Skip to main content

Advertisement

Log in

Endotoxin elimination in sepsis: physiology and therapeutic application

  • Overview
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

The present review summarizes key papers on the elimination of endotoxin in human.

Results

Lipopolysaccharides (LPS) are extremely strong stimulators of inflammatory reactions, act at very low concentrations, and are involved in the pathogenesis of sepsis and septic shock. Elimination of LPS is vital; therefore, therapeutic detoxification of LPS may offer new perspectives. Multiple mechanisms eliminate LPS in human comprising molecules that bind LPS and prevent it from signaling, enzymes that degrade and detoxify LPS, processes that inactivate LPS following uptake into the reticulo-endothelial system, and mechanisms of adaptation that modify target cells responding to LPS. These mechanisms are powerful and detoxification capacity adapts as required. Results of therapeutic interventions aiming at the removal of LPS by medication (immunoglobulins) or extracorporeal means are controversial. At least in part, animal experiments revealed increased survival. Human trials confirmed the positive effects on parameters of secondary importance, but not on morbidity or survival which was attributed to the heterogeneity of patients suffering from consequences of severe infectious diseases and sepsis.

Conclusion

The hypothesis of LPS-driven inflammatory processes remains very attractive. However, few therapeutic yet immature options have been developed to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greisman SE, Hornick RB (1969) Comparative pyrogenic reactivity of rabbit and man to bacterial endotoxin. Proc Soc Exp Biol Med 131:1154–1158

    CAS  PubMed  Google Scholar 

  2. Bentala H, Verweij WR, Huizinga-Van der Vlag A, van Loenen-Weemaes AM, Meijer DK, Poelstra K (2002) Removal of phosphate from lipid A as a strategy to detoxify lipopolysaccharide. Shock 18:561–566

    Article  PubMed  Google Scholar 

  3. Buttenschoen K, Fathimani K, Carli Buttenschoen D (2010) Effect of major abdominal surgery on the host immune response to infection. Curr Opin Infect Dis 23:259–267

    Article  CAS  PubMed  Google Scholar 

  4. Munford RS (2005) Detoxifying endotoxin: time, place and person. J Endotoxin Res 11:69–84

    CAS  PubMed  Google Scholar 

  5. Fischer MB, Prodeus AP, Nicholson-Weller A, Ma M, Murrow J, Reid RR, Warren HB, Lage AL, Moore FD Jr, Rosen FS, Carroll MC (1997) Increased susceptibility to endotoxin shock in complement C3- and C4-deficient mice is corrected by C1 inhibitor replacement. J Immunol 159:976–982

    CAS  PubMed  Google Scholar 

  6. Buttenschoen K, Berger D, Strecker W, Carli Buttenschoen D, Stenzel K, Pieper T, Beger HG (2000) Association of endotoxemia and production of antibodies against endotoxins following multiple injuries. J Trauma 48:918–923

    Article  CAS  PubMed  Google Scholar 

  7. Gazzano-Santoro H, Meszaros K, Birr C, Carroll SF, Theofan G, Horwitz AH, Lim E, Aberle S, Kasler H, Parent JB (1994) Competition between rBPI23, a recombinant fragment of bactericidal/permeability-increasing protein, and lipopolysaccharide (LPS)-binding protein for binding to LPS and Gram-negative bacteria. Infect Immun 62:1185–1191

    CAS  PubMed  Google Scholar 

  8. von der Mohlen MA, van Deventer SJ, Levi M, van den Ende B, Wedel NI, Nelson BJ, Friedmann N, Ten Cate JW (1995) Inhibition of endotoxin-induced activation of the coagulation and fibrinolytic pathways using a recombinant endotoxin-binding protein (rBPI23). Blood 85:3437–3443

    PubMed  Google Scholar 

  9. Vesy CJ, Kitchens RL, Wolfbauer G, Albers JJ, Munford RS (2000) Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from Gram-negative bacterial membranes. Infect Immun 68:2410–2417

    Article  CAS  PubMed  Google Scholar 

  10. Domingues MM, Castanho MA, Santos NC (2009) rBPI(21) promotes lipopolysaccharide aggregation and exerts its antimicrobial effects by (hemi)fusion of PG-containing membranes. PLoS ONE 4:e8385

    Article  PubMed  Google Scholar 

  11. Golenbock DT, Hampton RY, Qureshi N, Takayama K, Raetz CR (1991) Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J Biol Chem 266:19490–19498

    CAS  PubMed  Google Scholar 

  12. Weinrauch Y, Katz SS, Munford RS, Elsbach P, Weiss J (1999) Deacylation of purified lipopolysaccharides by cellular and extracellular components of a sterile rabbit peritoneal inflammatory exudate. Infect Immun 67:3376–3382

    CAS  PubMed  Google Scholar 

  13. Feulner JA, Lu M, Shelton JM, Zhang M, Richardson JA, Munford RS (2004) Identification of acyloxyacyl hydrolase, a lipopolysaccharide-detoxifying enzyme, in the murine urinary tract. Infect Immun 72:3171–3178

