Skip to main content

Advertisement

Log in

Claudins: vital partners in transcellular and paracellular transport coupling

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Tight junction (TJ) strands between epithelial or endothelial cells are formed by claudins, a protein family comprising up to 27 members in mammals. Although many more proteins are involved in the formation of TJ complexes, claudins are the only TJ proteins that are able to form TJ-like strands when overexpressed in cells that are normally devoid of TJs (e.g., fibroblasts). Within the paracellular cleft, the extracellular domains of claudins provide the matrix that seals the paracellular pathway. However, within this matrix, some claudins act as channels that specifically allow certain ions to cross this barrier. Barrier-forming claudins predominate in epithelia that enclose compartments containing harmful ion concentrations (e.g., H+ in the stomach, K+ in the inner ear endolymph) or high pressures (e.g., in blastocoel or brain ventricle formation during development). Here, even seemingly minor alterations in TJ composition may be detrimental to the organism. In contrast, in many transporting epithelia, channel-forming claudins are essential for transcellular and paracellular transport coupling. Mutation or knockout of channel-forming claudins in these tissues brings both transcellular and paracellular transports to a standstill. The present review will present examples to illustrate the importance of single members of the claudin family in general epithelial transport physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976

    Article  CAS  PubMed  Google Scholar 

  2. Anderson JM, Van Itallie CM, Fanning AS (2004) Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 16:140–145

    Article  CAS  PubMed  Google Scholar 

  3. Angelow S, Schneeberger EE, Yu AS (2007) Claudin-8 expression in renal epithelial cells augments the paracellular barrier by replacing endogenous claudin-2. J Membr Biol 215:147–159

    Article  CAS  PubMed  Google Scholar 

  4. Bagnat M, Cheung ID, Mostov KE, Stainier DY (2007) Genetic control of single lumen formation in the zebrafish gut. Nat Cell Biol 9:954–960

    Article  CAS  PubMed  Google Scholar 

  5. Barmeyer C, Fromm M, Schulzke JD (2017) Active and passive involvement of claudins in the chronically inflamed intestine. Pflügers Arch (present volume)

  6. Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, Beyer LA, Halsey K, Gardner DJ, Wilcox ER, Rasmussen J, Anderson JM, Dolan DF, Forge A, Raphael Y, Camper SA, Friedman TB (2003) Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12:2049–2061

    Article  CAS  PubMed  Google Scholar 

  7. Bäsler K, Brandner JM (2017) Tight junctions in skin inflammation. Pflügers Arch(present volume)

  8. Brison DR, Leese HJ (1993) Role of chloride transport in the development of the rat blastocyst. Biol Reprod 48:692–702

    Article  CAS  PubMed  Google Scholar 

  9. Bronstein JM, Popper P, Micevych PE, Farber DB (1996) Isolation and characterization of a novel oligodendrocyte-specific protein. Neurol 47:772–778

    Article  CAS  Google Scholar 

  10. Claude P (1978) Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol 39:219–232

    Article  CAS  PubMed  Google Scholar 

  11. Claude P, Goodenough DA (1973) Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol 58:390–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Damkier HH, Brown PD, Praetorius J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93:1847–1892

    Article  CAS  PubMed  Google Scholar 

  13. Eichner M, Protze J, Piontek A, Krause G, Piontek J (2017) Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflügers Arch (present volume)

  14. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153:263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gong Y, Hou Jianghui (2017) Claudins in barrier and transport function—the kidney. Pflügers Arch (present volume)

  18. Gow A, Davies C, Southwood CM, Frolenkov G, Chrustowski M, Ng L, Yamauchi D, Marcus DC, Kachar B (2004) Deafness in claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci 24:7051–7062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Green CR, Bergquist PR (1982) Phylogenetic relationships within the invertebrata in relation to the structure of septate junctions and the development of occluding junctional types. J Cell Sci 53:279–305

    Google Scholar 

  20. Günzel D, Fromm M (2012) Claudins and other tight junction proteins. Compreh Physiol 2:1819–1852

    Google Scholar 

  21. Günzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569

    Article  PubMed  PubMed Central  Google Scholar 

  22. Günzel D, Stuiver M, Kausalya PJ, Haisch L, Krug SM, Rosenthal R, Meij IC, Hunziker W, Fromm M, Müller D (2009) Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. J Cell Sci 122:1507–1517

