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Jakub Rolčík · Miroslav Strnad 

Received: 10 December 2013 / Accepted: 8 March 2014 / Published online: 28 March 2014 
© Springer-Verlag Berlin Heidelberg 2014

Abbreviations
ABA	� Abscisic acid
ACC	� 1-Aminocyclopropane-1-carboxylic 

acid
BRs	� Brassinosteroids
CE	� Capillary electrophoresis
CKs	� Cytokinins
GAs	� Gibberellins
GC-MS	� Gas chromatography-mass 

spectrometry
HPLC	� High performance liquid 

chromatography
IAA	� Indole-3-acetic acid
JA	� Jasmonic acid
JAs	� Jasmonates
LC	� Liquid chromatography
MS	� Mass spectrometry
SA	� Salicylic acid
SLs	� Strigolactones
UHPLC-MS/MS	� Ultra-high performance liquid chroma-

tography-tandem mass spectrometry

Introduction

Most (if not all) organisms use chemical signals in cell–
cell communication. Thus, chemical signalling is extremely 
ancient. However, the complexity of cell signalling leapt 
when first prokaryotic and subsequently eukaryotic cells 
began to associate together in multicellular organisms, 
putatively several billion and one billion years ago, respec-
tively (Parfrey et  al. 2011). Following the emergence of 
multicellularity, cell specialisation increased as tissues 
and organs with diverse specific functions evolved. Co-
ordination of the growth and development of these cells, 
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J. Grúz · J. Rolčík · M. Strnad 
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tissues and organs, as well as the environmental responses 
of complex multicellular organisms, required increasingly 
intricate signalling networks. Many of our current con-
cepts about intercellular communication in plants have 
been derived from similar studies in animals, in which two 
main systems evolved: the nervous system and endocrine 
system. Plants, lacking motility, never developed a nervous 
system, but they did evolve hormones as chemical messen-
gers. Plant hormones play essential roles (individually and 
in concert) in the regulation of myriads of physiological 
processes involved in plants’ growth, development, senes-
cence and responses to environmental stimuli. Until the 
1990s, there were just five known types of plant hormone: 
auxins, cytokinins, gibberellins, ethylene and abscisic acid. 
However, during the last two decades compelling evidence 
has emerged that four other classes of substances (brassi-
nosteroids, jasmonates, salicylic acid and most recently str-
igolactones) act as signalling molecules and probably have 
growth-regulating activities.

Plant hormones, also known as ‘phytohormones’, are usu-
ally present at extremely low concentrations in plant tissues, 
generally pg/g fresh weight (FW), while substances that 
interfere with their analysis are present in far greater con-
centrations. This is the major problem associated with plant 
hormone analysis. Thus, sound knowledge of the analytical 
and chemical principles underlying the extraction, purifica-
tion, identification and quantification of plant hormones is 
essential for their accurate and precise determination. In this 
review, we summarise current understanding of these prin-
ciples, methodologies for plant hormone analysis, factors 
that complicate their extraction and isolation from the highly 
complex matrices of plant and other tissues (which contain 
thousands of substances) and future perspectives.

Extraction and purification

Prior to extraction, plant material must be homogenised to 
break the cell walls in the tissues (Harrison 2011) and thus 
allow any hormones present to migrate to an appropriate 
extraction solvent. This can be done by grinding freeze-dried 
or fresh plant tissue (gram amounts) in a mortar with a pes-
tle under liquid nitrogen then adding an appropriate solvent 
to the ground material. Alternatively, very small amounts 
of plant material (mg) can be ground in 1.5–2.0 ml plastic 
microtubes with a selected extraction solvent and tungsten 
carbide or zirconium oxide beads in a homogenizer for an 
appropriate time at a selected frequency. The most effec-
tive devices use multi-directional motions to transmit high 
kinetic energy to the beads and are capable of grinding tens 
of samples simultaneously. To avoid enzymatic or chemi-
cal degradation of the hormones, the plant material should 
be kept cold during the entire homogenisation process. The 

efficiency of extraction of a target hormone from a plant tis-
sue will depend on its polarity, its subcellular localisation 
and the extent to which it is associated with other compounds 
in the tissue such as phenolics, lipids, pigments and proteins 
(Hillman 1978). The solvent used must be capable of extract-
ing the hormone efficiently, while minimising extraction of 
interfering substances. Methanol, acetonitrile, mixtures of 
these solvents with aqueous solutions of organic acids (gen-
erally formic or acetic) or buffers adjusted to neutral pH are 
usually used as extraction solvents for isolating plant hor-
mones (Kowalczyk and Sandberg 2001; Nordström et  al. 
2004; Novák et al. 2008; Kojima et al. 2009; Urbanová et al. 
2013). Analyte losses during the sample purification proce-
dure can be accounted for by adding internal standards (usu-
ally labelled with stable isotopes) to the plant extracts. This 
procedure also provides a measure of the percentage recov-
ery of target metabolites throughout the purification proce-
dure. Ideally, recovery markers should be included for every 
plant hormone metabolite that is being quantified. However, 
in many studies only a few internal standards have been 
used, often added at late stages during the extraction process, 
or even just before quantitative analyses (Witters et al. 1999; 
van Rhijn et al. 2001). Clearly, all the current methodologies 
could be further improved by sophisticated internal standard-
isation of some of the missing labelled standards, mainly to 
cover the enormous variations in chemical properties of the 
substances, even within each phytohormone group. Dissimi-
lar chemical nature of endogenous and internal substances 
subsequently leads to errors in their determination.

The ideal extraction duration depends on the target plant 
hormone group and (to a lesser degree) the specific target 
hormones. Generally, it should be long enough to allow 
quantitative migration of the analytes into the extraction 
medium and isotopic equilibration between the endogenous 
compounds and added internal standards. Decomposition 
of the endogenous hormones during prolonged extractions 
can be minimised by performing the extraction at low tem-
perature (between −20 and 4 °C) and adding an appropri-
ate antioxidant (for instance diethyldithiocarbamic acid; 
Pěnčík et al. 2009) to the extraction solvent.

The optimal purification method depends on the chemi-
cal nature of the target hormones, the type of analysis to 
be performed and choice of analytical instrument. In addi-
tion, appropriate separation procedures must be applied to 
reduce levels of interfering compounds in the extracts while 
maximising recoveries of the hormones in each purification 
step (Ljung et al. 2004). The first step is often liquid–liquid 
extraction combined with solid-phase extraction (SPE). 
SPE columns are packed by the manufacturers with solid 
sorbents that bind plant hormones (and other compounds, 
to varying degrees), usually via hydrophobic, polar or ionic 
interactions (often sorbents with hydrocarbon groups, gra-
phitized carbon-based material and ion-exchange matrices, 
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respectively). Interfering substances are removed by wash-
ing the column with a suitable solvent and hormones are 
then eluted using a solvent that disrupts the bonds formed 
by the interactions between the hormones and the sorbent 
in the column. “Mixed-mode” SPE columns, packed with 
a mixture of two types of sorbent, are also available and 
have become very popular recently (Nordström et al. 2004; 
Dobrev et al. 2005; Novák et al. 2008; Kojima et al. 2009; 
Urbanová et  al. 2013) due to their ability to reduce the 
number of required purification steps (since more than one 
separation mechanism can be exploited using a single col-
umn), while maintaining high sample clean-up efficiency. 
SPE allows high throughput of samples when combined 
with automatic systems, SPE robots, which are capable of 
purifying tens of sample simultaneously (Nordström et al. 
2004; Kojima et al. 2009). However, no miniature mixed-
mode purification system capable of handling extracts from 
mg FW samples has been developed yet.

