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Abstract The increasing understanding of human brain

functions makes it possible to directly interact with the

brain for therapeutic purposes. Implantable brain computer

interfaces promise to replace or restore motor functions in

patients with partial or complete paralysis. We postulate

that neuronal states associated with gestures, as they are

used in the finger spelling alphabet of sign languages,

provide an excellent signal for implantable brain computer

interfaces to restore communication. To test this, we

evaluated decodability of four gestures using high-density

electrocorticography in two participants. The electrode

grids were located subdurally on the hand knob area of the

sensorimotor cortex covering a surface of 2.5–5.2 cm2.

Using a pattern-matching classification approach four types

of hand gestures were classified based on their pattern of

neuronal activity. In the two participants the gestures were

classified with 97 and 74 % accuracy. The high frequencies

([65 Hz) allowed for the best classification results. This

proof-of-principle study indicates that the four gestures are

associated with a reliable and discriminable spatial repre-

sentation on a confined area of the sensorimotor cortex.

This robust representation on a small area makes hand

gestures an interesting control feature for an implantable

BCI to restore communication for severely paralyzed

people.

Keywords Electrocorticography � High density � Sign
language � Gestures � Decoding

Introduction

With the increasing understanding of human brain func-

tion, there is an increasing interest in using that knowledge

to interact with the brain to treat brain-related disorders.

Electrical stimulation of the brain is used for treatment of

movement disorders (Kalia et al. 2013), pain (Boccard

et al. 2013) and epilepsy (Fridley et al. 2012), as well as to

restore functions such as hearing (Lim et al. 2009) and

vision (Normann et al. 2009). Functions can also be

restored by recording signals from the central nervous

system. The last few decades have seen the emergence of a

translational neuroscience field pursuing the goal of

restoring or replacing motor function in people with

paralysis or lost limbs, using the neuronal activity recorded

over the sensorimotor cortex. This approach is referred to

as ‘Brain-Computer Interface’ (BCI).

The sensorimotor cortex has been of primary interest for

controlling BCI (Pfurtscheller et al. 1993). The underlying

idea is to use the neuronal activity of the sensorimotor

cortex, which was formerly used for muscle control, for

operating an external device. The non-functional peripheral
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motor system is essentially bypassed. The topographic

representation of the sensorimotor cortex (Penfield and

Boldrey 1937) conceptually allows for differentiation

between movements of different body parts based on

neuronal activity.

For decades, scalp electroencephalography (EEG) has

been the most widely used technique for BCIs (Wolpaw

et al. 2002). More recently, there has been an emergence of

intracranial approaches in humans (Zhang et al. 2013). A

high degree of robot arm control was achieved in tetra-

plegic patients using intracranial electrodes (Hochberg

et al. 2012; Collinger et al. 2012; Wang et al. 2013).

Several studies also have shown that it is possible to

decode individual finger (Miller et al. 2009; Kubánek et al.

2009), arm (Ganguly et al. 2009) and complex grasping

movements (Pistohl et al. 2012; Chestek et al. 2013) from

the sensorimotor cortex in non-paralyzed people using

ECoG.

Typically, decoding of movements is pursued for control

of robotic arms to manipulate objects (Chestek et al. 2013).

However, for severely paralyzed patients who have even

lost the ability to speak, communication is the most urgent

function that has to be restored. One possibility to achieve

this is to use arm movements to control keyboard-like

interfaces for communication. Alternatively, arm and hand

movements can be also used directly for communication

analogs to the way it is done in sign languages, where

different hand, arm and body movements have specific

meanings. In the finger spelling alphabet, isolated hand

movements can be used to represent individual letters of

the alphabet. Sign languages, therefore, provide a complete

set of hand movements that can be used for communica-

tion. Decoding these communicative hand gestures from

the sensorimotor cortex could thus provide a ‘cortical

alphabet’, where neuronal patterns associated with those

movements are translated into letters on a screen or for

control of a speech synthesizer (Guenther et al. 2009).

We here test the hypothesis that the topographical

organization of the sensorimotor cortex enables reliable

identification of sign language hand gestures for commu-

nicative BCI. We expand on the results of earlier studies

(Pistohl et al. 2012; Chestek et al. 2013) using small high-

density electrode grids located pre- and postcentrally on the

hand knob area. We have recently shown (Bleichner et al.