    Article  PubMed  Google Scholar 

  23. Günzel D, Zakrzewski S, Schmid T, Pangalos M, Wiedenhoeft J, Blasse C, Ozboda C, Krug SM (2012) From TER to trans- and paracellular resistance: lessons from impedance spectroscopy. Ann N Y Acad Sci 1257:142–151

    Article  PubMed  Google Scholar 

  24. Hashimoto Y, Yagi K, Kondoh M (2017) Roles of the first-generation claudin binder, Clostridium perfringens enterotoxin, in the diagnosis and claudin-targeted treatment of epithelium-derived cancers. Pflügers Arch (present volume)

  25. Hayashi D, Tamura A, Tanaka H, Yamazaki Y, Watanabe S, Suzuki K, Suzuki K, Sentani K, Yasui W, Rakugi H, Isaka Y, Tsukita S (2012) Deficiency of claudin-18 causes paracellular H+ leakage, up-regulation of interleukin-1beta, and atrophic gastritis in mice. Gastroenterology 142:292–304

    Article  CAS  PubMed  Google Scholar 

  26. Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM (2006) Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 6:581–588

    Article  CAS  PubMed  Google Scholar 

  27. Hou J, Shan Q, Wang T, Gomes AS, Yan Q, Paul DL, Bleich M, Goodenough DA (2007) Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J Biol Chem 282:17114–17122

    Article  CAS  PubMed  Google Scholar 

  28. Inai T, Kobayashi J, Shibata Y (1999) Claudin-1 contributes to the epithelial barrier function in MDCK cells. Eur J Cell Biol 78:849–855

    Article  CAS  PubMed  Google Scholar 

  29. Jovov B, Van Itallie CM, Shaheen NJ, Carson JL, Gambling TM, Anderson JM, Orlando RC (2007) Claudin-18: a dominant tight junction protein in Barrett’s esophagus and likely contributor to its acid resistance. Am J Physiol Gastrointest Liver Physiol 293:G1106–G1113

    Article  CAS  PubMed  Google Scholar 

  30. Katahira J, Sugiyama H, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N (1997) Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo. J Biol Chem 272:26652–26658

    Article  CAS  PubMed  Google Scholar 

  31. Kirk A, Campbell S, Bass P, Mason J, Collins J (2010) Differential expression of claudin tight junction proteins in the human cortical nephron. Nephrol Dial Transplant 25:2107–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kitajiri SI, Furuse M, Morita K, Saishin-Kiuchi Y, Kido H, Ito J, Tsukita S (2004) Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hear Res 187:25–34

    Article  CAS  PubMed  Google Scholar 

  33. Kitajiri S, Miyamoto T, Mineharu A, Sonoda N, Furuse K, Hata M, Sasaki H, Mori Y, Kubota T, Ito J, Furuse M, Tsukita S (2004) Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 117:5087–5096

    Article  CAS  PubMed  Google Scholar 

  34. Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886

    CAS  PubMed  Google Scholar 

  35. Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20:3713–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krug SM, Günzel D, Conrad MP, Rosenthal R, Fromm A, Amasheh S, Schulzke JD, Fromm M (2012) Claudin-17 forms tight junction channels with distinct anion selectivity. Cell Mol Life Sci 69:2765–2778

    Article  CAS  PubMed  Google Scholar 

  37. Krug SM, Schulzke JD, Fromm M (2014) Tight junction, selective permeability, and related diseases. Semin Cell Devel Biol 36:166–176

    Article  CAS  Google Scholar 

  38. Loh YH, Christoffels A, Brenner S, Hunziker W, Venkatesh B (2004) Extensive expansion of the claudin gene family in the teleost fish, Fugu rubripes. Genome Res 14:1248–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lowery LA, Sive H (2005) Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products. Development 132:2057–2067

    Article  CAS  PubMed  Google Scholar 

  40. Manejwala FM, Cragoe EJ Jr, Schultz RM (1989) Blastocoel expansion in the preimplantation mouse embryo: role of extracellular sodium and chloride and possible apical routes of their entry. Dev Biol 133:210–220

    Article  CAS  PubMed  Google Scholar 

  41. Markov AG, Veshnyakova A, Fromm M, Amasheh M, Amasheh S (2010) Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine. J Comp Physiol B 180:591–598

