Skip to main content

Advertisement

Log in

Intestinal metaplasia of the sinonasal mucosa adjacent to intestinal-type adenocarcinoma. A morphologic, immunohistochemical, and molecular study

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

It has been hypothesized that the development of sinonasal intestinal-type adenocarcinoma (ITAC) occurs through intestinal metaplasia (IM) of the respiratory and/or glandular epithelium. The aim of this study was to characterize the histological, immunohistochemical, and molecular features of sinonasal IM. Histologic slides from 29 consecutive surgical specimens of ITAC were retrieved. Sections were stained for CDX2, cytokeratin 20 (CK20), MUC2, and p53. The status of TP53 gene exons 4–9 was assessed separately in areas of IM and in ITAC. Foci of IM were detected in eight cases (27.5 %). They were all positive for CK20 and CDX2, while MUC2 was detected in six cases (75 %). In six cases (75 %), the metaplastic foci showed signs of dysplasia, including nuclear enlargement with increased nucleus to cytoplasm ratio, nuclear hyperchromasia, loss of nuclear polarity, and presence of prominent nucleoli. P53 nuclear immunoreactivity was observed in four cases. TP53 gene sequencing was successfully performed in six cases and revealed the same mutation in both IM and ITAC in two cases (c.832C > T and c.215G > C), while another ITAC showed a mutation that was not present in the adjacent IM (c.536A > G). In conclusion, our study suggests a possible clonal relationship between areas of sinonasal IM and ITAC, indicating that IM may represent a precursor lesion of ITAC. Improving the knowledge on the morphological and molecular features of IM is a key step to identify reliable biomarkers to determine the risk of sinonasal ITAC development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Choi HR, Sturgis EM, Rashid A, DeMonte F, Luna MA, Batsakis JG, El-Naggar AK (2003) Sinonasal adenocarcinoma: evidence for histogenetic divergence of the enteric and nonenteric phenotypes. Hum Pathol 34:1101–7

    Article  PubMed  Google Scholar 

  2. Kennedy MT, Jordan RC, Berean KW, Perez-Ordoñez B (2004) Expression pattern of CK7, CK20, CDX-2, and villin in intestinal-type sinonasal adenocarcinoma. J Clin Pathol 57:932–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Vivanco B, Llorente JL, Perez-Escuredo J, Alvarez Marcos C, Fresno MF, Hermsen MA (2011) Benign lesions in mucosa adjacent to intestinal-type sinonasal adenocarcinoma. Patholog Res Int 2011:230147

    PubMed Central  PubMed  Google Scholar 

  4. Lauwers GY (2003) Defining the pathologic diagnosis of metaplasia, atrophy, dysplasia, and gastric adenocarcinoma. J Clin Gastroenterol 36:S37–43

    Article  PubMed  Google Scholar 

  5. Franchi A, Massi D, Palomba A, Biancalani M, Santucci M (2004) CDX-2, cytokeratin 7 and cytokeratin 20 immunohistochemical expression in the differential diagnosis of primary adenocarcinomas of the sinonasal tract. Virchows Arch 445:63–7

    CAS  PubMed  Google Scholar 

  6. Franchi A, Miligi L, Palomba A, Giovannetti L, Santucci M (2011) Sinonasal carcinomas: recent advances in molecular and phenotypic characterization and their clinical implications. Crit Rev Oncol Hematol 79:265–77

    Article  PubMed  Google Scholar 

  7. Sanders DSA, Taniere P, Harrison RF, Jankowski JAZ (2003) Clinical and molecular pathology of the metaplasia-dysplasia-carcinoma sequence in Barrett’s oesophagus. Curr Diagn Pathol 9:235–241

    Article  Google Scholar 

  8. Mutoh H, Hakamata Y, Sato K, Eda A, Yanaka I, Honda S, Osawa H, Kaneko Y, Sugano K (2002) Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem Biophys Res Commun 294:470–9

    Article  CAS  PubMed  Google Scholar 

  9. Sugano K (2013) Premalignant conditions of gastric cancer. J Gastroenterol Hepatol 28:906–911

    Article  CAS  PubMed  Google Scholar 

  10. Karaman A, Kabalar ME, Binici DN, Oztürk C, Pirim I (2010) Genetic alterations in gastric precancerous lesions. Genet Couns 21:439–50

    CAS  PubMed  Google Scholar 

  11. Morgan C, Jenkins GJ, Ashton T, Griffiths AP, Baxter JN, Parry EM, Parry JM (2003) Detection of p53 mutations in precancerous gastric tissue. Br J Cancer 89:1314–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Beilstein M, Silberg D (2002) Cellular and molecular mechanisms responsible for progression of Barrett’s metaplasia to esophageal carcinoma. Gastroenterol Clin North Am 31:461–79

    Article  PubMed  Google Scholar 

  13. Khor TS, Alfaro EE, Ooi EM, Li Y, Srivastava A, Fujita H, Park Y, Kumarasinghe MP, Lauwers GY (2012) Divergent expression of MUC5AC, MUC6, MUC2, CD10, and CDX-2 in dysplasia and intramucosal adenocarcinomas with intestinal and foveolar morphology: is this evidence of distinct gastric and intestinal pathways to carcinogenesis in Barrett esophagus. Am J Surg Pathol 36:331–42

