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Abstract
Divisive normalization is a model of canonical computation of brain circuits. We demonstrate that two cascaded divisive
normalization processors (DNPs), carrying out intensity/contrast gain control and elementary motion detection, respectively,
can model the robust motion detection realized by the early visual system of the fruit fly. We first introduce a model of
elementary motion detection and rewrite its underlying phase-based motion detection algorithm as a feedforward divisive
normalization processor. We then cascade the DNP modeling the photoreceptor/amacrine cell layer with the motion detection
DNP. We extensively evaluate the DNP for motion detection in dynamic environments where light intensity varies by orders
of magnitude. The results are compared to other bio-inspired motion detectors as well as state-of-the-art optic flow algorithms
under natural conditions. Our results demonstrate the potential of DNPs as canonical building blocks modeling the analog
processing of early visual systems. The model highlights analog processing for accurately detecting visual motion, in both
vertebrates and invertebrates. The results presented here shed new light on employing DNP-based algorithms in computer
vision.

Keywords Motion detection · Divisive normalization · Drosophila · Phase processing · Gain control

1 Introduction

Robust motion detection is the key first processing step for
insects to safely navigate complex environments. Current
state-of-the-art computer vision algorithms achievegoodper-
formance under demanding navigation conditions. However,
under extreme conditions, their performance often quickly
degrades (Mathis et al. 2016; Li et al. 2018). Surprisingly,
however, the early vision system of the fruit fly is remark-
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ably accurate at detecting motion in complex environments
under a vast range of light intensity conditions. The logic of
computation in the fly visual system is substantially differ-
ent from the traditional methods of computation employed
by current man-made counterparts. This enables the fly to
navigate through terrains with rapid light intensity changes,
even though it only possesses a single photoreceptor type
(van Hateren 1997).

Modern optic flow algorithms may take seconds or even
minutes to compare two consecutive frames (Baker et al.
2011; Menze et al. 2018). While the processing speed was
recently improved upon by using deep neural network-based
algorithms, the cost of training time and the required large
amounts of training data remain excessive. For the low level
tasks such as elementary motion detection, fly vision is far
more efficient, faster and more robust without loss of pre-
cision during events that are critical for survival, such as
rapid predator attacks taking place on short time scales (hun-
dreds of milliseconds). Strikingly, in fruit flies, like in many
other insects and mammals, processing delays are mini-
mal. It only takes 3 synapses from photoreceptors to reach
the neurons responsible for detecting low-level directional
motion with minimal energy expenditure (Sy et al. 2013)
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yyz :(see Fig. 1A); an efficient computational principle of
motion detection seems to be at work.

This calls for developing biologically informed robust
motion detection algorithms. Two half-century-old compu-
tational theories of motion detection, namely the Reichardt
motion detector (Hassenstein and Reichardt 1956) and
Barlow–Levick motion detector (Barlow and Levick 1965),
have dominated the field. Recent studies have unveiled the
basic anatomical structure of the fly’s motion detection path-
ways (Yang and Clandinin 2018; Borst et al. 2020). While
these and other studies did rapidly advance our understand-
ing of motion detection in the early vision system of the
fruit fly, the underlying models have yet to be success-
ful in capturing the surprising robustness of fly vision. In
Lazar et al. (2016), we compared the two prevailing models
of fly motion detection with a more complex phase-based
algorithm that we devised. Under different luminance and
contrast conditions,wedemonstrated that (i) none of the three
algorithms could fully account for motion in natural scenes,
and (ii) the detection of motion was not robust at low lumi-
nance/contrast levels. This suggests fundamental limits in
current modeling approaches to visual motion detection that
are narrowly focused on simple feedforward motion detec-
tion mechanisms. The latter do not match the vastly superior
performance of the motion detection circuits in flies.

There is strong evidence showing that divisive normal-
ization may contribute to gain control in olfaction (Olsen
et al. 2010), vertebrate retina (Beaudoin et al. 2007), primary
visual cortex (Carandini and Heeger 1994), primary audi-
tory cortex (Rabinowitz et al. 2011) and sensory integration
(Ohshiro et al. 2017). Feedforward divisive normalization
has been proposed as a model of canonical neural compu-
tation (Carandini and Heeger 2012), and used in nonlinear
image representation for achieving perceptual advantages
(Lyu and Simoncelli 2008). This computation is key to many
sensory processing circuits underlying adaptation and atten-
tion. Feedforward normalization is also frequently used in
deep neural networks (Goodfellow et al. 2016; Ioffe and
Szegedy 2015).

