Skip to main content
Log in

Energy depletion and not ROS formation is a crucial step of glucolipotoxicity (GLTx) in pancreatic beta cells

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

We have shown previously that genetic or pharmacological deletion of KATP channels protect against beta cell dysfunction induced by reactive oxygen species (ROS). Since it is assumed that glucolipotoxicity (GLTx) causes ROS production, we aimed to evaluate whether suppression of KATP channel activity can also prevent beta cell damage evoked by GLTx. We used an in vitro model of GLTx and measured distinct parameters of stimulus-secretion coupling. GLTx gradually induced disturbances of Ca2+ oscillations over 3 days. This impairment in Ca2+ dynamics was partially reversed in beta cells without functional KATP channels (SUR1−/−) and by the sulfonylurea gliclazide but not by tolbutamide. By contrast, the GLTx-induced suppression of glucose-induced insulin secretion could not be rescued by decreased KATP channel activity pointing to a direct interaction of GLTx with the secretory capacity. Accordingly, GLTx also suppressed KCl-induced insulin secretion. GLTx was not accompanied by decisively increased ROS production or enhanced apoptosis. Insulin content of beta cells was markedly reduced by GLTx, an effect not prevented by gliclazide. Since GLTx markedly diminished the mitochondrial membrane potential and cellular ATP content, lack of ATP is assumed to decrease insulin biosynthesis. The deleterious effect of GLTx is therefore caused by direct interference with the secretory capacity whereby reduction of insulin content is one important parameter. These findings deepen our understanding how GLTx damages beta cells and reveal that GLTx is disconnected from ROS formation, a notion important for targeting beta cells in the treatment of diabetes. Overall, GLTx-induced energy depletion may be a primary step in the cascade of events leading to loss of beta cell function in type-2 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

[Ca2+]c :

Cytosolic calcium concentration

2-OH-E+ :

2-Hydroxyethidium

DCF:

2′,7′-Dichlorofluorescein

DIV:

Days in vitro

GLTx:

Glucolipotoxicity

ROS:

Reactive oxygen species

SSC:

Stimulus-secretion coupling

T2DM:

Type 2 diabetes mellitus

ΔΨ:

Mitochondrial membrane potential

References

  1. Barlow J, Affourtit C (2013) Novel insights into pancreatic beta-cell glucolipotoxicity from real-time functional analysis of mitochondrial energy metabolism in INS-1E insulinoma cells. Biochem J 456(3):417–426. https://doi.org/10.1042/BJ20131002

    Article  CAS  PubMed  Google Scholar 

  2. Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW, Philipson LH (2003) Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J Biol Chem 278(11):9796–9801. https://doi.org/10.1074/jbc.M206913200

    Article  CAS  PubMed  Google Scholar 

  3. Brun T, Maechler P (2016) Beta-cell mitochondrial carriers and the diabetogenic stress response. Biochim Biophys Acta 1863(10):2540–2549. https://doi.org/10.1016/j.bbamcr.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  4. Cerqueira FM, Chausse B, Baranovski BM, Liesa M, Lewis EC, Shirihai OS, Kowaltowski AJ (2016) Diluted serum from calorie-restricted animals promotes mitochondrial beta-cell adaptations and protect against glucolipotoxicity. FEBS J 283(5):822–833. https://doi.org/10.1111/febs.13632

    Article  CAS  PubMed  Google Scholar 

  5. Drews G, Bauer C, Edalat A, Düfer M, Krippeit-Drews P (2015) Evidence against a Ca(2+)-induced potentiation of dehydrogenase activity in pancreatic beta-cells. Pflugers Arch 467(11):2389–2397. https://doi.org/10.1007/s00424-015-1707-3

    Article  CAS  PubMed  Google Scholar 

  6. Dubois M, Vacher P, Roger B, Huyghe D, Vandewalle B, Kerr-Conte J, Pattou F, Moustaid-Moussa N, Lang J (2007) Glucotoxicity inhibits late steps of insulin exocytosis. Endocrinology 148(4):1605–1614. https://doi.org/10.1210/en.2006-1022

    Article  CAS  PubMed  Google Scholar 

  7. Dufer M, Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G (2004) Oscillations of membrane potential and cytosolic Ca(2+) concentration in SUR1(-/-) beta cells. Diabetologia 47(3):488–498. https://doi.org/10.1007/s00125-004-1348-0

    Article  CAS  PubMed  Google Scholar 

  8. Gier B, Krippeit-Drews P, Sheiko T, Aguilar-Bryan L, Bryan J, Düfer M, Drews G (2009) Suppression of KATP channel activity protects murine pancreatic beta cells against oxidative stress. J Clin Invest 119(11):3246–3256. https://doi.org/10.1172/JCI38817

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gilon P, Arredouani A, Gailly P, Gromada J, Henquin JC (1999) Uptake and release of Ca2+ by the endoplasmic reticulum contribute to the oscillations of the cytosolic Ca2+ concentration triggered by Ca2+ influx in the electrically excitable pancreatic B-cell. J Biol Chem 274(29):20197–20205. https://doi.org/10.1074/jbc.274.29.20197