    Article  CAS  PubMed  Google Scholar 

  42. Matsumoto K, Imasato M, Yamazaki Y, Tanaka H, Watanabe M, Eguchi H, Nagano H, Hikita H, Tatsumi T, Takehara T, Tamura A, Tsukita S (2014) Claudin 2 deficiency reduces bile flow and increases susceptibility to cholesterol gallstone disease in mice. Gastroenterology 147:1134–1145

    Article  CAS  PubMed  Google Scholar 

  43. Milatz S, Breiderhoff T (2017) One gene, two paracellular ion channels—claudin-10 in the kidney. Pflügers Arch(present volume)

  44. Moriwaki K, Tsukita S, Furuse M (2007) Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos. Dev Biol 312:509–522

    Article  CAS  PubMed  Google Scholar 

  45. Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, Furuse K, Sasaki H, Fujimura A, Imai M, Kusano E, Tsukita S, Furuse M (2010) Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A 107:8011–8016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakano Y, Kim SH, Kim HM, Sanneman JD, Zhang Y, Smith RJ, Marcus DC, Wangemann P, Nessler RA, Banfi B (2009) A claudin-9-based ion permeability barrier is essential for hearing. PLoS Genet 5:e1000610

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Notarianni E, Hirst BH (1999) Electrogenic sodium transport mediated by an amiloride-sensitive conductance in a porcine trophectoderm cell line. Placenta 20:149–154

    Article  CAS  PubMed  Google Scholar 

  49. Osanai M, Takasawa A, Murata M, Sawada N (2017) Claudins in cancer: bench to bedside. Pflügers Arch (present volume)

  50. Pei L, Solis G, Nguyen MT, Kamat N, Magenheimer L, Zhuo M, Li J, Curry J, McDonough AA, Fields TA, Welch WJ, Yu AS (2016) Paracellular epithelial sodium transport maximizes energy efficiency in the kidney. J Clin Invest 126:2509–2518

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rosenthal R, Milatz S, Krug SM, Oelrich B, Schulzke JD, Amasheh S, Günzel D, Fromm M (2010) Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 123:1913–1921

    Article  CAS  PubMed  Google Scholar 

  52. Rosenthal R, Günzel D, Krug SM, Schulzke JD, Fromm M, Yu AS (2016) Claudin-2-mediated cation and water transport share a common pore. Acta Physiol (Oxf). doi:10.1111/apha.12742

    Google Scholar 

  53. Saitoh Y, Suzuki H, Tani K, Nishikawa K, Irie K, Ogura Y, Tamura A, Tsukita S, Fujiyoshi Y (2015) Tight junctions. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Science 347:775–778

    Article  CAS  PubMed  Google Scholar 

  54. Schnermann J, Huang Y, Mizel D (2013) Fluid reabsorption in proximal convoluted tubules of mice with gene deletions of claudin-2 and/or aquaporin1. Am J Physiol Renal Physiol 305:F1352–F1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schultz SG (1972) Electrical potential differences and electromotive forces in epithelial tissues. J Gen Physiol 59:794–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shigemoto T (1999) Two types of external Cl-dependent Cl channels and one type of stretch receptor cation channel contribute to the formation of isotonic blastocoel fluid in early medaka fish embryo. Jpn J Physiol 49:243–255

    Article  CAS  PubMed  Google Scholar 

  57. Shinoda T, Shinya N, Ito K, Ohsawa N, Terada T, Hirata K, Kawano Y, Yamamoto M, Kimura-Someya T, Yokoyama S, Shirouzu M (2016) Structural basis for disruption of claudin assembly in tight junctions by an enterotoxin. Sci Rep 6:33632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sirotkin H, Morrow B, Saint-Jore B, Puech A, Das Gupta R, Patanjali SR, Skoultchi A, Weissman SM, Kucherlapati R (1997) Identification, characterization, and precise mapping of a human gene encoding a novel membrane-spanning protein from the 22q11 region deleted in velo-cardio-facial syndrome. Genomics 42:245–251

    Article  CAS  PubMed  Google Scholar 

  59. Staehelin LA (1973) Further observations of the fine structure of freeze-cleaved tight junctions. J Cell Sci 13:763–786