In Lazar et al. (2020), we presented a class of divisive nor-
malization processors (DNPs) that operate in the time and the
space-timedomain.ADNPexample is shown in the left block
of Fig. 1B. Each DNP channel exhibits Volterra processors
(VP) in a feedforward and local feedback divisive normal-
ization branch. In addition, a multi-input Volterra processor
(MVP) provides global feedback. With input from all chan-
nel outputs, the MVP provides feedback into each channel.
This type of MIMO circuit architecture has been observed in
many neural systems (Lazar et al. 2022b).

Stimuli processed by DNPs can be faithfully recovered
from the output (Lazar et al. 2022a), suggesting that no
information is lost during processing.We posit that a feedfor-
ward/feedback divisive normalization processor is embedded

in every layer of the motion detection pathway (see Fig. 1A),
including the lamina, medulla and a single layer in the lobula.

In this paper,wedemonstrate that twokeyprocessing steps
in the motion detection pathway, including the elementary
motion detector and the intensity and contrast gain control
mechanism, can be effectively modeled with DNPs. Two
cascaded DNPs depicted in Fig. 1B implementing intensity
and contrast gain control and elementary motion detection,
respectively, can model the robust motion detection realized
by the early visual system of the fruit fly brain. This suggests
that, despite its nonlinearity, the class of DNPs can be used
as computational building blocks in early sensory processing
(Lazar et al. 2023).

This paper is organized as follows. In Sect. 2, we model
the local phase-based motion detector devised in Lazar et al.
(2016) using DNPs, and present an improved method for
extracting motion velocity and derive an accuracy condition.
In Sect. 3, we characterize the I/O of the DNP modeling
the intensity and contrast gain control of the photorecep-
tor/amacrine cell layer, and evaluate its performance. In
Sect. 4, we extensively evaluate the DNP for motion detec-
tion and the end-to-end motion detection performance with
intensity and contrast gain control in natural, dynamic envi-
ronments.

2 Modelingmotion detection with divisive
normalization processors

In this section, wemodel the local phase-basedmotion detec-
tor (Lazar et al. 2016) as a DNP. This formulation provides a
new insight into the structure of the local phase-basedmotion
detector, and how phase computation can be carried out in
neural circuits. With the DNPmodel of motion detection, we
candirectly relate the phase-basedmotiondetector to existing
bio-inspired motion detection models such as the Reichardt
motion detector (Hassenstein and Reichardt 1956) and the
motion energy model (Adelson and Bergen 1985). We then
provide a new way for extracting both direction and velocity
information as well as a new estimate for motion, and dis-
cuss the condition for the estimate to be accurate. Finally, we
illustrate the motion detector’s sensitivity to brightness and
contrast levels and demonstrate its limitations.

2.1 Divisive normalization underlying the local
phase-basedmotion detector

Let (x0, y0) be an arbitrary point of reference of the visual
field. The Fourier transform of the stimulus u(x, y, t) pro-
jected onto the Gaussian window function centered at (x0,
y0) and denoted by wx0,y0(x, y) = e−(

(x−x0)2+(y−y0)2
)
/2σ 2

is given by
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Fig. 1 End-to-endmotion detection pathways in the early vision system
of the fruit fly and a cascade of two DNPs modeling the motion detec-
tion circuit. A Canonical neural circuits with components embedded
into the motion detection pathway. Canonical circuits in each neuropil
are indicated by wide, long cylinders. Flat cylinders represent the inter-
section of canonical circuits with processing layers such as strata in
the Medulla and layers in the Lobula. Thin, long cylinders represent
the neurites of (pink) photoreceptors, (blue) Lamina output neurons,

(yellow) ON-pathway neurons, (violet) OFF-pathway neurons, (green)
neurites of wide-field neurons that innervate multiple canonical circuits
in the same stratum/layer. B A cascade of two DNP blocks modeling
the motion detection pathways in the fly eye. The first DNP block (left)
models gain control of visual stimuli in the photoreceptor/amacrine cell
layer, corresponding to the left cylinder in (A). The second block (right)
models the motion detection in the Medulla/Lobula, corresponding to
the right cylinder in (A)

