Drakesmith 
et al., 2019; Rushton, 1951). The specific contribution of 
myelin depends on the so-called g-ratio, which is the ratio 
between the inner and the outer diameter of the myelinated 
axon. While myelin indirectly influences diffusion phenom-
ena, diffusion MRI is not specific to myelin content (Beau-
lieu, 2002), and therefore other techniques are required 
for quantitative measures. Fortunately, myelin influences 
several MRI-based measures (Piredda et al., 2021), includ-
ing longitudinal and transverse relaxation rates, as well as 
magnetization transfer. These measures have generally been 
shown to be sensitive to myelin content according to the his-
tological ground truth (Mancini et al., 2020). Using axonal 
diameter and myelin content measures, it is then possible 
to estimate the conduction velocity through single-neuron 
models (Arancibia-Cárcamo et al., 2017; Richardson et al., 
2000) or through more simplified ones, such as the Rushton 

model (Rushton, 1951) or the Waxman model (Waxman & 
Bennett, 1972).

Leveraging these advanced MRI measures, in this study 
we aim to define whole-brain structural connectivity in 
terms of conduction delays, as estimated from microstruc-
tural measures. Our goal is first to characterize the conduc-
tion velocity and delay distributions as a function of the 
related connection lengths, and then to assess conduction 
delay approximations currently used in the literature.

Results

We estimated a rich set of structural connectivity patterns in 
a group of healthy volunteers combining tractography and 
several microstructural measures: the axonal diameter, esti-
mated from ultra-high gradient diffusion data using a spheri-
cal mean model (Fan et al., 2020); the myelin volume frac-
tion, estimated as the macromolecular tissue volume (MTV) 
(S. Berman et al., 2018; Mezer et al., 2013); the g-ratio, 
computed using the approach proposed by Stikov and col-
leagues (Stikov et al., 2015); and finally, the conduction 
velocity, computed from the axonal diameter and the g-ratio 
(a relative measure of myelination) using the Rushton model 
(Rushton, 1951). All these measures were mapped onto the 
corresponding tractograms and subsequently used to weight 
the respective connectivity matrices, based on regions of 
interest (ROIs) from the Desikan-Killiany (Desikan et al., 
2006) and the Lausanne (Cammoun et al., 2012) atlases, 
which were averaged to obtain group-level connectivity. 
Conduction delays were computed at the subject level as 
the ratio between the average connection length and the cor-
respondent average conduction velocity for each connection.

As the first fundamental step, we characterized the rela-
tionships between each microstructural measure along a 
connection and its respective length (Fig. 1). Looking at 
the axonal diameter distribution as a function of connection 
length, we observed that most connections (83.95%) have an 
average diameter between 3 μm and 4 μm, with only very 
short connections (shorter than 0.05 m) presenting a more 
pronounced variability. Regarding the relationship between 
axonal diameter and myelin content (Fig. 2), we observed 
a linear trend between the g-ratio and the diameter (linear 
regression R2: 0.4263). Interestingly, when looking at the 
myelin volume fraction, which is an absolute measure of 
myelin, the trend disappears.

We then characterized the conduction velocity esti-
mated using the Rushton formula in terms of connection 
length (Fig. 1—middle). The trend is very similar to the 
one between axonal diameter and length (Pearson’s correla-
tion coefficient: 0.8317; the relationships between conduc-
tion velocity and, respectively, axonal diameter and g-ratio 
are showed in Figure S1), where for most connections the 
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Fig. 1   Distributions of the 
axonal diameter (top), conduc-
tion velocity (middle) and delay 
(bottom) as a function of the 
connection length. Although 
the conduction velocity takes 
into account both the diameter 
and the myelin content, the plot 
strongly resembles the diameter 
one. Since the delay is the ratio 
between the length and the 
conduction velocity, the overall 
constant velocity trend results in 
a linear relationship. Each point 
in the scatterplots represents a 
connection in the group network
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velocity distribution follows a constant trend. As a result, 
the conduction delay shows a highly linear relationship with 
the connection length (linear regression R2: 0.9635), with 
an angular coefficient equal to 0.07447. These trends were 
conserved when using a denser parcellation scheme such as 
the Lausanne atlas (Figure S2), and also at the single-subject 
level (Figure S3-S7).