Auxins

Auxins were the first discovered family of plant hormones. 
In the earliest recorded inference, Charles and Francis Dar-
win concluded that plant growth is regulated by a signal 

transported from one part of the plant to another where the 
physiological growth response occurs (Darwin and Darwin 
1880). This “signal” was subsequently called auxin (from 
the Greek word “auxein” meaning “to grow”) and identi-
fied as indole-3-acetic acid (IAA; Kögl and Kostermans 
1934; Went and Thimann 1937). IAA (Fig. 1) is the major 
auxin involved in a plethora of physiological processes in 
plants. Its activities include induction of cell division and 
elongation in stems, and regulation of cell differentiation, 
various tropisms, abscission, apical dominance, senes-
cence and flowering (Woodward and Bartel 2005; Teale 
et  al. 2006). Two major IAA biosynthesis pathways have 
been postulated in plants: the tryptophan (Trp)-independent 
and Trp-dependent pathway (Normanly 2010; Mano and 
Nemoto 2012). After synthesis, IAA may be deactivated by 
catabolic oxidation (decarboxylative or non-decarboxyla-
tive), or conjugation to sugars and amino acids (Normanly 
2010; Ljung 2012).

To obtain complete understanding of IAA metabolism 
in a given biological sample, information on levels of free 
hormone, its major metabolites and biosynthetic precur-
sors is highly important. Accurate estimation of these sub-
stances requires the detection and quantification of min-
ute amounts of analytes in plant extracts containing huge 
numbers of other substances at far higher concentrations. 

Fig. 1   Structures of auxins
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Therefore, it is essential to use methodology that offers 
low detection limits and high selectivity, i.e. methods 
that are minimally sensitive to impurities. Several meth-
ods have been described for detecting free IAA, including 
HPLC with fluorescence detection (Crozier et  al. 1980; 
Sundberg et  al. 1986; Mattivi et  al. 1999; Dobrev et  al. 
2005) or chemiluminescence detection (Xi et  al. 2009), 
with or without enhancement by immunoaffinity-based 
purification techniques (Pengelly et  al. 1981; Sandberg 
et  al. 1985; Cohen et  al. 1987; Marcussen et  al. 1989). 
However, the most commonly employed method for quan-
tifying IAA in plant tissues seems to be gas chromatog-
raphy–mass spectrometry (GC–MS) with electron impact 
ionisation (Chen et  al. 1988; Dunlap and Guinn 1989; 
Edlund et  al. 1995; Ribnicky et  al. 1998; Perrine et  al. 
2004; Barkawi et al. 2010). A drawback of this approach 
is that IAA is not volatile so it must be derivatised (usually 
by methylation or trimethylsilylation). Several methods 
for preparing derivatives of IAA precursors for GC–MS 
analysis have also been developed, including acylation of 
tryptamine, trimethylsilylation of indole-3-ethanol, and 
methyl chloroformate derivatisation of tryptophan (Quit-
tenden et  al. 2009; Liu et  al. 2012a, b, c). Samples can 
be purified by reversed-phase SPE (Barkawi et al. 2008), 
mixed-mode SPE (Dobrev et al. 2005) or immunoaffinity 
extraction (Sundberg et  al. 1986; Pěnčík et  al. 2009). To 
avoid preparation of antibodies in animals, selective bind-
ing in a polymer matrix with a “molecular imprint” (MIP) 
of auxin can be used (Zhang et  al. 2010). A miniature 
system for purifying IAA and its biosynthetic precursors 
using SPE tips has been developed (Liu et  al. 2012a, b, 
c), and the best currently available analytical technology 
is based on liquid chromatography-tandem mass spec-
trometry (LC–MS/MS), which is capable of determin-
ing both IAA and its amino acid conjugates (Kowalczyk 
and Sandberg 2001; Pěnčík et  al. 2009). However, this 
requires a much more intricate procedure than measure-
ments of IAA alone, mainly because levels of IAA con-
jugates in plant extracts are significantly lower. However, 
all IAA metabolites except indole-3-pyruvic acid (IPyA, 
Fig.  1) can be analysed without any derivatisation prior 
to their MS detection in positive or negative electrospray 
mode (Kai et al. 2007a, b; Sugawara et al. 2009; Mashi-
guchi et  al. 2011; Novák et  al. 2012). Recently, IPyA 
(the most labile auxin precursor) has been identified as 
an important intermediate in the Trp-dependent IAA 
biosynthesis pathway in Arabidopsis (Mashiguchi et  al. 
2011; Stepanova et al. 2011). Tam and Normanly (1998) 
described a simple, rapid method for its reliable quanti-
fication based on derivatisation of the carbonyl group by 
hydroxylamine to form the oxime. Other methods, such 
as derivatisation of IPyA by 2,4-dinitrophenylhydrazone 
(Mashiguchi et al. 2011), cysteamine (Novák et al. 2012) 

or sodium borodeuteride (Liu et al. 2012a, b, c) have also 
been developed.

Cytokinins

Cytokinins (CKs) are endogenous N6-substituted adenine 
derivatives with the well-known primary ability to induce 
cell division activity in plant callus cultures (Skoog and 
Miller 1957). However, they also have a very wide spec-
trum of other physiological effects on various plants and 
tissues, notably they can delay senescence, inhibit root 
growth and branching, increase resistance to environmen-
tal stresses and initiate seed development (Richmond and 
Lang 1957; Mok 1994). As shown in Fig.  2, CKs can be 
divided into two subgroups based on their chemical struc-
ture: isoprenoid CKs (ISCKs), which bear an isoprenoid 
side chain at position N-6 and include zeatin, isopentenyl 
and dihydrozeatin forms; and aromatic CKs (ARCKs), 
which bear a side chain of aromatic (benzyl or furfuryl) 
origin. From a physiological perspective, there are four 
main types of CK metabolism: interconversion, hydroxyla-
tion, conjugation and oxidative degradation. However, the 

Fig. 2   Structures of cytokinins
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major CK metabolic processes are interconversions of CK 
bases, nucleosides and nucleotides (Chen 1981), as rates 
of CK nucleoside and nucleotide conversions to bases (the 
biologically active forms) reportedly control CK activity 
in plant cells (Kurakawa et al. 2007). Side chain modifica-
tions of ISCKs include stereospecific hydroxylation of the 
isopentenyl side chain, yielding zeatin (Takei et al. 2004), 
and reduction of the zeatin side chain, yielding dihydrozea-
tin (Mok and Martin 1994). Zeatin occurs naturally as two 
geometric isomers: trans- and cis-zeatin. In general, trans-
zeatin (tZ) is considered as a cytokinin with high activity, 
compared to the little or no active cis-zeatin (cZ) (Kudo 
et al. 2012). Early investigators postulated that tZ was the 
predominant form, while the cis-isomer was much less 
abundant in planta (Schmitz and Skoog 1972; Mok et  al. 
1978). However, there are growing indications that cZ is 
the dominant cytokinin species in various plants, such as 
rice (Takagi et al. 1985), maize (Veach et al. 2003; Vyrou-
balová et  al. 2009), potatoes (Suttle and Banowetz 2000) 
and several species of legumes (Emery et  al. 1998, 2000; 
Quesnelle and Emery 2007). Interestingly, relative levels 
of zeatin stereoisomers can also differ substantially dur-
ing a plant’s lifecycle, cZ-type CKs generally predomi-
nate in tissues exposed to various stresses (drought, heat 
or biotic stress), while tZ-type CKs are often more abun-
dant in unstressed tissues (Havlová et al. 2008; Pertry et al. 
2009; Vyroubalová et  al. 2009; Dobra et  al. 2010). Com-
mon modifications of ARCK side chains are regiospecific 
hydroxylations, leading to formation of either meta- or 
ortho-derivatives called topolins (Kamínek et  al. 1987; 
Strnad 1997). Meta-position of hydroxyl functional group 
increases CK activity of the parent compound, while at the 
ortho-position leads to its decrease (Holub et  al. 1998). 
Glycosylation, leading to the formation of N- or O-glyco-
sides of CKs, also occurs in many plant species (Entsch 
et  al. 1979). N-glycosides lack CK activity in bioassays, 
indicating that their formation is a form of irreversible 
inactivation (Laloue 1977). In contrast, O-glycosides are 
considered inactive storage forms that play important roles 
in balancing CK levels (McGaw and Burch 1995). Free CK 
bases and nucleosides with unsaturated N6-side chains may 
be irreversibly degraded by cleavage of the side chain cata-
lysed by cytokinin oxidase/dehydrogenase, yielding ade-
nine or adenosine and the corresponding side chain alde-
hyde (Galuszka et al. 2001).

