Skip to main content
Log in

Kidney biopsy findings in heterozygous Fabry disease females with early nephropathy

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

An Erratum to this article was published on 30 May 2009

An Erratum to this article was published on 30 May 2009

Abstract

Fabry disease is an X-linked glycosphingolipidosis caused by deficiency of alpha-galactosidase. Progressive chronic kidney disease (CKD) is a major cause of morbidity and mortality in males. Although 40% of heterozygous females may develop renal involvement, pathologic data on Fabry nephropathy in heterozygotes are scarce. We reviewed the kidney biopsies of four affected females who had normal to slightly sub-normal renal function, two of them with overt proteinuria. Chronic non-specific degenerative lesions and glycosphingolipid accumulation per cell type were semi-quantitatively assessed by light and electron microscopy. Cellular distribution of glycosphingolipid deposits was best assessed on semithin sections. Podocyte effacement was seen only in proteinuric patients. Combined analysis of our data with those of two earlier series showed that glomerular sclerosis and tubulointerstitial fibrosis are predictors of proteinuria and CKD stage. There was no histopathological evidence supporting a major role of vascular damage in the early pathogenesis of Fabry nephropathy in females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Desnick RJ, Ioannou YA, Eng CM (2001) α-Galactosidase A deficiency: Fabry disease. In: Scriver CR, Beaudet AL, Sly WS et al (eds) The metabolic and molecular bases of inherited disease. 8th edn. McGraw Hill, New York, pp 3733–3774

    Google Scholar 

  2. Desnick RJ, Wasserstein MP, Banikazemi M (2001) Fabry disease (α-Galactosidase A deficiency): renal involvement and enzyme replacement therapy. In: Schieppati A, Daina E, Sessa A, Remuzzi G (eds) Rare kidney diseases (contributions to nephrology, vol 136). Karger, Basel, pp 174–192

    Chapter  Google Scholar 

  3. Desnick RJ, Brady R, Barranger J et al (2003) Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med 138:338–346

    PubMed  Google Scholar 

  4. Ortiz A, Oliveira JP, Waldek S et al (2008) Nephropathy in males and females with Fabry disease: cross-sectional description of patients before treatment with enzyme replacement therapy. Nephrol Dial Transplant 23:1600–1607

    Article  PubMed  CAS  Google Scholar 

  5. Lyon MF (1962) Sex chromatin and gene action in the mammalian X chromosome. Am J Hum Genet 14:135–418

    PubMed  CAS  Google Scholar 

  6. Deegan PB, Baehner AF, Barba Romero M-Á et al (2006) Natural history of Fabry disease in females in the Fabry outcome survey. J Med Genet 43:347–352

    Article  PubMed  CAS  Google Scholar 

  7. Wilcox WR, Oliveira JP, Hopkin RJ et al (2008) Females with Fabry disease frequently have major organ involvement: lessons from the Fabry registry. Mol Genet Metab 93:112–128

    Article  PubMed  CAS  Google Scholar 

  8. MacDermot KD, Holmes A, Miners AH (2001) Anderson–Fabry disease: clinical manifestations and impact of disease in a cohort of 60 obligate carrier females [Letter]. J Med Genet 38:769–775

    Article  PubMed  CAS  Google Scholar 

  9. Thadhani R, Wolf M, West ML et al (2002) Patients with Fabry disease on dialysis in the United States. Kidney Int 61:249–255

    Article  PubMed  Google Scholar 

  10. Gubler M-C, Lenoir G, Grünfeld J-P et al (1978) Early renal changes in hemizygous and heterozygous patients with Fabry’s disease. Kidney Int 13:223–235

    Article  PubMed  CAS  Google Scholar 

  11. Sessa A, Tosoni A, Nebuloni M et al (2002) Renal ultrastructural findings in Anderson–Fabry disease. J Nephrol 15:109–112

    PubMed  Google Scholar 

  12. Alroy J, Sabnis S, Kopp JB (2002) Renal pathology in Fabry disease. J Am Soc Nephrol 13:S134–S138

    PubMed  Google Scholar 

  13. Fischer EG, Moore MJ, Lager DJ (2006) Fabry disease: a morphologic study of 11 cases. Mod Path 19:1295–1301

    Article  Google Scholar 

  14. Sessa A, Meroni M, Battini G et al (2003) Renal involvement in Anderson–Fabry disease. J Nephrol 16:310–313

    PubMed  CAS  Google Scholar 

  15. Meehan SM, Junsanto T, Rydel JJ, Desnick RJ (2004) Fabry disease: renal involvement limited to podocyte pathology and proteinuria in a septuagenarian cardiac variant. Pathologic and therapeutic implications. Am J Kidney Dis 43:164–171

    Article  PubMed  Google Scholar 

  16. Warnock DG (2005) Fabry disease: diagnosis and management, with emphasis on the renal manifestations. Curr Opin Nephrol Hypertens 14:87–95