    CAS  PubMed  Google Scholar 

  60. Stevenson BR, Anderson JM, Goodenough DA, Mooseker MS (1988) Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. J Cell Biol 107:2401–2408

    Article  CAS  PubMed  Google Scholar 

  61. Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A, Ishitani R, Dohmae N, Tsukita S, Nureki O, Fujiyoshi Y (2014) Crystal structure of a claudin provides insight into the architecture of tight junctions. Science 344:304–307

    Article  CAS  PubMed  Google Scholar 

  62. Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H, Hayashi H, Suzuki Y, Noda T, Furuse M, Tsukita S (2008) Megaintestine in claudin-15-deficient mice. Gastroenterology 134:523–534

    Article  CAS  PubMed  Google Scholar 

  63. Tamura A, Hayashi H, Imasato M, Yamazaki Y, Hagiwara A, Wada M, Noda T, Watanabe M, Suzuki Y, Tsukita S (2011) Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine. Gastroenterology 140:913–923

    Article  CAS  PubMed  Google Scholar 

  64. Tanaka H, Takechi M, Kiyonari H, Shioi G, Tamura A, Tsukita S (2015) Intestinal deletion of claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice. Gut 64:1529–1538

    Article  CAS  PubMed  Google Scholar 

  65. Tanaka H, Yamamoto Y, Kashihara H, Yamazaki Y, Tani K, Fujiyoshi Y, Mineta K, Takeuchi K, Tamura A, Tsukita S (2016) Claudin-21 has a paracellular channel role at tight junctions. Mol Cell Biol 36:954–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van Itallie C, Fanning AS, Anderson JM (2003) Reversal of charge selectivity in cation or anion selective epithelial lines by expression of different claudins. Am J Physiol Cell Physiol 286:F1078–F1084

    Article  Google Scholar 

  67. Van Itallie CM, Rogan S, Yu AS, Seminario-Vidal L, Holmes J, Anderson JM (2006) Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol 291:F1288–F1299

    Article  CAS  PubMed  Google Scholar 

  68. Wada M, Tamura A, Takahashi N, Tsukita S (2013) Loss of claudins 2 and 15 from mice causes defects in paracellular Na+ flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology 144:369–380

    Article  CAS  PubMed  Google Scholar 

  69. Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, Belyantseva I, Ben-Yosef T, Liburd NA, Morell RJ, Kachar B, Wu DK, Griffith AJ, Friedman TB (2001) Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104:165–172

    Article  CAS  PubMed  Google Scholar 

  70. Will C, Breiderhoff T, Thumfart J, Stuiver M, Kopplin K, Sommer K, Günzel D, Querfeld U, Meij IC, Shan Q, Bleich M, Willnow TE, Müller D (2010) Targeted deletion of murine Cldn16 identifies extra- and intrarenal compensatory mechanisms of Ca2+ and Mg2+ wasting. Am J Physiol Renal Physiol 298:F1152–F1161

    Article  CAS  PubMed  Google Scholar 

  71. Zdebik AA, Wangemann P, Jentsch TJ (2009) Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda) 24:307–316

    Article  CAS  Google Scholar 

  72. Zeissig S, Burgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56:61–72

    Article  CAS  PubMed  Google Scholar 

  73. Zhang J, Piontek J, Wolburg H, Piehl C, Liss M, Otten C, Christ A, Willnow TE, Blasig IE, Abdelilah-Seyfried S (2010) Establishment of a neuroepithelial barrier by Claudin5a is essential for zebrafish brain ventricular lumen expansion. Proc Natl Acad Sci U S A 107:1425–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhao Y, Doroshenko PA, Alper SL, Baltz JM (1997) Routes of Cl transport across the trophectoderm of the mouse blastocyst. Dev Biol 189:148–160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Michael Fromm for his untiring readiness for discussions and his critical reading of this manuscript. Financial support by the Deutsche Forschungsgemeinschaft (DFG grant GU447/14-1) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothee Günzel.

Additional information

This article is published as part of the Special Issue on “Claudins—physiology, pathophysiology, and clinical relevance.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günzel, D. Claudins: vital partners in transcellular and paracellular transport coupling. Pflugers Arch - Eur J Physiol 469, 35–44 (2017). https://doi.org/10.1007/s00424-016-1909-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1909-3

Keywords

Navigation