CK metabolites have significantly differing chemical 
properties that must be considered in analyses. Notably, 
their ionic forms are dependent on pH, which thus strongly 
influences their behaviour on ion-exchange columns. For 
instance, at a pH of ca. 2, CK nucleotides are zwitteri-
onic (uncharged), while CK bases and several metabolites 
(including 9-ribosyl and 3-, 7- and 9-glycosyl metabolites) 
are cationic. In addition, nucleotides are more polar and 

thus less hydrophobic than glycosides, which in turn are 
more polar and less hydrophobic than CK bases and ribo-
sides. Thus, CK metabolites’ chromatographic properties 
vary widely, which complicates their analysis. In the 1960s, 
during the GC boom, both GC–MS and GC–ECD tech-
niques were introduced for CK analysis. However, chemi-
cal modification of hydrogen-binding functional groups 
was essential for converting CKs (which are not volatile; 
Horgan and Scott 1987) into volatile derivatives suitable 
for GC. Various derivatisation approaches have been pub-
lished, including trimethylsilylation (TMS, Most et  al. 
1968), permethylation (Morris 1977) and trifluoroacety-
lation (TFA, Ludewig et  al. 1982). However, these proce-
dures are associated with a number of technical difficulties, 
such as requirements for extremely water-sensitive rea-
gents, inappropriate and time-consuming preparation, the 
extreme sensitivity of some derivatives (TMS and TFA) to 
moisture, and the need for high temperatures to elute per-
methylated derivatives. To avoid the problems arising from 
CK derivatisation for GC, attention has focused on LC–
MS. The first LC–MS method for CK analysis, involving 
the separation of underivatised cytokinins using a frit-fast 
atom bombardment interface, was published by Imbault 
et  al. (1993). The sensitivity of this method was subse-
quently improved, to low femtomolar detection limits, by 
derivatising 10 ISCKs using propionyl anhydride to form 
CK propionyl derivatives (Åstot et  al. 1998; Nordström 
et  al. 2004). In addition, atmospheric pressure ionisation 
(APCI, Yang et al. 1993) and electrospray ionisation (ESI, 
Prinsen et al. 1995; Witters et al. 1999; Novák et al. 2003) 
interfaces have been used for CK determination, affording 
picomolar to low femtomolar detection limits in analyses of 
0.1–1 g FW samples of plant tissue. Nowadays, ESI is the 
only MS interface routinely used for quantitative analysis 
of CKs that offers sufficient ionisation efficiency not only 
for CK but also for the majority of plant hormones (Novák 
et al. 2008; Svačinová et al. 2012; Farrow and Emery 2012; 
Dewitte et al. 1999). Since CKs strongly absorb UV light 
(in the 220–300  nm region), several LC–UV methods 
have been earlier applied for quantitative analysis of CKs 
(Campell and Town 1991; Chory et al. 1994). UV detection 
can be further advantageous for analyses of immunoaffin-
ity-purified cytokinin samples (Nicander et  al. 1993) and 
separation of CKs by capillary electrophoresis (CE; Pacák-
ová et al. 1997; Béres et al. 2012). In some cases, CE has 
been found to have distinct advantages over ultra-high per-
formance liquid chromatography (UHPLC) in terms of sep-
aration efficiency, costs and simplicity, while maintaining 
comparable sensitivity to MS detection (Ge et al. 2006).

As substituted purine derivatives CKs also have typi-
cal electroactive properties, so they can be detected by 
electrochemical reduction or oxidation using appropriate 
electrodes (Hernández et  al. 1995; Hušková et  al. 2000; 
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Tarkowská et al. 2003). However, these methods are more 
useful for screening purposes than routine analysis of 
endogenous cytokinin levels in plant tissues.

Similarly to other plant hormones, numerous attempts 
have been made to increase the sensitivity, peak capacity 
and speed of analyses of the trace quantities of CKs present 
in small amounts of various plant tissues (e.g. apical roots, 
stem regions, seeds and buds) or even individual cell orga-
nelles. Such requirements can be fulfilled by UHPLC in 
combination with tandem MS. However, extremely careful 
attention must also be paid to the efficiency of CK extrac-
tion and isolation from plant matrices, which (as men-
tioned) are very complex and typically contain thousands 
of substances. SPE followed by a high-throughput batch 
immunoextraction step and subsequent UHPLC separa-
tion has proved to be highly valuable for this, allowing for 
example the separation of 50 CKs—including bases, ribo-
sides, 9-glycosides, O-glycosides and nucleotides—from 
several milligrams of poplar (Populus × canadensis Moe-
nch, cv Robusta) leaves (Novák et al. 2008).

Recently, miniature sample pretreatments based on 
hydrophilic interaction liquid chromatography (HILIC) 
combined with MS/MS have also been used for CK analy-
sis (Liu et al. 2010, 2012a). Further improvements allowing 
reductions of starting amounts of tissue while maintaining 
sensitivity have been achieved by miniaturisation of SPE 
apparatus from polypropylene columns to pipette tips, so-
called stop-and-go-microextraction or StageTip purifica-
tion, which affords attomolar detection limits using 1–5 mg 
FW of Arabidopsis seedlings (Svačinová et  al. 2012). 
In addition, magnetic solid-phase extraction techniques, 
involving use of magnetic or magnetizable adsorbents with 
high adsorption ability and superparamagnetism, have been 
introduced for effective sample enrichment and purification 
of CKs prior to HILIC combined with tandem mass spec-
trometry (Liu et al. 2012b). This approach was applied to 
analyse CKs in 200  mg FW extracts of rice roots (Oryza 
sativa) and Arabidopsis thaliana seedlings with pg/mL 
detection limits. Another approach for improving sample 
enrichment is to selectively bind CKs from plant extracts 

using molecularly imprinted polymers (MIPs) prior to LC–
MS/MS analysis. This method was developed and applied 
to estimate levels of two 2 ISCKs and two ARCKs in 5 g 
FW extracts of tobacco, rape and soybean leaves with pg/
mL detection limits (Du et al. 2012).

Gibberellins

Gibberellins (GAs) are a class of diterpenoid carboxylic 
acids that include biologically active compounds pro-
duced by various microbes (fungal and bacterial) and 
lower as well as higher plants, where they are endog-
enous growth regulators. To date, 136 naturally occurring 
GAs from diverse natural sources have been characterised 
(http://www.plant-hormones.info/gibberellins.htm). The 
most prominent physiological effects of bioactive GAs 
(e.g. GA1, GA4, Fig.  3) include for instance induction of 
flowering and germination, stimulation of stem elongation 
and delay of senescence in leaves and citrus fruits (Hedden 
and Thomas 2012).