The reciprocal of the angular coefficient from the length-
delay relationship provides an estimated conduction velocity 
of 13.42 m/s. Using this value, we computed a delay distri-
bution on the basis of the observed connection lengths under 
the assumption of fixed conduction velocity. In this way, we 
were able to compare the differences with the actual delay 
distribution computed from the axonal diameter values. 
For this comparison, we started analyzing path measures 
borrowed from the field of graph theory (Fig. 3). We first 
computed the shortest paths of the network between each 
pair of nodes for the two delay distributions. Despite being 
qualitatively similar, the delay distribution based on con-
stant velocity shows shorter paths (25–50%) for subcortical 
connections. Taking into account the betweenness centrality 
for all the nodes of the network, we see both examples of 
underestimation and overestimation when comparing fixed 
conduction velocity with the estimated velocity distribution.

The final question we wanted to answer is about a more 
general dynamical behavior using the delay distributions: 
do these edge- and node-specific differences lead to a sub-
stantial difference when we simulate oscillation phenom-
ena? To answer this question, we used the Kuramoto model 
(Kuramoto, 1984). In this model, each brain region is rep-
resented as an oscillator and characterized mainly by its 
phase (Breakspear et al., 2010). Each oscillator adjusts its 
own phase according to the phases of the other oscillators 
through the existing connections between them. Although 
the original formulation of the Kuramoto model does not 

assume delays in the interactions between oscillators, sub-
sequent iterations explored the effect of such delays (Rod-
rigues et al., 2016; Yeung & Strogatz, 1999). Leveraging 
this delay formulation, we computed both global synchrony 
and metastability measures for a range of coupling factors 
(Fig. 4). We observed negligible differences between mod-
els based on either delay estimation, with both distributions 
leading to very similar synchronization patterns: the global 
synchrony measures show the critical regime (i.e., where the 
oscillators become rapidly synchronized) for the same cou-
pling factor values, and likewise the metastability measures 
reach their peak in the same range.

Discussion

In this work, we leveraged microstructural measures esti-
mated from MRI to study the conduction delay distribution 
in the whole-brain structural network. Our approach focused 
on conduction velocity and its main two determinants: the 
axonal diameter and the g-ratio (Drakesmith et al., 2019). 
The related MRI-based measures have received a lot of 
attention over the years, and several studies focused on their 
validation using histology as ground truth (Mancini et al., 
2020; Veraart et al., 2020), and on their potential use as 
biomarkers in pathology (Yu et al., 2019). Previous studies 
have started studying the relationship between conduction 
properties and MRI-based measures in two specific path-
ways, the corpus callosum (S. Berman et al., 2019; Horow-
itz et al., 2015) and the optic radiation (Shai Berman et al., 
2020; Takemura et al., 2020; You et al., 2019). To the best 
of our knowledge, this is the first attempt to combine them to 
estimate conduction velocity and delay distributions across 
the whole brain.

Fig. 2   Axonal diameter distributions as a function of the g-ratio (left) and MTV (right). The g-ratio and the diameter have a pronounced linear 
relationship, while MTV (which is an absolute measure of myelin) does not present a clear trend
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To understand the conduction delay distribution in 
terms of its determinants, we first described how each 
microstructural measure and the resulting conduction 
velocity change as a function of connection length. We 
observed that both the axonal diameter and the conduction 
velocity follow an overall constant trend, and therefore, the 
computed conduction delays showed a remarkably linear 
relationship with the connection length. Not only does this 
result support the approximation of constant conduction 
velocity used in several computational studies (Cabral 
et al., 2011, 2014), but it is also in line with the few stud-
ies that quantified delays through invasive recordings, in 
macaques (Shimono & Hatano, 2018) and in humans (Sil-
verstein et al., 2020). Specifically, Shimono and Hatano 
relied on existing electrocorticography (ECoG) datasets 
to estimate cortico-cortical delays (Shimono & Hatano, 
2018), while Silverstein and colleagues used direct electri-
cal stimulation in concurrency with recording intracranial 
electroencephalography (iEEG) (Silverstein et al., 2020). 
Given this qualitative agreement, it becomes clear that for 
quantitative predictions the next step for computational 

studies is defining a rigorous method to set either the pro-
portionality constant used to estimate conduction velocity 
or, equivalently, the approximate constant velocity.