    Article  PubMed  Google Scholar 

  14. Bian YS, Osterheld MC, Bosman FT, Benhattar J, Fontolliet C (2001) p53 gene mutation and protein accumulation during neoplastic progression in Barrett’s esophagus. Mod Pathol 14:397–403

    Article  CAS  PubMed  Google Scholar 

  15. Shiao YH, Rugge M, Correa P, Lehmann HP, Scheer WD (1994) p53 alteration in gastric precancerous lesions. Am J Pathol 144:511–7

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Wu TT, Barnes L, Bakker A, Swalsky PA, Finkelstein SD (1996) K-ras-2 and p53 genotyping of intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses. Mod Pathol 9:199–204

    CAS  PubMed  Google Scholar 

  17. Perrone F, Oggionni M, Birindelli S, Suardi S, Tabano S, Romano R, Moiraghi ML, Bimbi G, Quattrone P, Cantu G, Pierotti MA, Licitra L, Pilotti S (2003) TP53, p14ARF, p16INK4a and H-ras gene molecular analysis in intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses. Int J Cancer 105:196–203

    Article  CAS  PubMed  Google Scholar 

  18. Licitra L, Suardi S, Bossi P, Locati LD, Mariani L, Quattrone P, Lo Vullo S, Oggionni M, Olmi P, Cantù G, Pierotti MA, Pilotti S (2004) Prediction of TP53 status for primary cisplatin, fluorouracil, and leucovorin chemotherapy in ethmoid sinus intestinal-type adenocarcinoma. J Clin Oncol 22:4901–6

    Article  CAS  PubMed  Google Scholar 

  19. Holmila R, Bornholdt J, Heikkilä P, Suitiala T, Févotte J, Cyr D, Hansen J, Snellman SM, Dictor M, Steiniche T, Schlünssen V, Schneider T, Pukkala E, Savolainen K, Wolff H, Wallin H, Luce D, Husgafvel-Pursiainen K (2010) Mutations in TP53 tumor suppressor gene in wood dust-related sinonasal cancer. Int J Cancer 127:578–88

    Article  CAS  PubMed  Google Scholar 

  20. Pérez-Escuredo J, Martínez JG, Vivanco B, Marcos CÁ, Suárez C, Llorente JL, Hermsen MA (2012) Wood dust-related mutational profile of TP53 in intestinal-type sinonasal adenocarcinoma. Hum Pathol 43:1894–901

    Article  PubMed  Google Scholar 

  21. Pignataro L, Capaccio P, Pruneri G, Carboni N, Buffa R, Neri A, Ottaviani A (1998) The predictive value of p53, MDM-2, cyclin D1 and Ki67 in the progression from low-grade dysplasia towards carcinoma of the larynx. J Laryngol Otol 112:455–9

    Article  CAS  PubMed  Google Scholar 

  22. Papadimitrakopoulou VA, Izzo J, Mao L, Keck J, Hamilton D, Shin DM, El-Naggar A, den Hollander P, Liu D, Hittelman WN, Hong WK (2001) Cyclin D1 and p16 alterations in advanced premalignant lesions of the upper aerodigestive tract: role in response to chemoprevention and cancer development. Clin Cancer Res 7:3127–34

    CAS  PubMed  Google Scholar 

  23. Nazar G, González MV, García JM, Llorente JL, Rodrigo JP, Suárez C (2006) Amplification of CCND1, EMS1, PIK3CA, and ERBB oncogenes in ethmoid sinus adenocarcinomas. Otolaryngol Head Neck Surg 135:135–9

    Article  PubMed  Google Scholar 

  24. Bussi M, Gervasio CF, Riontino E, Valente G, Ferrari L, Pira E, Cortesina G (2002) Study of ethmoidal mucosa in a population at occupational high risk of sinonasal adenocarcinoma. Acta Otolaryngol 122:197–201

    Article  CAS  PubMed  Google Scholar 

  25. Valente G, Ferrari L, Kerim S, Gervasio CF, Ricci E, Migliaretti G, Pira E, Bussi M (2004) Evidence of p53 immunohistochemical overexpression in ethmoidal mucosa of woodworkers. Cancer Detect Prev 28:99–106

    Article  PubMed  Google Scholar 

  26. Palomba A, Iaia TE, Biancalani M, Conti S, Battista G, Papaleo B, Franchi A (2008) A morphologic and immunohistochemical study of nasal mucosa in leatherworkers. Am J Rhinol 22:356–60

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported in part by a grant from Istituto Toscano Tumori (ITT).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Franchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franchi, A., Palomba, A., Miligi, L. et al. Intestinal metaplasia of the sinonasal mucosa adjacent to intestinal-type adenocarcinoma. A morphologic, immunohistochemical, and molecular study. Virchows Arch 466, 161–168 (2015). https://doi.org/10.1007/s00428-014-1696-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-014-1696-1

Keywords

Navigation