All naturally occurring GAs possess a tetracyclic ent-
gibberellane skeleton consisting of 20 carbon atoms (with 
rings designated A, B, C and D; Fig.  3), or a 20-nor-ent-
gibberellane skeleton (in which carbon-20 is missing, 
so there are only 19 carbon atoms). Therefore, in terms 
of carbon numbers, GAs can be divided into two groups: 
C19-GAs (e.g. GA4, GA1) and C20-GAs (e.g. GA12, GA53). 
The prefix ent indicates that the skeleton is derived from 
ent-kaurene, a tetracyclic hydrocarbon that is enantiomeric 
to the naturally occurring compound kaurene. Like other 
classes of plant hormones, concentrations of GAs in plant 
tissues are usually extremely low (generally pg/g FW). 
Thus, very sensitive analytical methods are required for 
their detection. However, levels of GAs may vary substan-
tially even within a plant organ. Vegetative tissues (stems, 
roots and leaves) typically contain several pg/g FW, while 
reproductive organs (such as seeds and flowers) often have 
three orders of magnitude higher levels (i.e. ng/g FW). The 
chemical nature of GAs also varies substantially, notably 

Fig. 3   Structures of C19 and 
C20 gibberellins

http://www.plant-hormones.info/gibberellins.htm


61Planta (2014) 240:55–76	

1 3

they cover a broad range of polarities and the only proper-
ties they share are that they behave as weak organic acids, 
with dissociation constants (pKa) around 4.0 (Tidd 1964), 
and have no spectral characteristics such as fluorescence 
or UV absorption (except below 220 nm) that could easily 
distinguish them from other organic acids. The first meth-
ods for GA analysis, based on GC–MS determinations of 
volatile methyl ester trimethylsilyl ether derivatives, were 
introduced in the 1960s (Pryce et al. 1967; MacMillan and 
Pryce 1968; Binks et al. 1969). This approach is still used 
in some laboratories for quantifying and identifying GAs 
as it is highly sensitive (Mauriat and Moritz 2009; Mag-
ome et  al. 2013). However, LC–MS is becoming more 
popular for quantitative analysis of GAs, mainly because it 
avoids derivatisation requirements. For instance, Varbanova 
et al. (2007) published a method for analysing 14 GAs in 
extracts of Arabidopsis mutants within 16 min by LC–MS/
MS (after a laborious five-step purification procedure). The 
quantification procedure involved addition of deuterium-
labelled internal standards before purification followed by 
isotope dilution analysis, as generally recommended for 
precise quantification (Croker et  al. 1994). LC–MS/MS-
based analysis has also been successfully used to determine 
endogenous GAs in Christmas rose (Helleborus niger L.) 
during flowering and fruit development (Ayele et al. 2010). 
Most recently, a rapid, sensitive method based on a two-
step isolation procedure followed by UHPLC-MS/MS 
analysis has been published (Urbanová et  al. 2013). This 
methodology is capable of quantifying 20 naturally occur-
ring biosynthetic precursors, bioactive GAs and metabolic 
products from extracts of 100  mg FW plant tissues with 
low femtomolar detection limits.

Abscisic acid

Abscisic acid (ABA) is an optically active C15 terpenoid 
carboxylic acid (Fig.  4) that was discovered during the 
early 1960s, when it was found to be involved in the con-
trol of seed dormancy and organ abscission (Liu and Carns 
1961; Ohkuma et  al. 1963; Cornforth et  al. 1965). Later, 
it was shown that the role of ABA in regulating abscis-
sion is minor and its primary role is in regulating seed dor-
mancy and stomata opening (Patterson 2001). ABA plays 
important roles in many other numerous physiological 
processes such as seed maturation, adaptive responses to 
abiotic stress (Nambara and Marion-Poll 2005), shoot elon-
gation, morphogenesis of submerged plants (Hoffmann-
Benning and Kende 1992; Kuwabara et al. 2003), and root 
growth maintenance (Sharp and LeNoble 2002). It is a 
non-volatile, relatively hydrophobic substance containing 
a carboxylic group (Fig. 4). Therefore, commonly applied 
approaches for its extraction and purification include liq-
uid–liquid extraction (Liu et al. 2002; Schmelz et al. 2003; 
Durgbanshi et al. 2005), liquid–liquid–liquid microextrac-
tion (Wu and Hu 2009; Bai et al. 2012), SPE (Dobrev and 
Kamínek 2002; Chiwocha et  al. 2003; Zhou et  al. 2003; 
Dobrev et  al. 2005) and solid-phase microextraction (Liu 
et  al. 2007). Like other phytohormones, it was initially 
determined by bioassays based on its physiological proper-
ties (Sembdner et al. 1988). The naturally occurring form is 
S-(+)-ABA, and the side chain of ABA is in 2-cis, 4-trans 
configuration by definition (Addicott et  al. 1968). Due to 
this optical property, ABA was also previously determined 
by polarimetry (Cornforth et  al. 1966). However, specific 
rotation is often influenced by numerous other substances 

Fig. 4   Structures of stress-
related plant hormones
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in plant extracts, thus such determination is very inaccu-
rate. The compound also strongly absorbs ultraviolet (UV) 
radiation, maximally at about 260 nm (due to the presence 
of chromophores, chemical groups capable of absorbing 
light, resulting in the colouration of organic compounds), 
which allows its detection in HPLC eluates by monitoring 
their UV absorption (Ciha et al. 1977; Cargile et al. 1979; 
Mapelli and Rocchi 1983). HPLC has also been used to 
determine two metabolites of ABA: phaseic acid (PA) and 
dihydrophaseic acid (DPA) (Durley et  al. 1982; Hirai and 
Koshimizu 1983).

Immunological methods such as radioimmunoassays 
(RIAs) (Weiler 1979, 1980; Walton et  al. 1979; Mertens 
et  al. 1983) and enzyme-linked immunosorbent assays 
(ELISAs) based on competitive binding between free and 
alkaline phosphatase-labelled ABA (Daie and Wyse 1982; 
Weiler 1982) have also been successfully used for estimat-
ing ABA levels and are still highly recommended for esti-
mating free ABA levels in plant tissues. A method based 
on immunoaffinity chromatography (IAC) in combination 
with LC–MS has also been recently described (Hradecká 
et  al. 2007). Early analytical methods for measuring lev-
els of ABA metabolites employed GC coupled to electron 
capture detection (GC–ECD; Harrison and Walton 1975; 
Zeevaart and Milborrow 1976) or flame ionisation detec-
tion (FID; Watts et al. 1983) systems. These methods were 
capable of quantifying PA, DPA, epi-DPA and ABA glu-
cose ester (ABAGE) in plant tissues at levels of about ng/g 
FW. Boyer and Zeevaart (1982) also developed a method 
for measuring ABAGE, as its tetraacetate derivative, by 
GC–ECD. In addition, several methods for quantifying 
ABA and ABAGE by GC–MS in selected ion monitor-
ing (SIM) mode (Netting et al. 1982; Duffield and Netting 
2001) and multiple ion monitoring (MIM) mode (Neill 
et al. 1983) have been published. However, GC–MS is lim-
ited to the analysis of volatile compounds, thus methylation 
of these analytes with diazomethane prior to the analysis 
is required. Regarding detection techniques following GC 
separation, ECD permits quantitative analyses of ABA in 
much smaller samples of plant material than FID. When 
GC coupled with MS in SIM mode, even much higher sen-
sitivity is then achieved. Further, methods for determining 
ABA by CE have been published (Liu et al. 2002, 2003). 
CE has advantages for analysing ABA (as a trace substance 
in complex plant extracts), but it suffers from low sensitiv-
ity in combination with UV detection. This problem can 
be overcome using either micellar electrokinetic capillary 
chromatography (MECC; Liu et al. 2002) or laser-induced 
fluorescence (LIF) detection, both of which provide high 
sensitivity, but again require derivatisation because ABA is 
not fluorescent. Therefore, in the second cited study by Liu 
et al. (2003), ABA was labelled with 8-aminopyrene-1,3,6-
trisulfonate via reductive amination in the presence of 

acetic acid and sodium cyanoborohydride. The resulting 
conjugate was quantified, with fmol detection limits, and 
the method was used to analyse ABA in crude tobacco 
extracts. Recently, LC coupled to MS with soft ionisation 
techniques (ESI, APCI) has proved to be very powerful 
for analysing substances in plant extracts since they are 
often polar, non-volatile, thermally labile and (hence) inap-
propriate for GC analysis. Due to its high selectivity and 
sensitivity, LC–MS in multiple reaction monitoring mode 
(MRM) has also become increasingly popular for analys-
ing ABA and its metabolites (Gómez-Cadenas et al. 2002; 
López-Carbonell and Jáuregui 2005; Chiwocha et al. 2007; 
López-Carbonell et  al. 2009). Another technique that has 
been used for quantifying ABA and ABAGE is LC–MS 
in SIM mode, either directly (Hogge et  al. 1993; Sch-
neider et  al. 1997) or following several purification steps 
(Vilaró et al. 2006). Further improvements in the analysis 
of ABA metabolites have been obtained through use of a 
UHPLC-based MS method, which is faster, affords higher 
throughput and is more sensitive than conventional LC–MS 
(Turečková et  al. 2009). The detection limits of the tech-
nique were found to be at low picomolar levels for ABAGE 
and ABA acids in negative ion mode, and femtomolar lev-
els for ABAGE, ABAaldehyde, ABAalcohol and the meth-
ylated acids in positive ion mode.