Ux0,y0(ωx , ωy, t) =
∫

R2
u(x, y, t)wx0,y0(x, y)

e− j(ωx (x−x0)+ωy(y−y0))dxdy

= ax0,y0(ωx , ωy, t) + jbx0,y0(ωx , ωy, t)

= Ax0,y0(ωx , ωy, t)e
jφx0,y0 (ωx ,ωy ,t),

(1)

where ax0,y0(ωx , ωy, t) and bx0,y0(ωx , ωy, t), respectively,
are outputs of a quadrature pair of Gabor receptive fields with
input stimulus u(x, y, t). Furthermore, Ax0,y0(ωx , ωy, t) and
φx0,y0(ωx , ωy, t) are, respectively, the local amplitude and
local phase defined at location (x0, y0) as a function of the
frequency pair (ωx , ωy) and time (t).

The local phase of the stimulus at position (x0, y0) and
frequency (ωx , ωy) defined in Eq. (1), can be computed as
(see the Appendix A.1 for the definition of arctan2)

φx0,y0(ωx , ωy, t)

= arctan2
(
bx0,y0(ωx , ωy, t), ax0,y0(ωx , ωy, t)

)
, (2)

The time derivative of the local phase φx0,y0(ωx , ωy, t)
amounts to

dφx0,y0

dt
(ωx , ωy, t) = T 1u(x, y, t)

T 2u(x, y, t)
, (3)
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where

T 1u(x, y, t) = ax0,y0(ωx , ωy, t)
dbx0,y0
dt

−bx0,y0(ωx , ωy, t)
dax0,y0
dt

(4)

and

T 2u(x, y, t) = a2x0,y0(ωx , ωy, t) + b2x0,y0(ωx , ωy, t) + ε.

(5)

Here ε is a small constant added to avoid division by zero. In
otherwords, the changeof phase at location (x0, y0) as a func-
tion of the frequency (ωx , ωy) is a feedforward DNP. Thus,
the phase-based motion detector circuit briefly reviewed in
Appendix A.2 is a Divisive Normalization Processor. Note
also that in Appendix A.2, the time derivative of the local
phase φx0,y0(ωx , ωy, t) is directly computed in (36).

We also note the striking similarity between the functional
form of T1 and the elaborated Reichardt detector, briefly
reviewed in Appendix A.1, long considered to be a model
of elementary motion detection in insects (Hassenstein and
Reichardt 1956). The numerator also takes the exact form of
opponent energy in the motion energy model (Adelson and
Bergen 1985) when the temporal filter is properly chosen.
Note that the motion energy model is equivalent to the elabo-
rated Reichardt detector (van Santen and Sperling 1985). The
former has been widely used as a model of motion detector
in the mammalian brain (Grzywacz et al. 1990; Simoncelli
and Heeger 1998; Burge and Geisler 2015).

Due to the nature of second-order Volterra processing
of the Reichardt and the motion energy detectors, their
responses strongly depend on the brightness and contrast
of the input visual scene. While the motion energy detector
extracts the amplitude of a visual scene for certain spatio-
temporal frequencies, the divisive normalization processor
extracts the gradient of phase at certain spatial frequencies
that are independent of the amplitude. Note that processing
of the latter is still spatio-temporal.

2.2 Estimating themagnitude of velocity and the
direction of motion

In Lazar et al. (2016), we devised a criterion to detect motion
and the direction of motion based on the Phase Motion Indi-
cator (PMI), a construct built upon the Radon transform of
the derivative of phase across all frequencies. We extend the
construct here to extract both the direction and velocity of
motion, and derive the condition when velocity can be esti-
mated accurately.

We first remind the reader about the method of computa-
tion of the Radon transform of the derivative of the phase.