It is important to place the microstructural MRI measures 
in the appropriate context. Despite the use of an ultra-high 
gradient MRI scanner, we still have to deal with the diffusion 
resolution limit dictated by the current hardware (Huang 
et al., 2015; Jones et al., 2018). Specifically, with gradients 
of 300 mT/m, we are able to measure axons with a diameter 
of 2–3 μm (Drobnjak et al., 2016; Nilsson et al., 2017). In 
line with this limit, further MRI simulations for two specific 
microstructural approaches, AxCaliber (Drakesmith et al., 
2019) and the spherical mean model (Fan et al., 2020), 
showed larger estimation errors for smaller axons. These 
results prevent current approaches to fully characterize the 
axonal diameter distribution in the central nervous system, 
but ultra-high gradient MRI still allows us to study the upper 
tail of such distribution. Histological validation work from 
Veraart and colleagues (Veraart et al., 2020) showed that 
we are sensitive to the fourth order moment of the axonal 
diameter distribution, and therefore we are only taking into 

Fig. 3   Comparisons between conduction delay distribution with the 
constant velocity approximation using graph measures: the shortest 
paths for the delay distribution (top-left) are distributed similarly to 
the constant velocity case (top-middle), but in terms of quantitative 
differences there are pronounced mismatches for subcortical connec-
tions (top-right); similarly, the betweenness centrality of each node 

(bottom) shows cases of both underestimation and overestimation. 
The ROIs are detailed in the supplementary material (Table S1). On 
the difference matrix we highlighted the left (LH) and right (RH) 
intra-hemispheric connections (dashed lines) as well as the subcorti-
cal (SC) connections (dotted lines)
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account the largest axons. It follows that in these distribu-
tions most axons have a much smaller diameter and very 
few axons have the large ones we are sensitive at ultra-high 
gradients. Nevertheless, such large axons result in high con-
duction velocity, and therefore play an important role the 
propagation of faster oscillations (Ivanov et al., 2019). For 
a complete characterization of conduction phenomena in the 
brain, we would instead need a conduction velocity distribu-
tion for each connection. A similar limitation holds for the 
relative myelin content, the g-ratio: the so-called “aggre-
gate” (i.e. voxel-level) g-ratio is approximately axon-area 

weighted (Campbell et al., 2018; West et al., 2016), and 
therefore larger axons have a greater weight.

There is also another interesting consideration for the 
role of myelin to make: the g-ratio, as estimated from 
MRI, does not seem to visibly alter the overall conduction 
velocity, whose distribution instead closely resembles that 
of the axonal diameter—at least for healthy subjects. This 
is expected: Drakesmith and colleagues (Drakesmith et al., 
2019) already showed through simulations that the g-ratio, 
and therefore the myelin content, seems to have a limited 
role in modulating conduction velocity. While combining 

Fig. 4   Comparisons between 
conduction delay distribu-
tion with the constant velocity 
approximation using simula-
tions based on the Kuramoto 
model: in both cases, the result-
ing global synchrony (top) and 
the metastability (bottom) show 
similar trends over the coupling 
factor range
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the axonal diameter and the g-ratio accounts for the 85.1% 
of the variance in conduction velocity, the g-ratio variance 
contribution is much smaller (around 12%). When using 
both the Waxman and the Rushton models, the largest 
myelin-driven effects on conduction velocity are predicted 
for very large axons (around 7–10 μm) and for very low 
g-ratio values (around 0.4–0.6). However, it is important 
to stress that this limited role may be the result of how we 
currently model conduction phenomena—in most cases 
through single-neuron models (Arancibia-Cárcamo et al., 
2017). As some studies have started to show (H. Schmidt 
et al., 2021; Sheheitli & Jirsa, 2020), the presence of mul-
tiple axons running in parallel and the potential interac-
tions among them may be an important factor to take into 
account. Another limitation is that the Rushton and Wax-
man models (Rushton, 1951; Waxman & Bennett, 1972) 
have been derived from peripheral nerve experiments and 
may have reached their limits when it comes to myelinated 
axons in the brain.