Ethylene

Ethylene is a flammable unsaturated gaseous hydrocarbon 
(Fig.  5) with a molecular weight of 28.05  g/mol. It has 
been indirectly used for thousands of years to ripen fruits, 
for instance via the ancient Egyptian practice of gashing 
figs (Galil 1948). It seems to have been first described by 
Becher (1669, Physica Subterranea), identified as a natu-
ral plant product by Gane (1934) and shown to influence 
plant growth and development by Crocker et al. (1935). It 
is formed essentially in all cells, but often most abundantly 
in fruits and wounded tissues, diffuses through tissues and 
is finally released into the surrounding atmosphere. The 
levels of ethylene produced by plants are low and of the 
same order as those of other phytohormones. Thus, sen-
sitive methods are essential for its determination. The 
first methods for ethylene detection, like those for other 
plant hormones, were based on certain bioassays, mainly 
because of the lack of instrumental methods at the time. 
The first was the ‘triple response’ etiolated pea plant bio-
assay based on measurement of reductions in stem elonga-
tion (Nejlubow 1901) and several others were subsequently 
developed (Crocker et  al. 1932; Addicott 1970; Kang and 
Rat 1969). However, all the bioassays lack specificity (for 
instance, propylene, acetylene and butylenes can induce 
similar responses, albeit at up to a thousand times higher 
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concentrations than ethylene) and thus are rarely used 
now. The development of chromatographic (especially gas 
chromatography) techniques allowed the identification 
(by coupling to MS) and quantification of low molecular 
weight hydrocarbons including ethylene and its biosyn-
thetic precursors 1-aminocyclopropane-1-carboxylic acid 
(ACC) and 1-(malonylamino)cyclopropane-1-carboxylic 
acid (MACC), for structures see Fig.  5. All of the men-
tioned substances of biological interest can be clearly dis-
tinguished from other low molecular weight hydrocarbons 
with high accuracy at approximately 10−12  m3  dm−3 in a 
1 cm3 volume (ppb level) of air. The first GC method for 
ethylene determination was applied to measure this sub-
stance from apples (Burk and Stolwijk 1959; Huelin and 
Kennett 1959). The major drawback of this approach based 
on thermal conductivity detection (TCD) was a relatively 
high detection limit of 10–100 μL/L. The introduction of 
flame ionisation detection (FID) and the photoionisation 
detector (PID) in 1980s significantly improved the detec-
tion limit of ethylene to tens of nL/L levels (Bassi and 
Spencer 1985; Bassi and Spencer 1989). At the beginning, 
the ethylene sampling procedure and its subsequent injec-
tion into the GC column have been done manually with a 
gas-tight syringe, which was filled with gas from the head-
space of a closed cuvette, in which the plant was enclosed 
for a few hours (Abeles et al. 1992). For low reproducibil-
ity and high time consumption of this system, it has been 
later replaced by automatic samplers based on concentric 
rotary valves (Cristescu et al. 2013). To achieve better sen-
sitivity, GC systems can be equipped with preconcentra-
tion devices that enable to store the emitted ethylene (Segal 
et  al. 2000). The plants are placed in closed cuvettes and 

continuously flushed with air. Ethylene is trapped inside 
a tube containing an appropriate adsorption material (e.g. 
carbon molecular sieve) and is then released into a smaller 
volume by heating the adsorbent. In addition to GC and 
GC–MS (Smets et  al. 2003) approaches, photo acoustic 
laser spectrophotometry (PALS; Cristescu et  al. 2008), 
LC–MS (Petritis et al. 2003) and CE–LIF (Liu et al. 2004) 
methods for ethylene (or ACC) determination have been 
published. PALS offers higher detection sensitivity (ppt 
level) than GC and is highly selective for particular sub-
stances. This is disadvantageous in some respects, as the 
equipment has much narrower applications than GC. How-
ever, before use of the GC–MS and CE–LIF methods, the 
analytes in plant extracts must be modified by derivatisa-
tion, which greatly increases time consumption, and the 
derivatisation procedure has poor reproducibility when 
concentrations of ACC are low. Recently, methodology 
based on in vitro measurement of the activity of two key 
biosynthetic enzymes, 1-aminocyclopropane-1-carboxylate 
synthase (ACS) and 1-aminocyclopropane-1-carboxylate 
oxidase (ACO), as well as ethylene itself, has been reported 
(Bulens et al. 2011).

Brassinosteroids

Brassinosteroids (BRs) are relatively young group of natu-
rally occurring triterpenoid plant growth substances with 
hormonal function (Caño-Delgado et al. 2004). More than 
70 BR analogues have been identified so far in nearly 60 
plant species (Choe 1999). Their common structural feature 
is a 5α-cholestane skeleton (Fig.  6) and they are divided 

Fig. 5   Structure of ethylene 
and its biosynthetic precursors 
ACC and MACC
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into different categories depending on the side chain struc-
ture and modifications of the A and B rings. Physiologi-
cally, BRs participate with other plant hormones in the 
regulation of numerous developmental processes, including 
shoot growth, root growth, vascular differentiation, fertil-
ity and seed germination (Fujioka and Sakurai 1997). BRs 
also have anti-stress effects, i.e. they participate in amelio-
rative responses to various stresses, such as low and high 
temperature, drought and infection. Like GAs, they tend to 
be relatively abundant in reproductive plant tissues, such 
as pollen, flowers and immature seeds, but their levels are 
extremely low in vegetative tissues, even compared to those 
of other plant hormones (fg-pg/g FW).

Initially, immunoassays and bioassays were mainly 
used for detecting BRs (Takatsuo and Yokota 1999). Some 
of the bioassays have good sensitivity and are still used 
for testing the biological activity of BRs, particularly the 
bean second-internode bioassay (Mitchell and Livingston 
1968) and rice lamina inclination bioassay (Maeda 1965), 
which provide 2 ×  10−11  mol and 1 ×  10−13 mol detec-
tion limits, respectively (Thomson et al. 1981; Wada et al. 
1984). Immunological methods such as RIAs and ELISAs 
have also been used for exploring the distribution of BRs in 
plant tissues (Horgen et al. 1984; Yokota et al. 1990). RIA 
was found to be useful for detecting the two most common 
bioactive BRs, castasterone (CS) and brassinolide (BL) 
(Fig.  6), with approximately 0.3  pmol detection limits. 
However, ELISA based on a mouse monoclonal antibody 
against 24-epibrassinolide (epiBL) was shown to respond 
not only to epiBL but also to other, non-BR phytosterols 

(sitosterol, ecdysone). So, this method could not be used 
for analysing BRs. Swaczynová et al. (2007) subsequently 
improved the ELISA method using selective polyclonal 
antibodies against 24-epicastasterone (epiCS) and success-
fully detected this substance in Brassica napus and Arabi-
dopsis tissues. These antibodies cross-reacted with BL and 
epiBL, but not with non-BR plant sterols. Thus, the method 
was applied for determining BR levels in extracts of tissues 
from several plant species. In addition, good agreement was 
found between results obtained using the ELISA method 
and a simultaneously developed HPLC–MS approach.