2014) that hand gestures can be decoded from a small area

of the sensorimotor cortex using high-field fMRI. Given

the close correspondence between ECoG and fMRI we

have good reasons to believe that the decoding of hand

gestures from a small patch of cortex should be equally

possible using high-density ECoG (Siero et al. 2013). In

this proof-of-principle study we use executed movements

in abled-bodied people. Future studies will have to extend

this to attempted movements in people who cannot move.

Methods

Participants

Two patients implanted with subdural ECoG electrodes for

epilepsy diagnostic purposes participated in this study (see

Table 1). Data acquisition was approved by the medical

ethical board of the University Medical Center Utrecht

(UMC Utrecht) in accordance with the declaration of

Helsinki (2008). All patients signed informed consent

beforehand. Three additional patients were also implanted

with high-density grids but the final position of the high-

density grids proved to be outside the hand region after

closure of the skull. Data from these participants were,

therefore, excluded from the study.

Electrodes

The standard electrode grids (2.3 mm exposed surface,

inter-electrode distance 1 cm center to center; Ad-Tech,

Racine, USA) were placed as usual for clinical purposes.

For a small part of the covered area, standard grids were

replaced with a high-density grid with 32 or 64 contact

points (each with 1.3 mm exposed surface diameter), with

an inter-electrode distance of 3 mm center to center (Ad-

Tech, Racine, USA). Each electrode measures activity

from an estimated 150,000 neurons. The 32-channel high-

density grids had a 4 9 8 electrode layout and covered an

area of 2.5 cm2. The 64-channel grid had an 8 9 8 elec-

trode layout with the four corner electrodes facing the dura,

and covered an area of 5.2 cm2. We will focus only on the

high-density electrode grids.

Electrode location

After implantation we checked how far the high-density

grids covered the pre- or postcentral part of the hand knob

area (Yousry et al. 1997). The electrode locations, acquired

with a post-implantation CT were projected on the T1-

weighted individual anatomy scan (Hermes et al. 2010).

Table 1 Demographic information, and high-density grid location

Patient 1 Patient 2

Grid location Hand knob (pre and

post central)

Hand knob (primarily

post central)

Number of

electrodes

32 60 ? 4

Hemisphere Left Right

Handedness Right Left

Age 19 45

Gender Female Female
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The hand knob area was identified on the axial slices of the

T1 scan, by which the individual differences in the shape of

the hand knob (Caulo et al. 2007) were taken into account.

The location of the hand knob was eventually projected to

the surface of the cortex. Two participants completed the

study with high-density grids covering most of the hand

knob region (Fig. 1).

Task

The participants were asked to execute four hand gestures

(depicted in Fig. 2) always starting and ending with a

common rest position, i.e. a relaxed open hand. The ges-

tures are taken from the American Sign Language finger

spelling alphabet and represent the letters ‘D’, ’F’, ’V’ and

’Y’. The gestures were chosen such that each finger was

extended and bent in at least one of the four gestures. The

participants were naı̈ve to sign language and, therefore,

were briefly familiarized with the four gestures prior to the

experiment. Each gesture was presented on the screen and

stayed there for 5 s. Participants were asked to copy the

depicted gesture immediately after stimulus onset (move-

ment phase I, MP I) and to keep the hand still through the

rest of the trial (static phase). Each gesture was followed by

a rest condition, in which participants were asked to place

their hand back into rest position (movement phase II, MP

II). The participants used the hand contralateral to the grid

implant. Each gesture was presented 10 times. Participant 2

performed the task two times.

Task performance

The actual hand gestures were recorded using a data glove

(5 DT Inc, Irvine, USA). This data glove provided mea-

surements of the bending movement for each finger. The

data glove measurements were inspected visually for cor-

rect bending of the fingers, and for absence of additional

movements. Erroneous trials were excluded from further

analysis, i.e. those in which the gesture was executed

incorrectly, or when additional fingers were moved, or

when a correction of the gesture was necessary. The

movement onset was determined for each trial based on the

first deflection from baseline for one of the fingers that lead

to the execution of the gesture.