    Article  PubMed  Google Scholar 

  17. Sessa A, Meroni M, Battini G et al (2003) Evolution of renal pathology in Fabry disease. Acta Paediatr Suppl 443:6–8

    Google Scholar 

  18. Palmer BF (2007) Proteinuria as a therapeutic target in patients with chronic kidney disease. Am J Nephrol 27:287–293

    Article  PubMed  Google Scholar 

  19. Pompen AWM, Ruiter M, Wyers HJG (1947) Angiokeratoma corporis diffusum (universale) Fabry, as a sign of an unknown internal disease; two autopsy reports. Acta Med Scand 128:234–255

    PubMed  CAS  Google Scholar 

  20. Colley JR, Miller DL, Hutt MSR et al (1958) The renal lesion in angiokeratoma corporis diffusum. Brit M J 1:1266–1268

    Article  PubMed  CAS  Google Scholar 

  21. Bethune JE, Landrigan PL, Chipman CD (1961) Angiokeratoma corporis diffusum universale (Fabry’s disease) in two brothers. New Engl J Med 264:1280–1285

    Google Scholar 

  22. Henry EW, Rally CR (1963) The renal lesion in angiokeratoma corporis diffusum (Fabry’s disease). Can Med Assoc J 89:206–213

    PubMed  CAS  Google Scholar 

  23. Groot WP (1964) Angiokeratoma corporis diffusum Fabry (Thesaurismosis hereditaria Ruiter–Pompen–Wyers). Dermatologica 128:321–349

    Google Scholar 

  24. Hartley MW, Miller RE, Dempsey HJ, Carroll JF (1964) Dysphospholipidosis in Fabry’s disease: a light and electron microscopic study. Ala J Med Sci 1:361–367

    PubMed  CAS  Google Scholar 

  25. Burda CD, Winder PR (1967) Angiokeratoma corporis diffusum universale (Fabry’s disease) in female subjects. Am J Med 42:293–301

    Article  PubMed  CAS  Google Scholar 

  26. Branton MH, Schiffmann R, Sabnis SG et al (2002) Natural history of Fabry renal disease: influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine (Baltimore) 81:122–138

    Article  CAS  Google Scholar 

  27. Oliveira JP (2007) Staging of Fabry disease using renal biopsies. Clin Ther 29(Suppl A):S15–S16

    Article  PubMed  Google Scholar 

  28. Chobanian AV, Bakris GL, Black HR et al (2003) Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42:1206–1252

    Article  PubMed  CAS  Google Scholar 

  29. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  PubMed  CAS  Google Scholar 

  30. Rule AD, Larson TS, Bergstralh EJ et al (2004) Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med 141:929–937

    PubMed  CAS  Google Scholar 

  31. Vervoort G, Willems HL, Wetzels JFM (2002) Assessment of glomerular filtration rate in healthy subjects and normoalbuminuric diabetic patients: validity of a new (MDRD) prediction equation. Nephrol Dial Transplant 17:1909–1913

    Article  PubMed  CAS  Google Scholar 

  32. Gehan EA, George SL (1970) Estimation of human body surface area from height and weight. Cancer Chemother Rep 54:225–235

    PubMed  CAS  Google Scholar 

  33. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis 39(Suppl.1):S1–S266

    Google Scholar 

  34. Desnick RJ, Allen KY, Desnick SJ et al (1973) Fabry’s disease: enzymatic diagnosis of hemizygotes and heterozygotes. Alpha-galactosidase activities in plasma, serum, urine, and leukocytes. J Lab Clin Med 81:157–171

    PubMed  CAS  Google Scholar 

  35. Wiseman DA, Hawkins R, Numerow LM, Taub KJ (1990) Percutaneous renal biopsy utilizing real time, ultrasonic guidance and a semiautomated biopsy device. Kidney Int 38:347–349

    Article  PubMed  CAS  Google Scholar 

  36. Whittier WL, Korbet SM (2004) Renal biopsy: update. Curr Opin Nephrol Hypertens 13:661–665

    Article  PubMed  Google Scholar 

  37. Furness PN (2000) ACP best practice No 160: renal biopsy specimens. J Clin Pathol 53:433–438

    Article  PubMed  CAS  Google Scholar 

  38. Walker PD, Cavallo T, Bonsib SM, Ad Hoc Committee on Renal Biopsy Guidelines of the Renal Pathology Society (2004) Practice guidelines for the renal biopsy. Mod Path 17:1555–1563

    Article  Google Scholar 

  39. Sternberg SS (ed) (1992) Histology for pathologists. Raven, New York

  40. Remuzzi G, Grinyò J, Ruggenenti P et al (1999) Early experience with dual kidney transplantation in adults using expanded donor criteria. J Am Soc Nephrol 10:2591–2598

    PubMed  CAS  Google Scholar 

  41. Meaney C, Blanch LC, Morris CP (1994) A nonsense mutation (R220X) in the α-galactosidase A gene detected in a female carrier of Fabry disease. Hum Mol Genet 3:1019–1020