To further explore the validity of the conduction velocity 
approximation, we compared the conduction delay distri-
bution computed from the axonal diameters with the one 
obtained with a constant conduction velocity estimated 
through linear regression. From a network modeling per-
spective, there are some differences for the overall delays 
between regions—as assessed with shortest path lengths—
and for each region’s role in fast connections—as assessed 
with betweenness centrality. Despite these differences, simu-
lating the actual dynamics with the Kuramoto model shows 
remarkably similar results in both cases. We conclude that, 
while the constant velocity approximation can be consid-
ered valid for whole-brain simulations, the observed differ-
ences may play a role when focusing the attention on specific 
regions or pathways.

As we relied on the concept of path for graph-based 
measures, it is necessary to discuss the methodological 
choice of how to define paths in brain networks. Given two 
nodes in a network, there are several approaches to char-
acterize how the network topology constrains any commu-
nication process. Shortest paths have been widely used to 
characterize the brain structure and function (Fornito et al., 
2016), however this approach assumes that each node has a 
global knowledge of the network topology—and so far there 
is little evidence that supports this assumption. Alternative 
approaches are diffusion processes and navigation, relying 
on the assumptions that communication processes are based, 
respectively on dispersive information flows (Mišić et al., 
2015) and on greedy routing strategies (Seguin et al., 2018). 
In this study, we decided to rely on shortest paths as our goal 
was to approximate the shortest delay between two given 
regions for both the cases of estimated delay distribution 
and fixed conduction velocity.

Despite the overall agreement with primate electrophysi-
ological studies, there is a discrepancy with rodent studies 
reporting constant delays in subcortico-cortical connections 
(Pelletier & Paré, 2002; Salami et al., 2003). In a study on 
thalamo-cortical connections (Salami et al., 2003), Salami 
and colleagues showed that stimulating the ventrobasal 
nucleus of the thalamus in ex vivo mice brain tissue evoked 
cortical responses with the same delays as stimulating the 
white matter between the thalamus and the cortex. Intrigu-
ingly, this feature was not present in mice with a lower post-
natal age. These results deserve further investigations, as it is 
not clear if this feature may be limited to specific bundles of 
myelinated axons (Kimura & Itami, 2009). As explained by 
the authors, as a result of development the ventrobasal-white 
matter connection becomes ten times faster and therefore 
becomes negligible compared the ventrobasal-cortical con-
nection. However, this does not tell us if distinct thalamo-
cortical connections, with different lengths, would present 
the same overall delay, as later suggested (Pajevic et al., 
2014). Extensive work on macaque brains from Innocenti 
and colleagues (Innocenti et al., 2013; Tomasi et al., 2012) 
did not report any correlation between diameter and length. 
Other studies reported isochronic properties in rodents for 
the amygdala (Pelletier & Paré, 2002) and the prefrontal 
cortex (McDougall et  al., 2018), but again focusing on 
specific bundles. In any case, at the whole-brain level our 
results point out that constant delays seem unlikely to gener-
ally occur. As we have already discussed in detail, we are 
measuring the largest axons in each bundle and the resulting 
delays scale linearly with the connection length. This result 
implies that the rest of the axons in each bundle—smaller 
and, therefore, slower—would not be able to compensate for 
different connection lengths.

One final limitation we need to disclose is the limited 
number of subjects. As these measures required a dedicated 
ultra-high gradient MRI scanner and a substantial amount 
of scanning time, it is not possible to use any of the cur-
rent publicly available large datasets to estimate the same 
measures. Nevertheless, to further support our conclusions, 
we took into account also the trends observed at the single-
subject level, which replicate the results obtained at the 
group level.