    Article  CAS  PubMed  Google Scholar 

  14. Verweij WR, Bentala H, Huizinga-Van der Vlag A, Miek vL-W, Kooi K, Meijer DK, Poelstra K (2004) Protection against an Escherichia coli-induced sepsis by alkaline phosphatase in mice. Shock 22:174–179

    Article  CAS  PubMed  Google Scholar 

  15. Bol-Schoenmakers M, Fiechter D, Raaben W, Hassing I, Bleumink R, Kruijswijk D, Maijoor K, Tersteeg-Zijderveld M, Brands R, Pieters R (2010) Intestinal alkaline phosphatase contributes to the reduction of severe intestinal epithelial damage. Eur J Pharmacol 633:71–77

    Article  CAS  PubMed  Google Scholar 

  16. Ge Y, Ezzell RM, Tompkins RG, Warren HS (1994) Cellular distribution of endotoxin after injection of chemically purified lipopolysaccharide differs from that after injection of live bacteria. J Infect Dis 169:95–104

    CAS  PubMed  Google Scholar 

  17. Knolle PA, Gerken G (2000) Local control of the immune response in the liver. Immunol Rev 174:21–34

    Article  CAS  PubMed  Google Scholar 

  18. Ruiter DJ, van der Meulen J, Brouwer A, Hummel MJ, Mauw BJ, van der Ploeg JC, Wisse E (1981) Uptake by liver cells of endotoxin following its intravenous injection. Lab Invest 45:38–45

    CAS  PubMed  Google Scholar 

  19. Jackson GD, Dai Y, Sewell WA (2000) Bile mediates intestinal pathology in endotoxemia in rats. Infect Immun 68:4714–4719

    Article  CAS  PubMed  Google Scholar 

  20. Jirillo E, Caccavo D, Magrone T, Piccigallo E, Amati L, Lembo A, Kalis C, Gumenscheimer M (2002) The role of the liver in the response to LPS: experimental and clinical findings. J Endotoxin Res 8:319–327

    CAS  PubMed  Google Scholar 

  21. Satoh M, Ando S, Shinoda T, Yamazaki M (2008) Clearance of bacterial lipopolysaccharides and lipid A by the liver and the role of argininosuccinate synthase. Innate Immun 14:51–60

    Article  CAS  PubMed  Google Scholar 

  22. Vreugdenhil AC, Rousseau CH, Hartung T, Greve JW, van’t V, Buurman WA (2003) Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J Immunol 170:1399–1405

    CAS  PubMed  Google Scholar 

  23. Levels JH, Abraham PR, van den Ende A, van Deventer SJ (2001) Distribution and kinetics of lipoprotein-bound endotoxin. Infect Immun 69:2821–2828

    Article  CAS  PubMed  Google Scholar 

  24. Diks SH, van Deventer SJ, Peppelenbosch MP (2001) Lipopolysaccharide recognition, internalisation, signalling and other cellular effects. J Endotoxin Res 7:335–348

    CAS  PubMed  Google Scholar 

  25. Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721

    Article  CAS  PubMed  Google Scholar 

  26. Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811–815

    Article  CAS  PubMed  Google Scholar 

  27. Kitchens RL, Munford RS (1998) CD14-dependent internalization of bacterial lipopolysaccharide (LPS) is strongly influenced by LPS aggregation but not by cellular responses to LPS. J Immunol 160:1920–1928

    CAS  PubMed  Google Scholar 

  28. Bunnell E, Lynn M, Habet K, Neumann A, Perdomo CA, Friedhoff LT, Rogers SL, Parrillo JE (2000) A lipid A analog, E5531, blocks the endotoxin response in human volunteers with experimental endotoxemia. Crit Care Med 28:2713–2720

    Article  CAS  PubMed  Google Scholar 

  29. Jaber BL, Pereira BJ (1997) Extracorporeal adsorbent-based strategies in sepsis. Am J Kidney Dis 30:S44–S56

    Article  CAS  PubMed  Google Scholar 

  30. Anspach FB (2001) Endotoxin removal by affinity sorbents. J Biochem Biophys Meth 49:665–681

    Article  CAS  PubMed  Google Scholar 

  31. Srimal S, Surolia N, Balasubramanian S, Surolia A (1996) Titration calorimetric studies to elucidate the specificity of the interactions of polymyxin B with lipopolysaccharides and lipid A. Biochem J 315(Pt 2):679–686

    CAS  PubMed  Google Scholar 

  32. Kawatsu M, Wada J, Kitano M, Ogino E, Sakurai H, Furuyoshi S, Tani N (2006) Effects of a new extracorporeal system using CTR on mortality and inflammatory responses to bacterial toxin-induced multiple organ dysfunction syndrome in rabbits. Blood Purif 24:327–334

    Article  CAS  PubMed  Google Scholar 

  33. Taniguchi T, Hirai F, Takemoto Y, Tsuda K, Yamamoto K, Inaba H, Sakurai H, Furuyoshi S, Tani N (2006) A novel adsorbent of circulating bacterial toxins and cytokines: the effect of direct hemoperfusion with CTR column for the treatment of experimental endotoxemia. Crit Care Med 34:800–806