Fig. 1 Position of the electrode grid (black) shown on the individual

anatomy. The white lines indicate the central sulcus. The red lines

indicate the location of the hand knob area, as defined on the axial

slices and projected to the surface. For participant 1 the grid was

located on the left hemisphere, for participant 2 the grid was located

on the right hemisphere

F

Y

D

V

Fig. 2 Hand gestures that had to be executed. The gestures differ in

the combinations of the fingers that had to be flexed or (kept)

extended, and in their similarity with each other. ‘D’ and ‘V’ are the

most alike, as they differ only in the flexion of the middle finger. ‘D’

and ‘F’ are ‘inverted’ in terms of the fingers that had to be flexed. ‘Y’

is different from all other gestures as it is the only gesture that does

not require a flexion of the thumb
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ECoG preprocessing

Signals were recorded continuously using a 128-channel

Micromed (Treviso, Italy) system (22 bits, band pass filter

0.15–134.4 Hz) at a sampling frequency of 512 Hz. Off-

line, the data were band-pass filtered to exclude the 50 Hz

line noise and re-referenced to the common average of all

electrodes of the high-density grid.

The data were aligned to movement onset as determined

by the data glove and epoched into segments of 10 s, using

the interval from -2 to 8 s around movement onset. The

interval from -2 to -1 s with respect to movement onset

was used as baseline. The mean power of five frequency

bands (4–8, 8–14, 15–30, 65–95, 70–125 Hz) similar to the

ones used in Kubánek et al. (2009) was computed for each

electrode. Additionally the local motor potential (LMP)

was computed as it was shown to allow for good movement

discrimination (Schalk et al. 2007). For classification the

average band power (amplitude for the LMP) of a 3 s

segment of the first movement phase (from the interval -

1–2 s around movement onset) was used.

Based on previous studies we expected the frequencies

above 65 Hz to be most informative to discriminate the

individual gestures (Miller et al. 2009; Kubánek et al.

2009; Hermes et al. 2012; Chestek et al. 2013). Due to

limitations of the recording system frequencies above

130 Hz could not be considered in the analysis.

Classification

The single trial datawere classified using a pattern (template)

correlation approach with a leave-one-out cross-validation

scheme (Haxby et al. 2001; Misaki et al. 2010). The classi-

fication was performed separately for each frequency band.

The used feature set was the averaged power in the given

frequency band per electrode; for the LMP the average

amplitude was used instead. This resulted in a 1 9 32 or

1 9 60 (depending on grid size) feature vector per trial.

For each gesture the average activation pattern (called

prototype from here on) was computed over trials. The

single trial that was to be classified was left out of the

corresponding average. The single trial feature vector was

consequently correlated with the four prototypes using

Pearson correlation. The single trial was labeled as the

gesture (prototype) it had the highest correlation score

with. This was repeated for each trial. The performance

metric was the number of correctly classified trials (given

as percentage). Confusion matrices were constructed to

provide information about the type of errors made.

To further validate the classification results, a regular-

ized latent discriminant analysis (rLDA) was also applied

to the data, another frequently used classification method

(Misaki et al. 2010; Blankertz et al. 2011). For this we used

the MATLAB extension BCILAB (Kothe and Makeig

2013), with the same feature set as was used for the pattern

correlation analysis.

Statistical threshold

The theoretical chance level of 25 % for classification of

four classes might not be accurate, due to the small and

unbalanced number of trials. We, therefore, computed an

empirical significance level. For this the classification

accuracy was re-computed using randomized labels in

10,000 permutations. From the resulting distribution the

mean and standard deviations were computed. The signif-

icance threshold for our classification results was three

times this standard deviation above the calculated mean.

Minimum number of electrodes and most informative

electrodes

To get an estimate of the minimum number of electrodes

required to achieve optimal classification accuracy and to

get an estimate of the relative contribution of the individual

electrodes, the following procedure was applied: the clas-

sification accuracy was re-computed with decreasing

numbers of electrodes; the set size varied between all

electrodes to an individual electrode. For each set size the

classification was computed using random combinations of

electrodes. It was assured that each electrode was present

in at least 400 combinations. This lead to 12,800 random

electrode combinations for the 32-electrode grid and

24,000 different electrode combinations for the 64 elec-

trode grid. For the set sizes that had less than 12,800 or

24,000 electrode combinations, respectively, all possible

electrode combinations were used. The contribution of

each individual electrode was computed based on the

average classification that was achieved when that elec-

trode was part of the combination.

Temporal information

For more insight into the temporal information in the data

the classification accuracy was re-computed for different

intervals using a moving window of 1 s for the interval

from -1.5 to 8 s around movement onset.

Template similarity and classification confidence

The Pearson correlation of the templates with each other

was computed to get an estimate of the similarity of the

templates. For each split the correlation between templates

was computed and subsequently averaged over splits.