We evaluate the Radon transform of
dφx0,y0

dt (ωx , ωy, t) over

a circular bounded domain C =
{
(ωx , ωy)|ω2

x + ω2
y ≤ r2

}

as

(
Rdφx0,y0

dt

)
(ρ, θ, t) =

∫

R

dφx0,y0
dt

(ρ cos θ + s sin θ, ρ sin θ

−s cos θ, t) ·
· 1C (ρ cos θ + s sin θ, ρ sin θ − s cos θ) ds,

(6)

where r , 0 ≤ r ≤ π rad/pixel is the maximum frequency and
π is themaximumbandwidth of the visual field. Furthermore,
−r ≤ ρ ≤ r , 0 ≤ θ < π , and

1C (ωx , ωy) =
{
1, if (ωx , ωy) ∈ C
0, otherwise.

(7)

Here, ρ and θ determines the line L over which the integral
is computed. ρ is the distance (can be both positive and neg-
ative) of the line L from the origin, and θ is the angle the
normal vector to L makes with the ωx -axis. s is the coordi-
nate on the line L with the origin set to the point with the
shortest distance to the origin.

The reason to use only the values of the derivative of phase
over the circular domain is to consider the same maximum
frequency r in all directions. As we will see later, this maxi-
mum frequency will determine the highest velocity that can
be correctly estimated.

If motion occurs around (x0, y0) at a velocity of v(t) =
(vx (t), vy(t)), the phase gradient is approximately

dφx0,y0

dt
(ωx , ωy, t) = −vx (t)ωx − vy(t)ωy

(see also Appendix A.2). Then,

(
Rdφx0,y0

dt

)
(ρ, θ, t) =

∫

R

[−vx (t) (ρ cos θ + s sin θ)

−vy(t) (ρ sin θ − s cos θ)
] ·

· 1C (ρ cos θ + s sin θ, ρ sin θ − s cos θ) ds.

(8)

We note that since

∫

R

s1C (ρ cos θ + s sin θ, ρ sin θ − s cos θ) ds = 0, (9)

we have

(
R
dφkl

dt

)
(ρ, θ, t) = ρ

(−vx (t) cos θ − vy(t) sin θ
) · c(ρ, θ)

= −ρ

√
v2x (t) + v2y(t) cos(θ

− arctan2(vy(t), vx (t))) · c(ρ, θ),

(10)
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where

c(ρ, θ) =
∫

R

1C (ρ cos θ + s sin θ, ρ sin θ − s cos θ) ds.

(11)

The PMI is defined as

PMIx0,y0(t) = max
θ∈[0,π)

∫ r

−r

∣∣∣∣
∣
(R dφkl

dt )(ρ, θ, t)

c(ρ, θ)

∣∣∣∣
∣
dρ, (12)

with

θ̂x0,y0(t) = argmax
θ∈[0,π)

∫ r

−r

∣∣∣∣∣
(R dφx0,y0

dt )(ρ, θ, t)

c(ρ, θ)

∣∣∣∣∣
dρ. (13)

If (10) holds, the PMI amounts to

PMIx0,y0(t) = 2
∫ r
0 ρ

√
v2x (t) + v2y(t)dρ

= r2
√

v2x (t) + v2y(t). (14)

Thus, the PMI is proportional to the magnitude of the motion
velocity if motion occurs around the point (x0, y0). Further-
more, the angle maximizing the PMI in (12) is given by (see
also Eq. (10))

θ̂x0,y0(t) = arctan2(vy(t), vx (t))moduloπ. (15)

Therefore, θ̂x0,y0(t) is the angle of motion. The direction of
motion along the angle θ̂x0,y0(t) is determined by the sign
of (R dφkl

dt )(ρ, θ̂x0,y0 , t) for ρ > 0. According to (10), if this

sign is −1, then the direction of motion is θ̂x0,y0(t). If this
sign is 1, then the direction of motion is θ̂x0,y0(t) + π .

It is important to recognize that the planar structure in
dφx0,y0

dt is limited to certain frequencies, due to phase wrap-
ping. For example, translation along the x-axis between two
consecutive frames by k units will result in a phase shift at
frequency ωx by kωx . If kωx > π , then the detected phase
change is indistinguishable from kωx modulo 2π . This is the
reason why we use only the values of the derivative of phase
restricted in a circular domain. Thus, the maximum velocity
ofmotion that can be accurately extracted is kr ≤ π or k ≤ π

r
in pixels per frame, where r is the maximum frequency ωx

can take within the domain C .
In the neural circuit of early visual system of the fruit fly

brain, the inputs and all processing are in the analog domain.
That is, neurons communicate through graded potential val-
ues rather than spikes. Therefore, in such an analog circuit,
phase aliasing does not occur.