    Article  CAS  PubMed  Google Scholar 

  10. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  11. Harmon JS, Bogdani M, Parazzoli SD, Mak SS, Oseid EA, Berghmans M, Leboeuf RC, Robertson RP (2009) Beta-cell-specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db mice. Endocrinology 150(11):4855–4862. https://doi.org/10.1210/en.2009-0708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hasnain SZ, Borg DJ, Harcourt BE, Tong H, Sheng YH, Ng CP, Das I, Wang R, Chen AC, Loudovaris T, Kay TW, Thomas HE, Whitehead JP, Forbes JM, Prins JB, McGuckin MA (2014) Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nat Med 20(12):1417–1426. https://doi.org/10.1038/nm.3705

    Article  CAS  PubMed  Google Scholar 

  13. Hasnain SZ, Prins JB, McGuckin MA (2016) Oxidative and endoplasmic reticulum stress in beta-cell dysfunction in diabetes. J Mol Endocrinol 56(2):R33–R54. https://doi.org/10.1530/JME-15-0232

    Article  CAS  PubMed  Google Scholar 

  14. Hu Y, Xu XH, He K, Zhang LL, Wang SK, Pan YQ, He BS, Feng TT, Mao XM (2014) Genome-wide analysis of DNA methylation variations caused by chronic glucolipotoxicity in beta-cells. Exp Clin Endocrinol Diabetes 122(2):71–78. https://doi.org/10.1055/s-0033-1363231

    Article  CAS  PubMed  Google Scholar 

  15. Jayaram B, Syed I, Singh A, Subasinghe W, Kyathanahalli CN, Kowluru A (2011) Isoprenylcysteine carboxyl methyltransferase facilitates glucose-induced Rac1 activation, ROS generation and insulin secretion in INS 832/13 beta-cells. Islets 3(2):48–57. https://doi.org/10.4161/isl.3.2.15016

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kawai J, Ohara-Imaizumi M, Nakamichi Y, Okamura T, Akimoto Y, Matsushima S, Aoyagi K, Kawakami H, Watanabe T, Watada H, Kawamori R, Nagamatsu S (2008) Insulin exocytosis in Goto-Kakizaki rat beta-cells subjected to long-term glinide or sulfonylurea treatment. Biochem J 412(1):93–101. https://doi.org/10.1042/BJ20071282

    Article  CAS  PubMed  Google Scholar 

  17. Kohnke R, Mei J, Park M, York DA, Erlanson-Albertsson C (2007) Fatty acids and glucose in high concentration down-regulates ATP synthase beta-subunit protein expression in INS-1 cells. Nutr Neurosci 10(5-6):273–278. https://doi.org/10.1080/10284150701745910

    Article  PubMed  Google Scholar 

  18. Kowluru A, Matti A (2012) Hyperactivation of protein phosphatase 2A in models of glucolipotoxicity and diabetes: potential mechanisms and functional consequences. Biochem Pharmacol 84(5):591–597. https://doi.org/10.1016/j.bcp.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  19. Lacraz G, Figeac F, Movassat J, Kassis N, Coulaud J, Galinier A, Leloup C, Bailbe D, Homo-Delarche F, Portha B (2009) Diabetic beta-cells can achieve self-protection against oxidative stress through an adaptive up-regulation of their antioxidant defenses. PLoS One 4(8):e6500. https://doi.org/10.1371/journal.pone.0006500

    Article  PubMed  PubMed Central  Google Scholar 

  20. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231. https://doi.org/10.1021/tx00026a012

    Article  CAS  PubMed  Google Scholar 

  21. Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20(3):463–466. https://doi.org/10.1016/0891-5849(96)02051-5

    Article  CAS  PubMed  Google Scholar 

  22. Li N, Stojanovski S, Maechler P (2012) Mitochondrial hormesis in pancreatic beta cells: does uncoupling protein 2 play a role? Oxidative Med Cell Longev 2012:740849

    Google Scholar 

  23. Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89(3):799–845. https://doi.org/10.1152/physrev.00030.2008

    Article  CAS  PubMed  Google Scholar 

  24. Lim S, Rashid MA, Jang M, Kim Y, Won H, Lee J, Woo JT, Kim YS, Murphy MP, Ali L, Ha J, Kim SS (2011) Mitochondria-targeted antioxidants protect pancreatic beta-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity. Cell Physiol Biochem 28(5):873–886. https://doi.org/10.1159/000335802

    Article  CAS  PubMed  Google Scholar 

  25. Liu Z, Stanojevic V, Brindamour LJ, Habener JF (2012) GLP1-derived nonapeptide GLP1(28-36)amide protects pancreatic beta-cells from glucolipotoxicity. J Endocrinol 213(2):143–154. https://doi.org/10.1530/JOE-11-0328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lyon AW, Kisilevsky R (1990) Inhibition of the initiation of hepatic protein synthesis during ethionine mediated ATP depletion in vivo: modification to ribosomal subunits, evidence of impaired ternary complex formation and a subcellular redistribution of eIF-2 alpha. Biochim Biophys Acta 1049(2):158–170. https://doi.org/10.1016/0167-4781(90)90036-2