Furthermore, the average correlation score of the individual

trials with the corresponding template (including only

206 Brain Struct Funct (2016) 221:203–216
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correctly classified trials) and non-corresponding templates

(including only correct rejections) was computed. The

difference of the correlation scores between hits and cor-

rect rejections was expressed as percentage difference.

Task activity

For each electrode and frequency band it was determined

whether there was a significant increase in power during the

first movement phase, compared to the pre-movement

baseline (Pearson correlation, alpha level 0.01). For com-

paring the differences in power between the first and second

movement phase, a within trial paired t-test on the maximal

power within the two movement segments was computed.

For comparing power differences between gestures during

the first movement phase a one-way between conditions

ANOVA was conducted per electrode and frequency band.

Results

For both participants the classification scores were above the

empirically determined significant threshold (around 50 %

for all three datasets) for the high frequencies ([65 Hz). The

classification scores for the low frequencies (\30 Hz) and

the LMP were at or just above chance level (Fig. 3a). This

indicates that the grid activation patterns at low frequencies

do not offer discrimination between the gestures on this

spatial scale. In the following the results are presented for

each participant individually for the high frequencies.

Participant 1

The location of the high-density grid of participant 1 cor-

responded optimally with the anatomical location of the

hand knob, covering pre- and postcentral areas to equal

extents (Fig. 1). The gestures were executed with few

errors (Fig. 3b).

Averaged over all gestures there were clear band-spe-

cific responses during hand movement. The high frequen-

cies showed a clear increase in power during the two

movement phases. All (but one) electrodes showed a sig-

nificant movement-related change in power between the

MP I and the pre-movement baseline. For most electrodes

the signal change during MP I was significantly larger

compared to MP II. During the static phase in which the

hand stayed in the gesture position the power in the high

frequencies went back to baseline level. The lower fre-

quencies were clearly suppressed during both movement

periods (Fig. 4).

There were clear differences in power between the

individual gestures for the high frequencies. Two-thirds of

the electrodes (20 out of 32) showed significant (p\ 0.01)

differences between the four gestures (based on a one-way

ANOVA). Approximately one half of those electrodes was

located on the motor cortex and half on the sensory cortex

(Fig. 5a). Some individual electrodes could perfectly dis-

criminate between different gestures for the high frequency

band (e.g. I1 and III5). It is readily apparent that based on

for instance electrode I1 (as well as electrodes I2 and I3)

‘F’ and ‘Y’ could be discriminated perfectly. Electrode III5

on the other hand allowed to discriminate between ‘D’ and

‘F’. Neighboring electrodes sometimes showed the same

preferences, but sometimes exhibited completely different

patterns (e.g. Fig. 5a: electrodes I2 and I3 were similar but

I3 and II4 were different). This suggests that the electrode

distance was not too small and electrode signals (at least

70–125 Hz) were not correlated with each other. Similar

patterns were the result of similar behavior of the neural

ensembles underneath electrodes. There were no electrodes
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Fig. 3 a Classification accuracies for five frequency bands and the

local motor potential (LMP) for the individual datasets. The

empirically determined significance level lay around 50 % for both

participants. The high frequencies ([65 Hz) show good classification

results. The low frequencies (\30 Hz) and the LMP are consistently

at or just above chance level. The classification accuracies are

consistent between the first and second run of participant 2. b Number

of execution errors per gesture and participant. Participant 2 had

problems with performing ‘D’ in both runs. Incorrectly executed

gestures were excluded from analysis
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that are specific to only one gesture, i.e. for differentiating

between four gestures the combination of multiple elec-

trodes were necessary. For the lower frequencies (e.g.

15–30 Hz) fewer electrodes showed a significant difference

between conditions (6 out of 32).

The classification accuracy was 97 % (91 % for rLDA)

using the 70–125 Hz band (Fig. 3a). There were no dif-

ferences in classification accuracies between the gesture

types (Fig. 6). In one case a ‘V’ was misclassified as a ‘Y’.

On average the templates were strongly correlated with

each other (r = 0.88). The strongest correlation was

between ‘V’ and ‘Y’; the lowest correlations were between

‘F’ and all other gestures (Fig. 7, left column). Figure 7

(right column) shows the percent difference of the corre-

lation scores between the trial and the corresponding

template and the non-corresponding templates. The indi-

vidual trials correlated highly with their corresponding

templates (i.e. correct classifications). The ‘F’ trials were

classified with the highest confidence. For ‘V’ and ‘Y’

trials the difference in the correlation score was only

2.5 %. Despite the small difference in the correlation

scores the classifications were still consistently correct.