2.3 Intensity and contrast level sensitivity of local
phase-basedmotion detectors

In this section, we demonstrate the effectiveness of the
motion detector operating on visual stimuli with awide range
of brightness and contrast levels.We then show that its perfor-
mance will be limited by howwell visual stimuli are encoded
in the photoreceptors.

We first tested the phase-based motion detector using a
video sequence of the change detection dataset (Goyette et al.
2012). Fig. 2(top row) shows 5 representative frames of the
original monochrome video sequence. From this sequence,
we constructed a video sequence in which the light intensity
was artificially increases by a factor of 10 after every 100
frames (see Appendix B for the detailed procedure). A sam-
ple frame for each brightness level of the new video sequence
is depicted in Fig. 2(2nd row). The pixels of the frames in
the first and second rows of Fig. 2 are in one-to-one corre-
spondence.

Example results of evaluating the local phase-based
motion detection algorithm are shown in Fig. 2(2nd row).
The red arrows indicate the motion detected at the chosen
time instance.

In the next example, by increasing the Michelson contrast
(Michelson 1927) of the video sequence with a fixed bright-
ness level,we tested the performance of the local phase-based
motion detector under different contrast levels. We created
a video sequence in which the local contrast was artifi-
cially increased by a factor of 2 after every 100 frames (see
Appendix B for the detailed procedure). A sample frame at
different contrast levels for the video sequence is depicted in
Fig. 2(3rd row). Red arrows indicate the motion detected at
the chosen time instance.

Figure 2 demonstrates that the local phase-based motion
detector can robustly detect motion emerging in visual fields
with a wide range of brightness and contrast levels. The
underlying assumption here is that the light sensor is ideal
and has no saturation level. In reality, fly photoreceptors have
a limited dynamic range. Once the stimulus is large enough,
the output of a photoreceptor becomes saturated. This leaves
no room for a motion detector to operate accurately. For
example, the response of fly photoreceptors (and vertebrate
cones) to different brightness levels typically follows a sig-
moid (Sterling and Laughlin 2015). In Fig. 3 after encoding
the video recording with a typical sigmoidal function with
a linear range covering 2 orders of magnitudes, the motion
detector can no longer detect motion robustly at brightness
saturation levels.
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Fig. 2 Phase-based motion detector operating on a visual stimulus
under different brightness and contrast levels. (top row) The original
video sequence with 8-bit pixel precision (Goyette et al. 2012). 5 rep-
resentative frames of the video sequence are displayed. (2nd row) Each
of the 5 frames exhibits one of the five light intensity levels that are

increasing by a factor of 10 in each column. The detected motion is
indicated by the red arrows. (3rd row) Each of the 5 frames exhibits one
of the five contrast levels that are increasing by a factor of 2 in each
column (see the text for more details). The detected motion is indicated
by the red arrows

Fig. 3 Motion detection applied onto the same video sequence as in the second row of Fig. 2 after preprocessing by a sigmoidal function. The
motion detector can no longer detect motion at very low and very high brightness levels

3 Modeling intensity and contrast gain
control with divisive normalization
processors

In order for the motion detector described in Sect. 2 to oper-
ate in a dynamically changing environment with awide range
of light intensity and contrast levels, there is a need for con-
trolling the output range of the photoreceptors (Sterling and
Laughlin 2015). In this section, we present a DNP modeling
the intensity and contrast gain control at the photorecep-
tor/amacrine cell layer in the fruit fly lamina.

3.1 Divisive normalization processors modeling the
photoreceptor/amacrine cell layer

Photoreceptors alone (see Fig. 1) cannot achieve effective
intensity and contrast gain control if they operate indepen-
dently. To incorporate spatial information, neurons inter-
connecting photoreceptors in a neighborhood are needed.

Amacrine cells are a perfect candidate. They are interneurons
local to the Lamina neuropil, and their processes innervate
multiple cartridges. They form reciprocal synapses with pho-
toreceptors in these cartridges.