Conclusions

To summarize, using microstructural measures estimated 
from MRI we were able to estimate the conduction veloc-
ity and delay distributions of white matter connections 
across the whole brain. These results support in general 
the current approximation of constant conduction veloc-
ity for simulation purposes, but also suggests that veloc-
ity distribution may contribute to provide a more detailed 
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picture for specific areas and pathways. Overall, leveraging 
microstructural measures has the potential to further refine 
network models of the brain.

Methods

Data acquisition and general pre‑processing

Fourteen healthy subjects (6/8  M/F, mean age/SD: 
40.92/13.88) were scanned using a dedicated ultra-high 
gradient MRI scanner (Magnetom Connectom; Siemens, 
Erlangen, Germany), with a maximum gradient strength 
of 300 mT/m and a maximum slew rate of 200 T/m/s. The 
protocol included (Yu et al., 2019):

–	 T1-weighted multi-echo acquisition (MPRAGE; 1-mm 
isotropic resolution; TEs = 1.15, 3.03, 4.89, 6.75 ms; 
TR = 2530 ms; TI = 1100 ms; parallel imaging accel-
eration factor R = 3, flip angle: 7°);

–	 Multi-shell diffusion-weighted acquisition (spin-echo 
single-shot EPI sequence; 2-mm isotropic resolution; 
TE = 77 ms; TR = 3600 ms; R = 2; anterior-to-posterior 
encoding; diffusion gradient pulse duration: 8 ms; dif-
fusion times: 19 ms, 49 ms; 16 b-values, applied in 32 
directions for b-values < 2300 s/mm2 and 64 directions 
for b-values > 2300 s/mm2; maximum b-value 17,800 s/
mm2; 5 b = 0 volumes acquired with reversed-phase 
encoding direction);

–	 MTV acquisition (multiple flip angle spoiled gradient-
echo 3D-FLASH sequence; 1-mm isotropic resolution; 
TE = 2.74; TR = 20 ms; flip angles: 4°, 10°, 20°);

–	 B1 mapping, performed using actual flip angle imag-
ing, which was performed with a dual TR steady-state 
gradient-echo sequence (flip angle 53 degrees, TR = 11 
and 33  ms, TE = 4.93, FOV 192 × 192 × 168  mm, 
matrix size = 64 × 64 × 56).

The study was approved by the Mass General Brigham 
institutional review board and is compliant with the Health 
Insurance Portability and Accountability Act guidelines. 
All participants provided written informed consent.

The pre-processing of the data, already described in a 
previous study (Yu et al., 2019), included: correcting dif-
fusion data for gradient nonlinearity; processing diffusion 
data with the FSL tools topup and eddy to correct for, 
respectively, susceptibility- and eddy current-induce dis-
tortions; correcting MTV data for B1 inhomogeneity; rigid 
alignment of MTV and diffusion data to the T1-weighted 
volumes.

Microstructural measures estimation

To estimate axonal diameter and the related tissue com-
partments, we relied on the spherical mean model (Fan 
et al., 2020; Kaden et al., 2016). Briefly, a three-com-
partment model was incorporated into the spherical mean 
framework to estimate: the axonal diameter; the relaxa-
tion-weighted restricted (fr) and hindered (fh) volume frac-
tions; and the free water diffusion (fcsf) volume fraction. 
More details are provided in a previous study (Fan et al., 
2020).

The myelin content was estimated from the MTV data 
(Mezer et al., 2013) and calculated as:

where PDf represents the proton density of free water. 
We then combined myelin and diffusion-based measures 
to compute the g-ratio. Assuming that MTV approximates 
MVF (S. Berman et al., 2018; Duval et al., 2017), we com-
puted the axonal volume fraction as:

The g-ratio was then calculated as proposed by Stikov 
and colleagues (Stikov et al., 2015):

Once all the volumes were in the diffusion space, we 
computed a voxel-wise measure of conduction velocity 
using the formula proposed by Rushton (Rushton, 1951):

where k is a proportionality constant. We chose this 
model as it has shown the highest agreement with single-
neuron simulations (Drakesmith et al., 2019). On the basis 
of those simulations, we set k to 7⋅106 s−1.