Some of the electrodes (located pre-and postcentrally)

were more informative for the classification allowing to

differentiate between gestures directly (e.g. electrode I5,

III3 and III8 on Fig. 5a).

Averaged over the different combinations of electrodes

the highest classification scores were reached with all 32

electrodes (Fig. 8). However, there were some combina-

tions of electrodes that allowed comparably high or even

higher classification accuracy with less electrodes (e.g. see

whiskers for most of the set sizes).

The most informative period was at and around move-

ment onset from rest to gesture position (see Fig. 9a). Only

the high frequencies (70–125 Hz) surpassed the signifi-

cance threshold reliably. During the static phase (2–4 s)

and the second movement phase the classification accuracy

is low.

Participant 2

For participant 2, the actual grid location corresponded

reasonably well with the anatomical location of the hand

knob, although the grid was primarily located on the
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Fig. 4 Band specific power (shown for four frequencies bands) over

time relative to pre-movement baseline averaged over all gestures for

each electrode; shown for participant 1. Electrodes are arranged

according to their position on the grid. The thick grey line indicates

the central sulcus. Movement phase I (MP1, first shaded grey area)

and movement phase II (MP 2, second shaded grey area) are

indicated for one electrode
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sensory cortex (Fig. 1). This participant performed two

sessions. In both sessions the participant had great prob-

lems executing the ‘D’ gesture and, therefore, half the ‘D’

trials were excluded (Fig. 3b). Furthermore the participant

moved in some trials during the static phase instead of

keeping the gesture position throughout the trial.

Averaged over all gestures there were clear band-spe-

cific responses during hand movement. The high frequen-

cies show a clear increase in power during the two

movement phases. All (but one) electrodes showed a sig-

nificant movement-related change in power between the

MP I and the pre-movement baseline. For half of the

electrodes the signal change during MPI was significantly

larger compared to MP II. The lower frequencies were

clearly suppressed during both movement periods

(Fig. 10).

The majority of electrodes showed significant differ-

ences between the four gestures (based on a one-way

ANOVA) for the high frequencies. Some individual elec-

trodes could perfectly discriminate between different ges-
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Fig. 5 Averaged band power of

the 70-125 Hz band (a) and the

15–30 Hz band (b) for each
electrode arranged according to

their position on the grid; shown

for participant 1. For each

gesture the power of the

individual trials (black dots) and

the mean over trials (black

diamond) are shown. The black

star in the upper left corner

indicates a significant difference

between conditions (p\ 0.01)
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Fig. 6 Average confusion matrix showing percent classification rate

for each of the gestures for the results of the 70–125 Hz range. For

participant 2 the average classification matrix of the first and second

session is shown. The classification percentage is shown as grey

values as indicated by the bar on the right. The vertical axis shows the

actual label, the horizontal axis shows the predicted label. Perfect

classification is a white diagonal from upper left corner to lower left

corner. For correct classifications the score is also indicated in each

field. Classification was almost perfect for participant 1. For

participant 2 the classification accuracy of ‘D’ was low. Most

classification errors made were either ‘D’ trials that were classified as

‘V’ or ‘Y’, or trials of all other conditions that were misclassified as

‘D’
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tures for the high frequency band (e.g. VI 6, Fig. 11a).

However, the differences between gestures were less pro-

nounced compared to participant 1. Overall the activation

patterns are more alike. There were no electrodes that were

specific to only one gesture. For the lower frequencies (e.g.

15–30 Hz) the differences between gestures all point in the

same direction (Fig. 11b).

The frequency band 70–125 Hz allowed for 72 and

74 % (68 and 78 % for rLDA) average classification for the

two datasets, respectively (Fig. 3a). The problems with

executing the ‘D’ gesture were also reflected in the clas-

sification scores for the individual gestures. The ‘D’ ges-

ture was classified around chance level while the other

three gestures were classified with an accuracy of *80 %

(Fig. 6). Most of the errors made were either misclassifi-

cation of ‘D’ as ‘V’ or ‘Y’ or misclassifications of the other

gestures as ‘D’.

On average the templates were strongly correlated with

each other (r = 0.97). The strongest correlation was

between ‘D’, ‘V’ and ‘Y’; the lowest correlations were

between ‘F’ and all other gestures (Fig. 7, left column).