To model the interaction of photoreceptor axon terminals
and amacrine cells, we have introduced divisive normaliza-
tion processors in the space-time domain (Lazar et al. 2020).
Figure 4 depicts a schematic diagram of the spatio-temporal
DNP modeling the photoreceptor/amacrine cell layer. Here,
the spatio-temporal DNP consists of parallel temporal DNPs
with the added cross-channel feedback normalization/gain
control provided by the MVP blocks. The temporal DNP
blocks model the local photoreceptor/amacrine cell inter-
action and the MVP blocks model the spatio-temporal
photoreceptor/amacrine cell feedback in a restricted spatial
neighborhood of the photoreceptor/amacrine cell layer.

Given the input to each of the photoreceptors ui (t), i =
1, 2, . . . , N , the output of the spatio-temporalDNPvi (t), i =
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Fig. 4 A diagram of the spatio-temporal DNP modeling the photore-
ceptor/amacrine cell layer. The DNP consists of N channels. In channel
i , the input ui (t) is processed by two Volterra Processors (VPs), T 1 and
T 2, and fed into a division unit. The output vi (t) is processed by a third
VP T 3 and fed into the same division unit. Outputs from channels in
a neighbourhood are jointly processed by a Multi-input Volterra Pro-
cessor (MVP) and fed into the division units of all the corresponding
channels. The black arrow inputs to the division unit are passed to the
numerator, and the red arrow inputs are summed in the denominator

1, 2, . . . , N , satisfies the equations:

vi (t) = T 1ui

T 2ui + T 3vi + L4v
, (16)

for i = 1, 2, . . . , N , where

(
T lui

)
(t) = bl +

∫

R

hl1(s)u
i (t − s)ds

+
∫

R2
hl2(s1, s2)

ui (t − s1)u
i (t − s2)ds1ds2, l = 1, 2,

(17)
(
T 3vi

)
(t) = b3 +

∫

R

h31(s)v
i (t − s)ds

+
∫

R2
h32(s1, s2)

vi (t − s1)v
i (t − s2)ds1ds2, (18)

and

(L4v)(t) = b4 +
N∑

i=1

(∫

R

hi41 (s)vi (t − s)ds

)

+
N∑

i=1

N∑

j=1

(∫

R2
hi j42 (s1, s2)v

i (t − s1)v
j (t − s2)ds1ds2

)
,

(19)

with v(t) = [
v1(t), v2(t), . . . , vN (t)

]T
. Here, bl , l =

1, 2, 3, 4, are zero’th-order Volterra kernels, hl1, l = 1, 2, 3,
and hi41 , i = 1, 2, . . . , N , are first-order Volterra kernels,

and hl2, l = 1, 2, 3, and hi j42 , i, j = 1, 2, . . . , N , are second-
order Volterra kernels.

In what follows, we will evaluate the I/O mapping of each
DNP type, building upon the ones shown in Fig. 4. We first
consider a temporal DNP block with only the feedforward
terms. The diagram of the feedforward DNP blocks, shown
in Fig. 4, is described by the I/O pair (ui , vi ) and

vi (t) = T 1ui

T 2ui
. (20)

For an input with constant intensity value I , the steady state
response of the DNP is given by

vi (I ) = a0 + a1 I + a2 I 2

c0 + c1 I + c2 I 2
, (21)

where a0 = b1, a1 = ∫
R
h11(t)dt , a2 = ∫

R2 h12(t1, t2)dt1dt2
are, respectively, the DC components of the first and second-
order Volterra kernels of T 1, and c0 = b2, c1 = ∫

R
h21(t)dt ,

c2 = ∫
R2 h22(t1, t2)dt1dt2 are, respectively, the DC compo-

nents of the first and second-order Volterra kernels of T 2. For
simplicity, to ensure that the denominator is always positive,
we also assume that the coefficients a0, a1, a2, c0, c1, c2 are
positive. We consider vi (I ) to be normalized and to take val-
ues between 0 and 1. This can be achieved by working with
c2/a2 ·vi (I ) or simply with vi (I ) by setting c2 = a2. Conse-
quently, the steady state response of a temporal feedforward
DNP is a sigmoidal function of log10(I )with an output range
between 0 and 1 (see also Appendix C.1). The steady-state
response curve is shown in Fig. 5A for a few values of the
a2/a1 ratio. We note that the slope of the sigmoid gradually
increases from a first-order Volterra kernel (a2 = 0) to a
second-order Volterra kernel (a1 = 0). Here, by choosing
c1 ≥ a1, we ensured that vi (I ) is a monotonically increasing
function (see also Appendix C.1).