Several hyphenated (GC–MS and LC–MS) techniques 
were also gradually introduced. Since BRs are not volatile 
they must be derivatised prior to GC–MS analysis (Takat-
suo et  al. 1982). The standard derivatisation procedure is 
based on formation of bis-methaneboronates (BMBs) of 
BRs with vicinal diol groups (e.g. BL and CS). Thus, a 
disadvantage of this approach is that it cannot be used to 
analyse BRs lacking this conformation (e.g. teasterone and 
typhasterol). The detection limits of BMB derivatives are 
at the sub-ng level. GC–MS has also been used to eluci-
date structures of new BRs and BR biosynthesis pathways 
(Fujioka and Sakurai 1997). Liquid chromatography is gen-
erally suitable for non-volatile compounds, therefore, BRs 
can be advantageously analysed using this technique with-
out derivatisation. However, although several LC methods 
have been published, only one can be used for direct deter-
mination of free BRs (Swaczynová et al. 2007). The others 
still require derivatisation. Gamoh et al. (1996) developed 
a method based on preparation of naphthaleneboronates, 

Fig. 6   Structure of 
5α-cholestane and biologi-
cally active naturally occurring 
brassinosteroids
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which is also applicable to teasterone and typhasterol 
(unlike BMB derivatisation). It has a reported detection 
limit of 2  ng and was applied to analyse BRs in Canna-
bis sativa seeds. Another LC method provides 125 attomole 
detection limits for dansyl-3-aminophenylboronate deriva-
tives of BRs in highly laboriously purified extracts (57 g) 
of 24-day-old Arabidopsis plants grown in vitro. (Svatoš 
et al. 2004). Recently, two other LC–MS methods for pre-
paring and analysing boronate derivatives of BRs have been 
reported (Huo et al. 2012; Ding et al. 2013), but the start-
ing amount of tissue (Arabidopsis) used in the cited studies 
was still extremely high: 1 or 2 g FW.

Jasmonates

Jasmonic acid (JA) and its metabolites, collectively called 
jasmonates (JAs), are cyclopentanone compounds (Fig. 4) 
that share remarkable structural and functional proper-
ties with prostaglandins found in animals (Wasternack 
and Kombrink 2010). In the 1990s, JAs were proposed to 
be stress-related compounds (Farmer and Ryan 1990; Par-
thier 1991) that accumulate in plants in response to various 
stresses, such as wounding or pathogen attack (Creelman 
et  al. 1992), in plant tissues or cell cultures treated with 
fungal elicitors (Müller et al. 1993), and tissues subjected 
to abiotic stressors such as UV radiation, low and high 
temperatures, osmotic stress and ozone exposure (Parthier 
et al. 1992). JAs seem to occur in most organs of most plant 
species (Wasternack and Hause 2013). Their in planta con-
centrations, which can be determined by various methods, 
are comparable to those of other plant hormones, ranging 
from ng to μg/g FW, depending on the plant tissue, spe-
cies, developmental stage and both environmental and 
physiological conditions (Wilbert et  al. 1998). The major 
physiologically active jasmonates are reportedly (−)-JA, 
methyl jasmonate (MeJA), and conjugates of (−)-JA with 
the amino acids isoleucine (JA-Ile), valine (JA-Val), and 
leucine (JA-Leu) (Sembdner and Parthier 1993). JA-amino 
acid conjugates are constitutively produced in plant tissues 
and their levels increase upon osmotic stress (Kramell et al. 
1995). In plant–herbivore interactions, JA-amino acid con-
jugation is necessary for JA activation, and (−)-JA-Ile is 
the bioactive form of the hormone (Staswick and Tiryaki 
2004; Fonseca et al. 2009). MeJA plays important roles as 
a fragrant volatile compound, particularly in plant–plant 
interactions, in which it acts, in concert with other vola-
tile substances emitted from the plants, as an aerial sig-
nal for communication with their environment (Pichersky 
and Gershenzon 2002). Its synthesis is induced by vari-
ous external stimuli, such as adverse weather conditions, 
and attacks by herbivores or pathogens (Paré and Tumlin-
son 1999). Another JA metabolite, which is highly active 

in plant–insect interactions, is cis-jasmone (Birkett et  al. 
2000; Bruce et al. 2008).

Key considerations in the analysis of jasmonates are that 
JA and its conjugates are non-volatile, while MeJA and cis-
jasmone are volatile. GC–MS is the most frequently used 
approach for quantifying JA, but as JA is not volatile it 
must first be derivatised, for instance by preparation of pen-
tafluorobenzyl ester derivatives (Müller and Brodschelm 
1994). This provides high sensitivity, but requires an elabo-
rate preconcentration procedure. Another GC–MS-based 
technique for JA quantification has been described (Engel-
berth et al. 2003), in which the only purification step is col-
lection of derivatised JA on a polymeric adsorbent. Never-
theless, these time-consuming steps still seriously limit the 
number of samples that can be processed per day. MeJA 
can be successfully quantified directly by GC with FID or 
MS detection after concentration by solid-phase microex-
traction (SPME) on fused silica fibre coated with a poly-
meric sorbent (Meyer et al. 1984). The reported detection 
limit of this method is 1 ng/injection, sufficiently low for 
detecting MeJA in plant tissues at levels between 10 and 
100 ng/g DW (Müller and Brodschelm 1994; Wilbert et al. 
1998).

Due to the polarity and non-volatility of JA most 
researchers use LC-based methods for its analysis. Ander-
son (1985) described an HPLC assay for the simultaneous 
determination of ABA and JA in plant extracts, following 
derivatisation (of both growth regulators) with a fluorescent 
hydrazide to obtain stable fluorescent products—dansyl 
hydrazones. This procedure allows detection of both hor-
mones at low pmol levels. The method was demonstrated 
using extracts of several different tissues of soybean (Gly-
cine max), snap beans (Phaseolus vulgaris), lima beans 
(Phaseolus lunatus) and broccoli (Brassica oleracea). 
However, only 20  % of the JA was converted to the cor-
responding ester during the derivatisation procedure. 
Fluorescent labelling usually affords great sensitivity for 
detecting the resulting derivatives (approx. 10−17  mol) 
and thus prompted other researchers to optimise this kind 
of derivatisation to introduce fluorophores into the chemi-
cal structure of JA to monitor it after separation by either 
HPLC (Kristl et al. 2005; Xiong et al. 2012) or CE (Zhang 
et al. 2005). However, the highest selectivity and sensitivity 
for JA determination can be currently achieved using MS/
MS in MRM mode (Tamogami and Kodama 1998; Wilbert 
et al. 1998; Segarra et al. 2006). Another of JA’s key phys-
icochemical properties is amenability to oxidation, which 
was recently exploited for its electrochemical detection fol-
lowing LC (Xie et al. 2012). The method was successfully 
applied to analyse endogenous JA in wintersweet flowers 
and rice florets with a detection limit of 10−8  mol/L. To 
study physiological process in plants under various stresses, 
many researchers also monitor levels of precursors in the 
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JA biosynthetic pathway (especially 12-oxo-phytodienoic 
acid, OPDA) and JA metabolites. For these studies, LC–
MS/MS is the method of choice (Radhika et al. 2012; Van-
Doorn et  al. 2011). Similarly, stress resistance investiga-
tors (profiling the main stress response actors such as JAs, 
ABA and salicylic acid) generally use LC–MS/MS meth-
ods, which have been accelerated by coupling UHPLC, 
rather than conventional HPLC, systems to tandem mass 
spectrometers (Flors et  al. 2008; López-Ráez et  al. 2010; 
Balcke et al. 2012). This strategy also increases sensitivity, 
allowing successful quantification of target stress hormones 
in milligram quantities of plant tissue samples.