Figure 7 (right column) shows the percent difference of the

correlation score between the trial and the corresponding

template and the non- corresponding templates. The indi-

vidual trials correlated highly with their corresponding

templates (i.e. correct classifications). The ‘F’ trials were

classified with the highest confidence. For ‘V’ and ‘Y’ the

difference in the correlation score was only 1 % and only

0.5 % for ‘D’ and ‘Y’, and ‘D’ and ‘V’. This explains the

misclassifications between those gestures.

On average the highest classification scores were

reached with all 59 electrodes (Fig. 8). However, there

were some combinations of electrodes that allowed com-

parably high or even higher classification accuracy with

less electrodes (e.g. see whiskers for most of the set sizes).

The most informative period was at and around move-

ment onset (see Fig. 9b, c). Only the high frequencies

(70–125 Hz) surpassed the significance threshold reliably

for both datasets. During the static phase (2–4 s) and the

second movement phase the classification accuracy was

low.

Discussion

We have shown in this study that it is possible to distin-

guish four hand gestures with high accuracy from the

sensorimotor cortex using high-density subdural ECoG

grids with electrodes that each measure from neuronal

populations on the order of 100,000–150,000 neurons

(Shepherd 2003). Participant 1 achieved a 97 % accuracy

and participant 2 a 72–74 % accuracy (in two sessions).

For both participants we found that the high frequencies

([65 Hz) gave the highest classification accuracies which

is in line with previous research (Pistohl et al. 2012;

Chestek et al. 2013). The low frequencies that are com-

monly used for EEG-based BCI as well as the LMP used to

differentiate arm movements using ECoG (Schalk et al.

2007) did not allow to discriminate the four gestures. (Also

the combination of low frequencies with high frequencies

(data not show) did not lead to higher classification accu-

racies in comparison to only using the high frequencies.)

With this finding, we extend the existing literature by

showing that classification is possible using a confined

patch of cortex (the high-density grid covered a small

surface of 2.5–5.2 cm2, 32 electrodes and 64 electrodes,

respectively) over the hand knob area.

In both participants we found that almost all electrodes

showed significant activity for at least one gesture. A

subset of at most two-thirds of the electrodes could have

sufficed to reach similar classification rates as those

obtained with all electrodes. This suggests that eventually a

smaller number of electrodes can be implanted. The chal-

lenge will be to determine where the electrodes should be

prior to implantation.

During the two movement phases there were clear dif-

ferences in power relative to baseline. During the static

phase the power in the high frequencies went back to

baseline for both the precentral as well as the postcentral
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Fig. 7 Left column: similarity of templates with each other expressed

as Pearson correlation. For both participants ‘Y’ and ‘V’ are most

similar to each other, while ‘F’ is the most different from all others.

For participant 2 there is a high correlation of ‘D’ with ‘Y’ and ‘V’

which explains the misclassifications. Right column: similarity of

individual trials with templates. The diagonal shows the average

correlation coefficient of the individual trial with the corresponding

template (i.e. correct classifications). Off- diagonal is the percentage

difference of the correlation coefficient with the not corresponding

templates
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electrodes. This indicates that the high frequency response

is specific for the movement phase itself and less for

keeping the fingers in their position. The power difference

between MP I and MP II is likely due to the complexity of

the movement. While making the gestures during MPI

requires a coordinated action to get all fingers into the right

position, moving back to the baseline condition during MP

II can be achieved by simply relaxing the hand. Decoding

of the gestures was only possible with high accuracies

during MP I. It is apparent that there are no gesture-specific

electrodes (differentiating one gesture from all others) for

both participants, and that neighboring electrodes can show

distinct activation patterns.

While participant 1 performed with 97 % accuracy

above the 90 % criterion that is requested by potential BCI

users (Huggins et al. 2011), participant 2 did not (with

maximal 74 %). Participant 2 appeared to have problems

performing one of the gestures (‘D’). However, incorrectly

executed trials were excluded from the analysis and should,

therefore, not have an effect on the overall classification

rate. When ‘D’ was excluded completely from the analysis

(data not shown) the classification was 85 and 86 %.

Compared to participant 1, participant 2 had considerably

higher correlation scores between the templates indicating

greater similarity between the neural representations. The

gestures that correlated strongest (‘D’ with ‘Y’ and ‘D’

with ‘V’) were misclassified most often. A possible

explanation for the high similarity of the neuronal repre-

sentation of the gestures in participant 2 is the location of

the grid on the postcentral sulcus. While it has been shown

that postcentral gyrus close to the central sulcus does play a

role in motor function (Uematsu et al. 1992), most of the

electrodes in participant 2 were located over the sensory

areas. Based on the work of Sanchez-Panchuelo et al.