By adding the local-feedback term T 3vi , we obtain the
DNP block with feedforward and local feedback depicted in
Fig. 4. The output of this temporal DNP can be expressed as

vi (t) = T 1ui

T 2ui + T 3vi
, i = 1, 2, . . . , N . (22)

Its steady-state response is given by

vi (I ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−C+
√

C2−4d1A
2d1

if d2 = 0,

− 1
3d2

(
d1 + D −1+√−3

2 + 	0

D −1+√−3
2

)
if d2 �= 0,	 > 0,

− 1
3d2

(
d1 + D + 	0

D

)
if d2 �= 0,	 ≤ 0

(23)
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Fig. 5 The steady-state response curve as a function of the parameters
of a temporal DNP. a For the feedforward DNP block shown in Fig. 4,
increasing the ratio between a2 and a1 increases the slope of the sig-

moid. b For the DNP block with feedforward and local feedback as
shown in Fig. 4, increasing the feedback strength decreases the slope
of the sigmoid. Dashed lines indicate the 0.1 and 0.9 levels

where

A = −(a0 + a1 I + a2 I
2), (24)

C = (c0 + d0 + c1 I + c2 I
2), (25)

D = 3

√
	1 + √−	

2
, (26)

	 = 4	3
0 − 	2

1

27d22
, (27)

	0 = d21 − 3d2C, (28)

	1 = 2d31 − 9d2d1C + 27d22 A, (29)

with d0 = b3, d1 = ∫
R
h31(s)ds and d2 = ∫

R2 h32(s1, s2)
ds1ds2. Again, we assume that the coefficients di > 0, i =
1, 2, 3. The effect of the feedback on the steady-state
response is depicted in Fig. 5B. By increasing d1 (and/or
d2), the slope of the sigmoid decreases.

Combined with the ratio between a1 and a2, we see that a
temporal DNP with feedforward and local feedback exhibits
a range of gradients of the sigmoid for different parameter
choices. This key feature underlies the contrast gain control
mechanism exerted by DNPs.

Finally, the output of each channel also depends on the
global feedback generated by the MVPs. The L4v term in
the denominator of Eq. (16) leads to a shift of the steady-
state response curve to the left or right (see Fig. 6 and the
discussion below) depending on the strength of the global
feedback, that in turn, depends on the inputs to all channels.

In Fig. 6, we depict the mapping of a 16×16 image block
at three different light intensity levels, with a factor of 10
between each two consecutive levels. They are shown under
the I -axis in both Fig. 6A and B. Without the MVP feedback

term, the steady-state response curve of each pixel is fixed
on the blue continuous curve for all three light intensity lev-
els (see Fig. 6A). With the MVP, the mapping shifts to the
orange curve for the image patch scaled by a factor of 10,
and to the green curve for the image patch scaled by a factor
of 100. The respective output of the DNPs without or with
MVP are shown on the right of Fig. 6A and B, respectively.
Figure 7(2nd and 3rd column) shows the outputs of the DNP
with the same parameters without and with MVP, respec-
tively, processing an entire image at 3 different brightness
levels.

3.2 Adaptive feedback intensity gain control

From the analysis of the previous section, if the input is scaled
up by a factor, the output ofL4vmust be scaled up by approx-
imately the same amount. However, since the value of the
output is restricted between 0 and 1, scaling up the MVP
feedback is necessary.