Salicylic acid

Salicylic acid (SA; Fig.  4) is an endogenous signalling 
molecule that is predominantly active in plant immune 
responses to avirulent pathogens, but like other phyto-
hormones it is also involved in the regulation of several 
developmental processes, especially flowering (Singh et al. 
2013). In most plants, pathogen attack, insect feeding and 
other kinds of physical wounding trigger both local and sys-
temic resistance, mediated by the accumulation of defence-
related proteins at sites of infection/damage and healthy 
tissues, respectively (Hammond-Kosack and Jones 2000). 
On the molecular level, accumulation of SA in cells leads 
to the release of NPR1 protein, activation of TGA1 and 
TGA2 transcription factors and expression of pathogenesis-
related proteins (Pieterse and Van Loon 2004). To elucidate 
their signalling roles, SA and its metabolites (including 
methylsalicylate, salicylic acid glucoside and salicylic acid 
glucosylester) must be precisely quantified in plant tissues 
by robust, sensitive analytical methods. HPLC with fluores-
cence detection has been successfully used for quantifying 
SA, following a complex purification procedure (Meuwly 
and Metraux 1993), in cucumber (Cucumis sativus L.) 
seedlings infected by Pseudomonas lachrymans on the first 
leaf. Free SA contents increased locally in the infected leaf 
and systemically in the second leaf to 33-fold and 4.2-fold 
higher than detection limits, respectively, while remaining 
undetectable in controls. Recently, another HPLC method 
with fluorescence detection has been reported for quantita-
tive analysis of SA in tobacco leaf tissues (Verberne et al. 
2002). This methodology increased SA extraction recovery 
from plant tissues by reducing SA sublimation during puri-
fication via the addition of a small amount of HPLC eluent, 
resulting in recoveries in the range of 71–91 % for free SA 
and 65–79 % for acid-hydrolysed SA.

However, fluorometric analysis cannot fully distinguish 
SA and its metabolites from other plant components, par-
ticularly simple phenolics and phenylpropanoids, which 
might be present in infected plants and participate in 

disease resistance. Partly for this reason, methods allow-
ing their precise, accurate determination based on analy-
ses of their molecular masses and specific daughter frag-
ments (tandem MS) or other analyte-specific approaches 
have been developed. Initially, a method based on electro-
spray tandem MS coupled to capillary LC was introduced 
to detect SA (together with JA and MeJA) in extracts of 
fresh poplar leaves (Wilbert et al. 1998). In addition, a bac-
terial biosensor that is highly specific for SA, methyl-SA 
and the synthetic SA derivative acetylsalicylic acid was 
recently shown to be suitable for quantifying SA in crude 
plant extracts (Huang et  al. 2005). Following increases in 
its throughput, this approach was successfully applied for 
genetic screenings for SA metabolic mutants and charac-
terising enzymes involved in SA metabolism (Defraia et al. 
2008; Marek et  al. 2010). Another LC–MS/MS approach 
has been applied to study SA and JA levels in cucum-
ber cotyledons under biotic stress induced by the necro-
trophic pathogen Rhizoctonia solani (Segarra et al. 2006). 
An LC–MS method has also been compared to a capil-
lary electrophoresis (CE) technique, and used to study 
SA and related phenolics in wild-type Arabidopsis plants 
and two lines with mutations affecting SA accumulation 
in response to two avirulent bacterial strains (Shapiro and 
Gutsche 2003). Furthermore, in efforts to elucidate SA 
metabolism Pastor et al. (2012) developed an LC–MS/MS 
method that enabled them to identify two conjugates: sali-
cylic glucosyl ester (SGE) and glucosyl salicylate (SAG). 
Their results also revealed that SA and its main glucosyl 
conjugates accumulate in Arabidopsis thaliana in a time-
dependent manner, in accordance with the up-regulation of 
SA-dependent defences following Pseudomonas syringae 
infection. In addition to SA signalling, Belles et al. (1999) 
found that gentisic acid, a product of SA hydroxylation, is 
a complementary pathogen-inducible signal that is essential 
for accumulation of several antifungal pathogenesis-related 
proteins in tomato. Both gentisic and salicylic acids were 
quantified in SA-treated chamomile by a rapid UPLC-MS/
MS method originally developed for analysing hydroxy-
benzoates and hydroxycinnamates in beverages (Gruz et al. 
2008; Kovacik et  al. 2009). SA was accurately quantified 
using deuterium-labelled internal standards of salicylic 
(3,4,5,6-[2H4]) and 4-hydroxybenzoic (2,3,5,6-[2H4]) acids 
to account for ESI–MS signal trends, matrix effects and 
potential extraction losses.

GC–MS has also been used to quantify SA, after deriva-
tisation (to enhance volatility and sensitivity) of the carbox-
ylic acid with diazomethane to form SA methylester (Scott 
and Yamamoto 1994). The disadvantage of this method 
is that it requires elaborate sample preparation, from ca. 
1  g FW of tissue, including anion exchange and prepara-
tive HPLC. In 2003, Engelberth and co-workers intro-
duced a method for SA and JA analysis based on collecting 
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derivatised and volatilised compounds on a polymeric 
adsorbent and GC-positive ion chemical ionisation-MS 
using only milligrams of plant tissue. This method was later 
used to explore changes in the metabolic profiles of SA, 
cinnamic acid, JA, IAA, ABA, unsaturated C18 fatty acids, 
12-oxo-phytodienoic acid, and the phytotoxin coronatine in 
Arabidopsis infected by P. syringae (Schmelz et al. 2004). 
However, this approach also requires both purification and 
derivatisation steps.

Strigolactones

Strigolactones (SLs) are the most recently described class 
of plant hormones. They were originally regarded as a fam-
ily of carotenoid-derived plant secondary metabolites (Xie 
et  al. 2010) with roles in signalling between organisms 
(allelochemicals). Initially, they were of interest due to 
their action as seed germination stimulants of the root para-
sitic allelopathic weeds Orobanche and Striga (Cook et al. 
1966, 1972). Seeds of these parasites germinate only when 
they perceive chemical signals produced by and released 
from the roots of other (host or nonhost) plants. This ger-
mination-inducing activity of SLs was the basis of a sensi-
tive SL bioassay using Striga and Orobanche seeds (Joel 
et  al. 1995), and very recently a fast convenient method 
for determining the germination rate of parasitic weeds 

seeds has been reported (Pouvreau et  al. 2013). In 2008, 
SLs were classified as a new group of plant signalling mol-
ecules with endogenous hormonal activity due to involve-
ment in the inhibition of shoot branching (Gomez-Roldan 
et al. 2008; Umehara et al. 2008). Earlier it was also found 
that they are able to stimulate hyphal branching in mycor-
rhizal fungi (Akiyama et al. 2005). To date, more than 20 
compounds in this family of sesquiterpene lactones have 
been identified from root exudates of various plant species 
(Tsuchiya and McCourt 2009; Xie et  al. 2010). The most 
well-known SLs are strigol and orobanchol (Fig. 7). Struc-
turally, all natural SLs contain a tricyclic lactone skeleton 
(cycles A, B and C) bound to a butenolide moiety (ring D) 
via an enol ether bond. The A and B rings bear various sub-
stituents (Zwanenburg et al. 2009).

A pioneering GC–MS approach for analysing SLs in 
plant samples was introduced by Yokota et al. (1998). How-
ever, this method required time-consuming purification of 
extracts and TMS derivatisation. Furthermore, some SLs 
partially decomposed during the procedures. An approach 
for analysing strigol heptafluorobutyrate derivatives 
obtained from extracts of Striga asiatica host plants (maize 
and proso millet) was subsequently developed (Siame 
et al. 1993), based on electron impact (EI) and both posi-
tive and negative chemical ionisation (CI) mass analyses 
of HPLC fractionated samples. This method avoided some 
of the previous problems, but the purification procedure 

Fig. 7   Natural strigolactones—
basic structure and the examples
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was still extremely tedious and labour intensive. Another 
two approaches for analysing SLs, based on LC–MS/MS, 
have been published, with detection limits (in MRM mode) 
ranging between 0.1 and 1 pg/μL of SLs (Sato et al. 2003, 
2005). Most recently, Xie et al. (2013) reported an LC–MS/
MS procedure allowing structural elucidation of 11 SLs in 
root exudates of tobacco and detection of four SLs in rice. 
Notably, no SL profiling has been reported to date.