    Article  PubMed  CAS  Google Scholar 

  42. Eng CM, Guffon N, Wilcox WR et al (2001) Safety and efficacy of recombinant human alpha-galactosidase A-replacement therapy in Fabry’s disease. N Engl J Med 345:9–16

    Article  PubMed  CAS  Google Scholar 

  43. Schiffmann R, Kopp JB, Austin HA 3rd et al (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285:2743–2749

    Article  PubMed  CAS  Google Scholar 

  44. Thurberg BL, Rennke H, Colvin RB et al (2002) Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int 62:1933–1946

    Article  PubMed  CAS  Google Scholar 

  45. Svarstad E, Bostad L, Kaarbøe O et al (2005) Focal and segmental glomerular sclerosis (FSGS) in a man and a woman with Fabry’s disease. Clin Nephrol 63:394–401

    PubMed  CAS  Google Scholar 

  46. Chade AR, Lerman A, Lerman OL (2005) Kidney in early atherosclerosis. Hypertension 45:1042–1049

    Article  PubMed  CAS  Google Scholar 

  47. Caetano ERSP, Zatz R, Saldanha LB, Praxedes JN (2001) Hypertensive nephrosclerosis as a relevant cause of chronic renal failure. Hypertension 38:171–176

    PubMed  CAS  Google Scholar 

  48. Olson JL, Schwartz MM (1998) The nephrotic syndrome: minimal change disease, focal segmental glomerulosclerosis, and miscellaneous causes. In: Jennette JC, Olson JL, Schwartz MM, Silva FG (eds) Heptinstall’s pathology of the kidney, 5th edn. Lippincott-Raven, Philadelphia, pp 187–257

    Google Scholar 

  49. Pirani CL (1994) Evaluation of kidney biopsy specimens. In: Tisher CG, Brenner BM (eds) Renal pathology with clinical and functional correlations, 2nd edn. Lippincott, Philadelphia, pp 85–115

    Google Scholar 

  50. Tosoni A, Nebuloni M, Zerbi P et al (2005) Ultrastructural study of renal involvement in two females with Anderson–Fabry disease. Ultrastruct Pathol 29:203–207

    Article  PubMed  CAS  Google Scholar 

  51. Faraggiana T, Churg J, Grishman E et al (1981) Light- and electron-microscopic histochemistry of Fabry’s disease. Am J Pathol 103:247–262

    PubMed  CAS  Google Scholar 

  52. Kriz W, Gretz N, Lemley KV (1998) Progression of glomerular diseases: is the podocyte the culprit? Kidney Int 54:687–697

    Article  PubMed  CAS  Google Scholar 

  53. Kriz W, Lemley KV (1999) The role of the podocyte in glomerulosclerosis. Curr Opin Nephrol Hypertens 8:489–497

    Article  PubMed  CAS  Google Scholar 

  54. Mundel P, Shankland SJ (2002) Podocyte biology and response to injury. J Am Soc Nephrol 13:3005–3015

    Article  PubMed  Google Scholar 

  55. Ichikawa I, Ma J, Motojima M, Matsusaka T (2005) Podocyte damage damages podocytes: autonomous vicious cycle that drives local spread of glomerular sclerosis. Curr Opin Nephrol Hypertens 14:205–210

    Article  PubMed  Google Scholar 

  56. Kawamura O, Sakuraba H, Itoh K et al (1997) Subclinical Fabry’s disease occurring in the context of IgA nephropathy. Clin Nephrol 47:71–75

    PubMed  CAS  Google Scholar 

  57. Yoshida A, Morozumi K, Takeda A et al (1994) Fabry-like laminated myelin body associated with IgA nephropathy. Nippon Jinzo Gakkai Shi 36:1303–1307

    PubMed  CAS  Google Scholar 

  58. Whybra C, Schwarting A, Kriegsmann J et al (2006) IgA nephropathy in two adolescent sisters heterozygous for Fabry disease. Pediatr Nephrol 21:1251–1256

    Article  PubMed  Google Scholar 

  59. Breunig F, Weidemann F, Strotmann J et al (2006) Clinical benefit of enzyme replacement therapy in Fabry disease. Kidney Int 69:1216–1221

    Article  PubMed  CAS  Google Scholar 

  60. Waldherr R, Rambausek M, Duncker WD, Ritz E (1989) Frequency of mesangial IgA deposits in a non-selected autopsy series. Nephrol Dial Transplant 4:943–946

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Carmen Valbuena and João Paulo Oliveira were equal contributors to this article. Carmen Valbuena is recipient of a non-restricted research grant from Genzyme Portugal. David G. Warnock provided encouragement and strongly supported this project.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Valbuena.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00428-009-0779-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valbuena, C., Carvalho, E., Bustorff, M. et al. Kidney biopsy findings in heterozygous Fabry disease females with early nephropathy. Virchows Arch 453, 329–338 (2008). https://doi.org/10.1007/s00428-008-0653-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-008-0653-2

Keywords

Navigation