(2012) one could expect clear separability of the gestures

based on their differences in sensory feedback (i.e. for each
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Fig. 8 Classification accuracy for variable number of electrodes used

for classification shown for participant 1 (top) and 2 (bottom, first run

shown) for the results of the 70–125 Hz range. For each number of

electrodes the classification accuracy for a random selection of

electrodes was computed. Shown is the median classification score

reached for the set size, the edges of the box are the 25th and 75th

percentiles, the whiskers extend to the most extreme data points not

considered outliers, and outliers are plotted individually (cross).

Classification accuracies increase on average with the number of

included electrodes. As indicated by the whiskers, there is a large

variability in classification accuracy depending on the selection of

electrodes. There are some combinations of electrodes that allow

classification rates as high or even higher than using the total number

of electrodes. This indicates that some electrodes are more informa-

tive than other, that optimal classification rates can be achieved with a

subset of electrodes and even that some electrodes can be detrimental

for the classification accuracy
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gesture a different set of finger segments is touched).

However, there are a couple of factors that interfere with

normal sensory input in our experiment. First, we do not

know how much sensory feedback the participants

received, as we do not know with how much force the

gestures were executed. Second, the fabric of the dataglove

causes unspecific sensory feedback over the entire hand

during each movement. Finally, the dataglove was not tight

fitting, hampering sensory feedback especially at the finger

tips due to excess material. Taken together these factors

might explain the lower discriminability of the gestures to

some degree.

Interestingly, we found some consistency in the repre-

sentation of the gestures between the two participants. For

both participants the ‘Y’ and ‘V’ gestures were the most

alike in terms of their neuronal activity, despite the fact that

they vary considerably in the combination of fingers that

had to be flexed (Fig. 2). Furthermore, the ‘F’ gesture was

the most different from the other gestures in both partici-

pants. Despite the overall high correlation scores between

the templates the trials were sufficiently and consistently

different from each other to be discriminated.

Due to the limited time period available with the par-

ticipants it was not possible to acquire more trials or to test

a larger variety of hand gestures. Nevertheless, there do not

seem to be any methodological limitations to extend the

number of gestures. Chestek et al. (2013) showed in their

study (albeit with mostly standard grids and covering

multiple brain regions) that nine different grasping move-

ments could be discriminated with high accuracy. There-

fore, it can be assumed that more gestures can be

discriminated.

The high classification scores that were reached using a

simple pattern correlation classification (confirmed by

rLDA) show that the underlying neuronal patterns are

highly stable and reproducible, at least for the duration of

the experiment.

The results presented here extend our previous findings

where we have shown that four hand gestures could be

differentiated using high-field fMRI (Bleichner et al.

2014). The size and location of cortex used for classifica-

tion was comparable in both studies. By showing that

classification is also possible using subdural electrode grids

we have taken the next step towards using hand gestures as

control signals for an implantable BCI system for para-

lyzed patients to re-establish communication.

We argue here that the topographical organization of the

hand in the sensorimotor cortex provides a control signal

with many important advantageous characteristics for

implantable communicative BCIs. Sign language provides
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bFig. 9 Classification accuracy over time for participant 1 (a) and

participant 2 (b, c) shown for four frequency bands. Each data point

represents the classification accuracy of a one second segment

(centered at that time point). The blue horizontal bar indicates the

empirically determined significance level. Time zero is movement

onset. The most informative period is the time at and after movement

onset. The high frequencies are the most informative throughout the

entire period
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in principle a complete set of sufficiently distinct gestures

that can serve to communicate. Ideally, if gestures corre-

sponding to the entire alphabet could be identified using the

current method, it would allow a speech-like control signal.

Importantly, we have shown here that a small patch of

cortex, covered with high-density grids, is sufficient to

decode hand movements to a very promising degree of

accuracy and thereby extend the findings by Chestek et al.

(2013). Using high-density instead of standard ECoG grids

facilitates a minimally invasive BCI (Zhang et al. 2013),

with a number of benefits for the patient. Implanting high-

density grids, over a previously identified target area allows

for smaller, minimally invasive surgeries, thereby leading

to shorter hospitalization and reduction of risks and com-

plications, such as epileptic seizures, leakage of cerebro-

spinal fluid, infection, scarification and cosmetic

consideration (Reisch et al. 2013).