Structural connectivity

The T1-weighted data were processed using FreeSurfer 
(version 6.0) for tissue classification (Dale et al., 1999) 
and parcellation with the Desikan-Killiany atlas (Desikan 
et al., 2006) (85 ROIs, including cortical and subcortical 
areas, the cerebellum and the brainstem). As an additional 
parcellation scheme, the Lausanne atlas (Cammoun et al., 
2012) was used (scale 250, with 463 ROIs), reconstructed 
from the FreeSurfer output by means of the EasyLaus-
anne tool (https://​github.​com/​mattc​ieslak/​easy_​lausa​

MTV = 1 −
PD

PDf

AVF = (1 −MTV) × (1 − fcsf ) × fr

g =

√

1

1 +
MTV

AVF

v = k ∙ d ∙
√

−lng

https://github.com/mattcieslak/easy_lausanne
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nne—commit hash 86892c9), a stripped-down version of 
the Connectome Mapper (Daducci et al., 2012).

For structural connectivity purposes, we used the sub-
set of the diffusion data acquired with a diffusion time of 
49 ms and with the following b-values: 0, 2300, 4250. To 
align the anatomical parcellation to the diffusion data, the 
boundary-based registration (BBR) (Greve & Fischl, 2009), 
as implemented in FSL FLIRT (version 6.0), was used to 
estimate a rigid transformation from the diffusion space to 
the anatomical space. Using the inverse of this transforma-
tion, the anatomical data was aligned with the diffusion data. 
For subsequent fiber orientation reconstruction and stream-
line tracking, multi-tissue multi-shell constrained spherical 
deconvolution (Jeurissen et al., 2014) and anatomical-con-
strained tractography (Smith et al., 2012) as implemented in 
MRtrix3 (version 3.0.0) (Tournier et al., 2019) were used, 
with the following parameters: probabilistic algorithm 
(iFOD2); backtracking; cropping at the interface between 
white matter and gray matter; dynamical seeding; minimum 
streamline length of 10 mm; maximum streamline length of 
250 mm; angular threshold of 30 degrees; target number of 
streamlines of 1 million. The microstructural measures of 
interest (axonal diameter, g-ratio, MTV, conduction veloc-
ity) were then mapped to the resulting tractogram using the 
tcksample tool from MRtrix3.

Finally, for each subject we reconstructed six connectiv-
ity matrices, respectively, weighted using: the number of 
streamlines (NOS) interconnecting each pair of regions; 
the average length of the streamline subset from each pair; 
for all the microstructural measures, the average computed 
across each bundle, where a bundle is the set of streamlines 
interconnecting a pair of regions. For subsequent analyses, 
we excluded cerebellum and brainstem ROIs. From the indi-
vidual NOS-weighted connectivity matrices, we estimated a 
group matrix averaging all the connections with more than 
4 streamlines in at least 9 subjects (~ 60% subjects) to find a 
balance between reducing false positives and limiting false 
negatives (de Reus & van den Heuvel, 2013).

In the fundamental characterization of the relationships 
between different measures, we used linear regression as 
implemented in the Python package scikit-learn (version 
0.22.2.post1) (Pedregosa et al., 2011) and Pearson correla-
tion as implemented in the Python package numpy (version 
1.18.4) (Harris et al., 2020). All the figures were generated 
using plotly (version 4.14.3).

Graph measures and Kuramoto simulations

Conduction delays provide a meaningful way to define how 
to weight a network in terms of white matter conduction 
properties. To understand how these delays influence inte-
gration across the whole brain, we relied on the concept 
of shortest path from graph theory: the shortest path in a 

network is the sequence of edges between a given pair of 
nodes with the shorter distance associated – in this spe-
cific case, the distance is defined relying on the delay as a 
weight. For each pair of regions, we computed the short-
est paths using the Dijkstra’s algorithm (Dijkstra, 1959) as 
implemented in the Python package bctpy (version 0.5.2), 
which is based on the Brain Connectivity Toolbox (Rubinov 
& Sporns, 2010). To also clarify the specific role of each 
region in these paths, we computed the betweenness cen-
trality (Freeman, 1977), which represents the proportion 
of shortest paths passing through a given node and can be 
calculated as:

where i is the target node, j and h are any other node in 
the network, ρhj(i) is the number of shortest paths between h 
and j passing through i and ρhj is the total number of shortest 
paths between h and j.