    CAS  PubMed  Google Scholar 

  34. Bracht H, Hauser B, Ivanyi Z, Asfar P, Ehrmann U, Brueckner UB, Georgieff M, Radermacher P, Buttenschoen K (2009) Efficacy of an extracorporeal endotoxin adsorber system during hyperdynamic porcine endotoxemia. Eur Surg Res 43:53–60

    Article  CAS  PubMed  Google Scholar 

  35. Kojika M, Sato N, Yaegashi Y, Suzuki Y, Suzuki K, Nakae H, Endo S (2006) Endotoxin adsorption therapy for septic shock using polymyxin B-immobilized fibers (PMX): evaluation by high-sensitivity endotoxin assay and measurement of the cytokine production capacity. Ther Apher Dial 10:12–18

    Article  CAS  PubMed  Google Scholar 

  36. Ebihara I, Nakamura T, Shimada N, Shoji H, Koide H (1998) Effect of hemoperfusion with polymyxin B-immobilized fiber on plasma endothelin-1 and endothelin-1 mRNA in monocytes from patients with sepsis. Am J Kidney Dis 32:953–961

    Article  CAS  PubMed  Google Scholar 

  37. Blomquist S, Gustafsson V, Manolopoulos T, Pierre L (2009) Clinical experience with a novel endotoxin adsorbtion device in patients undergoing cardiac surgery. Perfusion 24:13–17

    Article  CAS  PubMed  Google Scholar 

  38. Ullrich H, Jakob W, Frohlich D, Rothe G, Prasser C, Drobnik W, Taeger K, Meier-Hellmann A, Reinhart K, Zimmermann M, Schmitz G (2001) A new endotoxin adsorber: first clinical application. Ther Apher 5:326–334

    Article  CAS  PubMed  Google Scholar 

  39. Reinhart K, Meier-Hellmann A, Beale R, Forst H, Boehm D, Willatts S, Rothe KF, Adolph M, Hoffmann JE, Boehme M, Bredle DL (2004) Open randomized phase II trial of an extracorporeal endotoxin adsorber in suspected Gram-negative sepsis. Crit Care Med 32:1662–1668

    Article  CAS  PubMed  Google Scholar 

  40. Buttenschoen K, Kornmann M, Berger D, Leder G, Beger HG, Vasilescu C (2008) Endotoxemia and endotoxin tolerance in patients with ARDS. Langenbecks Arch Surg 393:473–478

    Article  PubMed  Google Scholar 

  41. Nakamura T, Fujiwara N, Sato E, Kawagoe Y, Ueda Y, Yamada S, Koide H (2009) Effect of polymyxin B-immobilized fiber hemoperfusion on serum high mobility group box-1 protein levels and oxidative stress in patients with acute respiratory distress syndrome. ASAIO J 55:395–399

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura T, Yamagishi SI (2010) PEDF and septic shock. Curr Mol Med 10:312–316

    Article  CAS  PubMed  Google Scholar 

  43. Marshall JC, Foster D, Vincent JL, Cook DJ, Cohen J, Dellinger RP, Opal S, Abraham E, Brett SJ, Smith T, Mehta S, Derzko A, Romaschin A (2004) Diagnostic and prognostic implications of endotoxemia in critical illness: results of the MEDIC Study. J Infect Dis 190:527–534

    Article  CAS  PubMed  Google Scholar 

  44. Yachamaneni S, Yushin G, Yeon SH, Gogotsi Y, Howell C, Sandeman S, Phillips G, Mikhalovsky S (2010) Mesoporous carbide-derived carbon for cytokine removal from blood plasma. Biomaterials 31:4789–4794

    Article  CAS  PubMed  Google Scholar 

  45. Bertok L (2005) Radio-detoxified endotoxin activates natural immunity: a review. Pathophysiology 12:85–95

    Article  CAS  PubMed  Google Scholar 

  46. Hurley JC, Levin J (1999) The relevance of endotoxin detection in sepsis. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in health and disease. Marcel Dekker, New York, pp 841–854

    Google Scholar 

  47. Hurley JC (2003) Endotoxemia and Gram-negative bacteremia as predictors of outcome in sepsis: a meta-analysis using ROC curves. J Endotoxin Res 9:271–279

    PubMed  Google Scholar 

Download references

Acknowledgments

No funding was received for doing this overview. Klaus Buttenschoen, Peter Radermacher, and Hendrik Bracht are authors of the publication Eur Surg Res (2009) 43:53–60, “Efficacy of an Extracorporeal Endotoxin Adsorber System during Hyperdynamic Porcine Endotoxemia”. This study was supported by a research grant of Fresenius Company, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Buttenschoen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttenschoen, K., Radermacher, P. & Bracht, H. Endotoxin elimination in sepsis: physiology and therapeutic application. Langenbecks Arch Surg 395, 597–605 (2010). https://doi.org/10.1007/s00423-010-0658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-010-0658-6

Keywords

Navigation