In comparison to needle electrodes or microwires, the

average signal of a population of neurons, as measured

with ECoG, may be expected to be more stable over time

and thereby require less re-calibration. This needs to be

verified in further studies. The electrode spacing of 3 mm

(center to center), allows for recording distinctive signals

from neighboring electrodes, which makes it possible to

exploit the fine-grained organization of the sensorimotor

cortex (Sanes et al. 1995; Schieber 2001).

One of the major possible drawbacks of a BCI can be that

the control signal interferes with other tasks that the BCI user

wants to perform (Ramsey et al. 2004). There are several

characteristics of our approach that limit interference with

other cognitive tasks. First, use of gestures as a means of

communication can become automatic, as demonstrated by

for instance deaf people who use it on a daily base. Our

approach is self-paced, and thus does not require the user to

pay attention to externally timed stimuli. This makes it also

interesting for visually impaired patients who are incapable

of controlling their eye gaze (Brunner et al. 2010).

In a previous study we have demonstrated a close cor-

respondence between fMRI measurements and ECoG data

(Hermes et al. 2012; Siero et al. 2013). Those results

indicate that it is possible to optimize the ECoG grid

position with fMRI prior to implantation. The correspon-

dence between fMRI and ECoG also indicates that partic-

ipants can be trained to control a BCI using an fMRI

feedback task prior to electrode implantation. This would

ensure that the patient is capable of performing the task and
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to learn to control a BCI before he undergoes the risk of a

surgery.

Before the current approach can be used to help paralyzed

people, additional steps have to be taken. First, the observed

differences between the first and second dataset make it

necessary to determine precisely the importance of the

localization of the electrodes in functional terms. Second, it

needs to be shown that the results presented here using

executed movements also hold for paralyzed patients.

Obviously, paralyzed patients are incapable of executed

movements. For controlling a BCI using gestures they have

to either imagine (i.e. think to perform the movement) or

attempt (i.e. try to perform the movement) the correspond-

ing movements. Whether imagined or attempted gestures

can be decoded in paralyzed patients remains to be shown.

We have, however, good reasons to believe that it is also

possible to decode attempted gestures in paralyzed patients.

There is hemodynamic and electrophysiological evidence

that the general topographic representation of the primary

motor cortex is largely preserved in tetraplegics after

extensive periods of paralysis (Shoham et al. 2001; Corb-

etta et al. 2002; Sabbah et al. 2002; Cramer et al. 2005;

Hotz-Boendermaker et al. 2008; Mattia et al. 2009, but see

also Yanagisawa et al. 2012).

Furthermore, it has been shown that attempted move-

ments provide a successful control strategy for BCI. Sev-

eral studies (Hochberg et al. 2012; Collinger et al. 2012;

Wang et al. 2013) have shown that the sensorimotor cortex

of paralyzed patients provides sufficient information to

control a robotic arm in several dimensions using attemp-

ted movements. Blokland et al. (2012) have shown that

tetraplegic patients have a better BCI control using

attempted instead of imagined movements.

Given that executed and attempted movements show a

higher resemblance in terms of their pattern of activation

(Sabbah et al. 2002) than imagined and attempted move-

ments, we expect our results to generalize to some degree

to paralyzed patients.

Third, several practical issues need to be solved before our

approach can be taken to paralyzed patients. For efficient

communication it is necessary that gestures following in fast

succession can still be discriminated. Also, the event of false

alarms,where agesture is detecteddespite the fact that the user

did not intend to send that signal, needs to be minimized.

Finally, there are also several important limitations that cur-

rently prevent a completely implantable system based on

intracranial electrodes. At this moment, there are no

implantable systems on the market that are approved for

human use that allow the simultaneous pre-amplification and

wireless transmission of large numbers of channels. Conse-

quently, it is necessary to keep the number of channels limited,

finding a tradeoff between the discriminative power and the

feasibility in terms of signal processing and transmission.

Conclusion

Brain activity patterns generated by four different hand

gestures can be distinguished from a small region of the

sensorimotor cortex. The results of this proof-of-principle

study indicate feasibility of decoding multiple control

states from a small patch of cortex for intracranial BCI.

The optimal location of the electrode grid may be deter-

mined a priori using high-field fMRI and anatomical

landmarks. Although only four gestures were tested, the

high classification rate suggests that good results may be

obtained for larger numbers of gestures when decoding

from this region, bringing the concept of directly decod-

ing internal spelling and of a ‘cortical alphabet’ for BCI

closer.
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