    Article  CAS  PubMed  Google Scholar 

  27. Marhfour I, Moulin P, Marchandise J, Rahier J, Sempoux C, Guiot Y (2009) Impact of Sur1 gene inactivation on the morphology of mouse pancreatic endocrine tissue. Cell Tissue Res 335(3):505–515. https://doi.org/10.1007/s00441-008-0733-2

    Article  CAS  PubMed  Google Scholar 

  28. Martens GA, Cai Y, Hinke S, Stange G, Van de Casteele M, Pipeleers D (2005) Glucose suppresses superoxide generation in metabolically responsive pancreatic beta cells. J Biol Chem 280(21):20389–20396. https://doi.org/10.1074/jbc.M411869200

    Article  CAS  PubMed  Google Scholar 

  29. Matsunaga T, Li S, Adachi T, Joo E, Gu N, Yamazaki H, Yasuda K, Kondoh T, Tsuda K (2014) Hyperoxia reverses glucotoxicity-induced inhibition of insulin secretion in rat INS-1 beta cells. Biosci Biotechnol Biochem 78(5):843–850. https://doi.org/10.1080/09168451.2014.905175

    Article  CAS  PubMed  Google Scholar 

  30. McLeod LE, Proud CG (2002) ATP depletion increases phosphorylation of elongation factor eEF2 in adult cardiomyocytes independently of inhibition of mTOR signalling. FEBS Lett 531(3):448–452. https://doi.org/10.1016/S0014-5793(02)03582-2

    Article  CAS  PubMed  Google Scholar 

  31. Nagamatsu S, Nakamichi Y, Yamamura C, Matsushima S, Watanabe T, Ozawa S, Furukawa H, Ishida H (1999) Decreased expression of t-SNARE, syntaxin 1, and SNAP-25 in pancreatic beta-cells is involved in impaired insulin secretion from diabetic GK rat islets: restoration of decreased t-SNARE proteins improves impaired insulin secretion. Diabetes 48(12):2367–2373. https://doi.org/10.2337/diabetes.48.12.2367

    Article  CAS  PubMed  Google Scholar 

  32. Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583(1):9–24. https://doi.org/10.1113/jphysiol.2007.135871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ostenson CG, Gaisano H, Sheu L, Tibell A, Bartfai T (2006) Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. Diabetes 55(2):435–440. https://doi.org/10.2337/diabetes.55.02.06.db04-1575

    Article  CAS  PubMed  Google Scholar 

  34. Poitout V, Hagman D, Stein R, Artner I, Robertson RP, Harmon JS (2006) Regulation of the insulin gene by glucose and fatty acids. J Nutr 136(4):873–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 29(3):351–366. https://doi.org/10.1210/er.2007-0023

    Article  CAS  PubMed  Google Scholar 

  36. Prause M, Christensen DP, Billestrup N, Mandrup-Poulsen T (2014) JNK1 protects against glucolipotoxicity-mediated beta-cell apoptosis. PLoS One 9(1):e87067. https://doi.org/10.1371/journal.pone.0087067

    Article  PubMed  PubMed Central  Google Scholar 

  37. Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J (2000) Sur1 knockout mice. A model for K(ATP) channel-independent regulation of insulin secretion. J Biol Chem 275(13):9270–9277. https://doi.org/10.1074/jbc.275.13.9270

    Article  CAS  PubMed  Google Scholar 

  38. Somesh BP, Verma MK, Sadasivuni MK, Mammen-Oommen A, Biswas S, Shilpa PC, Reddy AK, Yateesh AN, Pallavi PM, Nethra S, Smitha R, Neelima K, Narayanan U, Jagannath MR (2013) Chronic glucolipotoxic conditions in pancreatic islets impair insulin secretion due to dysregulated calcium dynamics, glucose responsiveness and mitochondrial activity. BMC Cell Biol 14(1):31. https://doi.org/10.1186/1471-2121-14-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Supale S, Li N, Brun T, Maechler P (2012) Mitochondrial dysfunction in pancreatic beta cells. Trends Endocrinol Metab 23(9):477–487. https://doi.org/10.1016/j.tem.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  40. Zhou L, Cai X, Han X, Ji L (2014) P38 plays an important role in glucolipotoxicity-induced apoptosis in INS-1 cells. J Diabetes Res 2014:834528

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft (GD; Dr225/11-1) and the Brazilian National Council of Technological and Scientific Development (CNPq) (MBO; scholarship number 490162/2013-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Drews.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barroso Oquendo, M., Layer, N., Wagner, R. et al. Energy depletion and not ROS formation is a crucial step of glucolipotoxicity (GLTx) in pancreatic beta cells. Pflugers Arch - Eur J Physiol 470, 537–547 (2018). https://doi.org/10.1007/s00424-017-2094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2094-8

Keywords

Navigation