To finally gain an overall picture of the dynamical behav-
ior resulting from the observed delay distributions, we used 
simulations based on the Kuramoto model (Kuramoto, 1984) 
with the introduction of delays (Yeung & Strogatz, 1999).

In this model, each region is represented as an oscillator 
and is coupled to the others on the basis of the connectivity 
matrix. The dynamical behavior can be described through 
the following differential equation:

where θn is phase of the n-th oscillator, ω is the natural fre-
quency, k is the coupling factor, Cnp represents the presence 
(1) or absence (0) of coupling between the oscillators n and 
p accordingly to the connectivity matrix, and τnp is the delay 
between n and p. As one can observe, the natural frequency 
is the same among the oscillators, while the phase charac-
terizes each oscillator and couples the interconnected ones.

To assess the synchronization, we represent the phases 
as a complex variable – z(t) – and we then use the order 
parameter r(t), which is the modulus of z(t):

where r(t) measures phase uniformity and Φ(t) describes the 
phase of the global ensemble (Cabral et al., 2014). This rep-
resentation makes easier to assess global synchronization: 
from the previous formula it follows that r(t) can vary from 
0 (for a heterogeneous system where the oscillators behave 
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incoherently) to 1 (for a fully synchronized system where 
the oscillators have the same phase). We can then derive 
from r(t) two specific measures to describe the synchroniza-
tion of the system of oscillators: the average (over time) of 
r(t), which represents the global synchrony; and the stand-
ard deviation of r(t), which measures how much the overall 
phase coupling fluctuates over time and therefore describes 
the phase configuration stability – the so-called metastabil-
ity (Deco et al., 2017). For a more comprehensive review on 
the Kuramoto model the interested reader is referred to the 
paper by Rodrigues and colleagues (Rodrigues et al., 2016).

To run the simulations, we used a modified version of 
the Network Model Toolbox (original code available here: 
https://​github.​com/​juani​tacab​ral/​Netwo​rkMod​el_​Toolb​
ox; modified version available here: https://​github.​com/​
matte​omanc​ini/​Netwo​rkMod​el_​Toolb​ox; commit hash 
0bccd1e) to easily set the parameters of interest (delay 
distribution, time step, simulation length, random number 
generator seed). We set the natural frequency to 40 Hz and 
the coupling factor in the range between 0.1 and 10 (both 
extremes included) with a step of 0.1: for each coupling 
factor we ran 100 simulations, each simulation going from 
1 ms to 1 s with a time step of 1 ms. To compute the syn-
chronization parameters, we discarded the initial transient 
samples and used the range between 300 and 700 ms (de 
Lange et al., 2019; R. Schmidt et al., 2015).

Single‑subject analysis

One of our goals was to check if the patterns observed 
at the group level were also present at the subject level. 
The main challenge of assessing single-subject struc-
tural connectivity is related to presence of false positives 
(Maier-Hein et al., 2017). To tackle this issue, we used 
COMMIT2 as an additional step in our processing pipe-
line (Schiavi et al., 2020). COMMIT2 (where COMMIT 
stands for ‘convex optimization modeling for microstruc-
ture informed tractography’) leverages anatomical priors 
to filter out spurious streamlines that do not reflect the 
brain fiber organization. Briefly, using the Python pack-
age dmri-commit (version 1.4.5), we first ran COMMIT 
to fit a stick-ball model to the data and to estimate the 
streamline weights without introducing any prior. We then 
subdivided the tractogram in bundles, and for each bundle 
we calculated its individual weight (Schiavi et al., 2020). 
We finally fitted COMMIT2 using the regularization term 
obtained combining the subdivision in bundles, each bun-
dle’s individual weight and the regularization parameter 
λ (set to 5⋅10–4). The resulting filtered tractograms were 
then used as already described to compute the connectiv-
ity matrices – with the only additional step of filtering out 
any bundle with an average diameter smaller than 1 μm.
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