Skip to main content
Log in

Backward crosstalk effects in psychological refractory period paradigms: effects of second-task response types on first-task response latencies

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Three experiments using psychological refractory period (PRP) tasks documented backward crosstalk effects in which the nature of the second-task response influenced the first-task response latencies. Such effects are difficult to explain within currently popular bottleneck models, according to which second-task response selection does not begin until first-task response selection has finished. In Experiments 1 and 2, the first of the PRP tasks required a choice reaction time (RT) response, whereas the second task required a go/no-go decision. Task 1 responses were faster when the second task required a go response than when it required a no-go response. Experiment 3 showed that Task 1 RTs were also influenced by the complexity of second-task responses. These backward crosstalk effects indicate that significant second-task processing is carried out in time to influence first-task responses and thus challenge strictly serial bottleneck models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Moreover, Logan and Schulkind (2000, Experiments 3 and 4) found no evidence of backward crosstalk in PRP paradigms using two manual responses, so it is clear that the use of two manual responses is not sufficient by itself to cause such crosstalk.

  2. Chamberlin (1987) found no effect of second-task response complexity on RT1 with a simple RT task as the first task, but simple RT responses seem unlikely to be influenced by crosstalk in the first place because they can be completely preplanned.

References

  • Adam, J. J., & Van Veggel, L. M. (1991). Discrete finger response latencies in a simple reaction time task. Perceptual and Motor Skills, 73, 863–866.

    Article  PubMed  Google Scholar 

  • Bertelson, P., & Tisseyre, F. (1969). Refractory period of C-reactions. Journal of Experimental Psychology, 79, 122–128.

    Article  Google Scholar 

  • Brunia, C. H. (1983). Motor preparation: Changes in amplitude of Achilles tendon reflexes during a fixed foreperiod of one second. Psychophysiology, 20, 658–664.

    PubMed  Google Scholar 

  • Chamberlin, C. J. (1987). Effect of complexity of the second response on reaction time to the first response in the psychological refractory period paradigm. Perceptual and Motor Skills, 64, 1075–1080.

    Google Scholar 

  • De Jong, R. (1993). Multiple bottlenecks in overlapping task performance. Journal of Experimental Psychology: Human Perception and Performance, 19, 965–980.

    Article  PubMed  Google Scholar 

  • Donders, F. C. (1868/1969). Over de snelheid van psychische processen. [On the speed of mental processes.] (W. G. Koster, Trans.). In W. G. Koster (Ed.), Attention and performance II (pp. 412–431). Amsterdam: North Holland.

  • Duncan, J. (1977). Response selection rules in spatial choice reaction tasks. In S. Dornic (Ed.), Attention and performance VI (pp. 49–62). Hillsdale, NJ: Erlbaum.

  • Gemba, H., Sasaki, K., & Tsujimoto, T. (1990). No-go potential in monkeys and human subjects. In C. H. M. Brunia, A. W. K. Gaillard, & A. Kok (Eds.), Psychophysiological brain research, vol. 1 (pp. 133–136). Tilburg, The Netherlands: Tilburg University Press.

  • Gottsdanker, R. (1969). Interacting responses to crowded signals. Acta Psychologica, 30, 168–176.

    Article  Google Scholar 

  • Hackley, S. A., & Miller, J. O. (1995). Response complexity and precue interval effects on the lateralized readiness potential. Psychophysiology, 32, 230–241.

    PubMed  Google Scholar 

  • Hackley, S. A., & Valle-Inclán, F. (1999). Accessory stimulus effects on response selection: Does arousal speed decision making? Journal of Cognitive Neuroscience, 11, 321–329.

    Article  PubMed  Google Scholar 

  • Hazeltine, E., Teague, D., & Ivry, R. B. (2002). Simultaneous dual-task performance reveals parallel response selection after practice. Journal of Experimental Psychology: Human Perception and Performance, 28, 527–545.

    Article  PubMed  Google Scholar 

  • Heil, M., Osman, A. M., Wiegelmann, J., Rolke, B., & Hennighausen, E. (2000). N200 in the Eriksen-task: Inhibitory executive process? Journal of Psychophysiology, 14, 218–225.

    Article  Google Scholar 

  • Henry, F. M., & Rogers, D. (1960). Increased response latency for complicated movements and a “memory drum” theory of neuromotor reaction. Research Quarterly, 31, 448–458.

    Google Scholar 

  • Hommel, B. (1998). Automatic stimulus–response translation in dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 24, 1368–1384.

    Article  PubMed  Google Scholar 

  • Hommel, B., & Eglau, B. (2002). Control of stimulus–response translation in dual-task performance. Psychological Research, 66, 260–273.

    Article  PubMed  Google Scholar 

  • Kerr, B. (1983). Preplanning for aimed movements: Disruption from a preliminary task. Journal of Experimental Psychology: Human Perception and Performance, 9, 596–606.

    Article  Google Scholar 

  • Kornblum, S., Hasbroucq, T., & Osman, A. M. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility—a model and taxonomy. Psychological Review, 97, 253–270.

    Article  PubMed  Google Scholar 

  • Lien, M. C., & Proctor, R. W. (2000). Multiple spatial correspondence effects on dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 26, 1260–1280.

    Article  PubMed  Google Scholar 

  • Logan, G. D., & Delheimer, J. A. (2001). Parallel memory retrieval in dual-task situations: II. Episodic memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 668–685.