Hormone profiling

Since it is becoming increasingly evident that hormones do 
not act separately, but have highly interactive physiological 
effects and mutually affect each other’s biosynthesis and 
metabolism, there is increasing interest in ‘hormone profil-
ing’, i.e. analysing hormones of several classes (together 
with their precursors and metabolites) in the same plant tis-
sue simultaneously. This greatly increases analytical com-
plexity as it requires methodology capable of quantitatively 
detecting chemically and structurally diverse substances 
rather than a single targeted group of plant hormones. Since 
many plant hormones are acidic, published methods have 
often focused on these classes of compounds (Müller et al. 
2002; Schmelz et  al. 2003; Durgbanshi et  al. 2005). Hor-
mone profiling was first successfully applied, by Chiwocha 
et al. (2003), in a study of thermodormancy where four CKs 
and 10 acidic plant hormones (IAA, ABA, ABAGE, 7′OH-
ABA, PA, DPA and four GAs) in 50–100 mg DW extracts 
of lettuce seeds were all measured by LC–MS, using a sin-
gle purification step and a 40 min chromatographic gradi-
ent. Pan et al. (2008) subsequently developed an LC–MS/
MS technique (requiring no purification or derivatisation) 
for simultaneous quantification of 17 plant hormones 
including auxins, CKs, ABA, GAs, JAs, salicylates and 
corresponding methyl esters in crude extracts of samples 
(50–100 mg) of Arabidopsis plants that had been mechani-
cally wounded or challenged with the fungal pathogen Bot-
rytis cinerea. Limits of quantification reportedly ranged 
from 0.01 to 10 pg/g FW. In addition, a fast LC–MS/MS 
method combined with an automatic liquid handling sys-
tem for SPE was recently used for simultaneous analysis of 
43 plant hormone substances, including CKs, auxins, ABA 
and GAs in the rice GA-signalling mutants gid1-3, gid2-
1 and slr1 to study relationships between changes in gene 
expression and hormone metabolism (Kojima et al. 2009). 
To enhance sensitivity, a nanoflow-LC–MS/MS approach 
has also been used to detect 14 plant hormones, following 
a two-step purification procedure, in extracts of Arabidop-
sis and tobacco seedlings (Izumi et al. 2009). The limit of 
detection was found to be in the sub-fmol range for most 
studied analytes. However, this method failed for the acidic 
plant hormones, especially GAs. Capillary electrophoresis 

with laser-induced fluorescence detection (CE–LIF) has 
also been applied in profiling, to simultaneously determine 
plant hormones containing carboxyl groups, including 
GA3, IAA, indole butyric acid (IBA), 1-naphthalene ace-
tic acid (NAA), 2,4-dichloro-phenoxy acetic acid (2,4-D), 
ABA and JA in crude extracts of banana samples (500 mg) 
without further purification (Chen et  al. 2011). Finally 
(for this summary), 20 plant growth substances (including 
IAA, ABA, CKs and structurally related purines) have been 
determined in single chromatographic runs (Farrow and 
Emery 2012). The methodology involved extraction from 
100  mg samples of Arabidopsis thaliana leaves, purifica-
tion and analysis by conventional HPLC with a fused core 
column. QTRAP mass analyzer has been utilised here for 
detection of selected analytes. Reported detection limits 
ranged from 2 pmol for zeatin-9-glucoside to 750 pmol for 
IAA. High-resolution MS (HR-MS) is not yet widely used 
for quantitative analysis of plant hormones, but will prob-
ably soon be employed for their routine quantification. An 
HR-MS approach has already been applied to identify and 
quantify a large number of endogenous phytohormones in 
tomato fruits and leaf tissues (Van Meulebroek et al. 2012). 
The cited authors selected eight phytohormones—GA3, 
IAA, ABA, JA, SA, zeatin (not mentioned if trans- or cis-
), BAP and epiBL—as representatives of the major hor-
monal classes, and applied a simple extraction procedure 
followed by UHPLC-Fourier Transform Orbitrap MS sepa-
ration and detection for hormonally profiling 100 mg FW 
samples of the tomato tissues. The samples were extracted 
in methanol:water:formic acid (75:20:5) over 12  h, ultra-
centrifuged, then injected directly into an UHPLC system 
equipped with C18 column of 2.1 × 50 mm diameter (par-
ticle size 1.8 μm) and coupled to a benchtop Orbitrap mass 
spectrometer, equipped with a heated electrospray ionisa-
tion source (HESI), operating in both positive and negative 
modes. This technique provided detection limits of the ana-
lytes ranging from 0.05 to 0.42 pg/μL. Moreover, full mass 
scans by the Orbitrap MS provided a dataset including 
information on hundreds of matrix compounds. Therefore, 
this metabolomic profiling approach might lead to the dis-
covery of compounds with no previously known hormonal 
activities or roles in plants. However, although HR-MS pro-
vides opportunities to use narrow mass windows to exclude 
interfering matrix compounds and selectively analyse sub-
stances (Kaufmann 2012), Van Meulebroek et  al. (2012) 
used a relatively broad mass window of 5 ppm, to ensure 
that no compounds would be completely undetected.

Conclusion and perspectives

Analysis of plant hormones is very challenging because 
they have extremely wide ranges of physicochemical 



69Planta (2014) 240:55–76	

1 3

properties, and plant tissues contain trace quantities of hor-
mones together with thousands of other substances at far 
higher levels. However, there have been great advances in 
analytical techniques used in diverse “life sciences” dur-
ing the last decade. LC–MS has become the most versatile, 
rapid, selective and sensitive technique available for iden-
tifying and quantifying small molecules (Pan et  al. 2008; 
Van Meulebroek et al. 2012). Thus, it is replacing all other 
approaches in plant hormone analysis. New technologies 
based on a unique ion transfer device designed to maxim-
ise ion transmission from the source to the mass analyzer, 
could further improve the sensitivity (typically the pri-
mary concern) of phytohormone measurements. Typical 
gains obtained using such device include generally 25-fold 
increases in peak areas and 10-fold increases in signal-to-
noise ratios, which are highly valuable for phytohormone 
quantifications. The next challenge could be to develop 
robust techniques for extending the breadth of profiling, 
including more phytohormone precursors and metabolites, 
as well as those of other signalling molecules in plants. 
LC–MS/MS methods may be particularly useful for this 
as they afford capabilities for simultaneously quantifying 
metabolites with diverse properties of both single and mul-
tiple phytohormone groups.

Even with further anticipated advances it will be 
extremely challenging to quantify all phytohormones and 
related compounds in a single LC–MS/MS run due to their 
high chemical diversity and the inherent difficulty in distin-
guishing numerous metabolites that may have very simi-
lar chromatographic properties, share the same mass and 
yield very similar fragments. The extremely high levels of 
matrix compounds typically present in plant extracts com-
pound the problem. However, additional orthogonal separa-
tion techniques have been recently introduced that provide 
high selectivity, further improve spectral quality, enhance 
the quality of acquired datasets and facilitate their interpre-
tation, thus surmounting some of the difficulties. Notably, 
ion mobility separation (Eugster et al. 2012) and MSE have 
been combined in a powerful new approach called high 
definition mass spectrometry (Sotelo-Silveira et  al. 2013), 
which could generate more precise datasets from explora-
tions of endogenous phytohormone levels and their changes 
during developmental processes in plants. The recent pro-
gress in analytical MS technologies could also enable tis-
sue- and cell-specific quantifications as well as analyses of 
levels of multiple hormones in single plant cells or subcel-
lular compartments.
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