    Article  PubMed  Google Scholar 

  • Logan, G. D., & Schulkind, M. D. (2000). Parallel memory retrieval in dual-task situations: I. Semantic memory. Journal of Experimental Psychology: Human Perception and Performance, 26, 1072–1090.

    Article  PubMed  Google Scholar 

  • Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part 2. Accounts of psychological refractory-period phenomena. Psychological Review, 104, 749–791.

    Article  Google Scholar 

  • Miller, J. O., & Alderton, M. (2002). Backward motor crosstalk in a psychological refractory period task. Presentation at the annual meeting of the Psychonomic Society, Kansas City, November.

  • Miller, J. O., & Reynolds, A. (2003). The locus of redundant-targets and nontargets effects: Evidence from the psychological refractory period paradigm. Journal of Experimental Psychology: Human Perception and Performance, 29, 1126–1142.

    Article  PubMed  Google Scholar 

  • Muroi, M., Naito, E., & Matsumura, M. (1997). Evidence for psychological refractory effect in motor inhibition for a dual-response go/no-go task. Perceptual and Motor Skills, 85, 563–568.

    Article  PubMed  Google Scholar 

  • Navon, D. (1984). Resources—a theoretical soup stone? Psychological Review, 91, 216–234.

    Article  Google Scholar 

  • Navon, D., & Miller, J. O. (2002). Queuing or sharing? A critical evaluation of the single-bottleneck notion. Cognitive Psychology, 44, 193–251.

    Article  PubMed  Google Scholar 

  • Pashler, H. E. (1984). Processing stages in overlapping tasks: Evidence for a central bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 10, 358–377.

    Article  PubMed  Google Scholar 

  • Pashler, H. E., Johnston, J. C., & Ruthruff, E. D. (2000). Attention and performance. Annual Review of Psychology, 52, 629–651.

    Article  Google Scholar 

  • Posner, M. I., Nissen, M. J., & Klein, R. M. (1976). Visual dominance: An information-processing account of its origins and significance. Psychological Review, 83, 157–171.

    Article  PubMed  Google Scholar 

  • Ruthruff, E. D., Johnston, J. C., & Van Selst, M. (2001). Why practice reduces dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 27, 3–21.

    Article  PubMed  Google Scholar 

  • Ruthruff, E. D., Johnston, J. C., Van Selst, M., Whitsell, S., & Remington, R. (2003). Vanishing dual-task interference after practice: Has the bottleneck been eliminated or is it merely latent? Journal of Experimental Psychology: Human Perception and Performance, 29, 280–289.

    Article  PubMed  Google Scholar 

  • Ruthruff, E. D., Miller, J. O., & Lachmann, T. (1995). Does mental rotation require central mechanisms? Journal of Experimental Psychology: Human Perception and Performance, 21, 552–570.

    Article  PubMed  Google Scholar 

  • Ruthruff, E. D., Pashler, H. E., & Klaassen, A. (2001). Processing bottlenecks in dual-task performance: Structural limitation or strategic postponement? Psychonomic Bulletin & Review, 8, 73–80.

    Google Scholar 

  • Sasaki, K., Gemba, H., Nambu, A., & Matsuzaki, R. (1993). No-go activity in the frontal association cortex of human subjects. Neuroscience Research, 18, 249–252.

    Article  PubMed  Google Scholar 

  • Schumacher, E. H., Seymour, T. L., Glass, J. M., Fencsik, D. E., Lauber, E. J., Kieras, D. E., et al. (2001). Virtually perfect time sharing in dual-task performance: Uncorking the central cognitive bottleneck. Psychological Science, 12, 101–108.

    Article  PubMed  Google Scholar 

  • Sternberg, S. (1969a). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315.

    Article  Google Scholar 

  • Sternberg, S. (1969b). Memory scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57, 421–457.

    Google Scholar 

  • Stief, V., Leuthold, H., Miller, J. O., Sommer, W., & Ulrich, R. (1998). The effect of response complexity on the lateralized readiness potential. Zeitschrift für Psychologie, 206, 305–319.

    Google Scholar 

  • Tombu, M., & Jolicœur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29, 3–18.

    Article  PubMed  Google Scholar 

  • Van Duren, L. L., & Sanders, A. F. (1988). On the robustness of the additive factors stage structure in blocked and mixed choice reaction designs. Acta Psychologica, 69, 83–94.

    Article  PubMed  Google Scholar 

  • Van Selst, M., & Jolicœur, P. (1994). Can mental rotation occur before the dual-task bottleneck? Journal of Experimental Psychology: Human Perception and Performance, 20, 905–921.

    Article  PubMed  Google Scholar 

  • Vincent, S. B. (1912). The function of the viborissae in the behavior of the white rat. Behavioral Monographs, 1 (5), 1–82

    Google Scholar 

  • Welford, A. T. (1967). Single-channel operation in the brain. Acta Psychologica, 27, 5–22.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant to Jeff Miller from the Marsden Fund administered by the Royal Society of New Zealand. The author thanks Lisa Maughan for assistance in collecting the data and Mark Alderton, Bernhard Hommel, Iring Koch, Rolf Ulrich, and an anonymous reviewer for constructive comments on earlier versions of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J. Backward crosstalk effects in psychological refractory period paradigms: effects of second-task response types on first-task response latencies. Psychological Research 70, 484–493 (2006). https://doi.org/10.1007/s00426-005-0011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-005-0011-9

Keywords

Navigation