By noticing the role that theMVP plays in the I/O curve of
the DNP, we devised a DNP with a dynamic feedback term
controlling the I/O curve:

vi (t) = T 1ui

T 2ui + T 3vi + w
, (30)

where

dw

dt
= α

[
L4v(t) − 0.5(b4 + r1 + r2)

]
, (31)

with α > 0, r1 = ∑N
i=1

∫
R
hi4(t)dt and r2 = ∑N

i=1
∑N

j=1∫
R2 hi j4(t1, t2)dt1dt2. Eq. (31) centers the steady-state the
outputs of the DNP channels to a mean of 0.5, the middle
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Fig. 6 The effect of the MVP feedback. A The steady-state response
curve of the DNPwithout globalMVP feedback. The single curve maps
three 16× 16 image patches at different brightness levels (bottom) into
the output on the right.BWith theMVP, the steady-state response curve

shifts to the orange curve when mapping the image patch in the middle
and to the green curve when mapping the image patch on the right. This
allows the DNP to map a larger range of light intensity values onto the
linear part the response curve, increasing the local contrast

point of the sigmoid curve. Consequently, the output of the
photoreceptor will be distributed on both sides of the center
of the sigmoid and will mostly operate in the linear range of
the sigmoid.

Figure 8 shows a schematic diagram of the DNP intro-
duced above. We note that Eq. (31) suggests an additional
processor in the feedback loop. Such a feedback loop may
well be implemented in the molecular domain. For exam-
ple, photoreceptors operate at a baseline intracellular calcium
concentration level. Calcium accumulation can cause this
baseline to increase by a factor of more than 1,000 and
thereby shift the response curve of the photoreceptor (Song
et al. 2012; Sterling and Laughlin 2015).

Figure 7(4th column) displays the output of the adaptive
feedback DNP for the inputs in Fig. 7(1st column). We note
that the output of this DNP is approximately the same for
all 3 inputs with different brightness levels. The DNP also
enhances the contrast at the edges.

4 Evaluation of motion detection with gain
control preprocessing

In this section, we combine the results in the previous two
sections, and model the overall motion detection of the fruit
fly early visual system consisting of the retina, lamina and
medulla (see Fig. 1A) with a cascade of two DNP process-
ing blocks, as shown in Fig. 1B. The DNP in the first block
models the intensity and contrast gain control at the photore-
ceptors/amacrine cells layer. The second block consists of a
DNP for detecting phase changes followed by a phase-based
motion detector. This block models the elementary motion
detection by the fruit flymedulla/lobula T4/T5 neurons using
local phase information.

4.1 Evaluation of motion detection with DNPs

Existing benchmark optic flow datasets are not suitable for
evaluating phase-base motion detection algorithms. They
either have very few frames (Baker et al. 2011; Geiger et al.
2012; Dosovitskiy et al. 2015) or have a too large displace-
ment between frames (Butler et al. 2012; Mayer et al. 2016)
to allow phase changes to be correctly estimated.

In what follows, we will evaluate the phase-based motion
detector and compare its performance with other algorithms
using videos captured by the authors in a local park. We
note that inputs to the fly photoreceptors are analog, and
the visual processing in the early visual system of the fruit
fly brain is also “analog" as well. To approximate the analog
visual world, we captured videos at the highest mobile phone
frame rate.

4.1.1 Qualitative evaluation of phase-based motion
detectors

To evaluate the motion detector performance, we used two
types of video recordings. The first type were shot at 240
frames per second (fps) using a Samsung S23 Plus mobile
phone at Full HighDefinition (FHD) 1920×1080 resolution.
Each color frame was converted to grey-scale luminance and
resized to 480× 270 before fed into the phase-based motion
detector and other motion detection algorithms for compar-
ison. The input pixel values were already gamma corrected
when the video sequence was shot with a bit-depth of 8 bit.

Since there was no ground truth for motion in these visual
sequences, we visually compared the performance of motion
detection using (1) the phase-based motion detection algo-
rithm, (2) the algorithm of Shi and Luo (2018) based on the
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Fig. 7 Comparison between DNP processed images at 3 different
brightness levels. (1st column) Input image. (2nd column) Output of
the DNP without global feedback. (3rd column) Output of the DNP

with global feedback. (4th column) Output of the DNP with adaptive
feedback. The image in each consecutive row has its brightness scaled
by a factor of 10

Fig. 8 The schematic diagram
of the adaptive feedback DNP
model with an additional
processor w in the feedback
loop. See also the notation in
Fig. 4–here, for simplicity, only
two channels and one MVP are
depicted

motion energy model inspired by the mammalian brain, and
(3) theMR-Flow algorithm (Wulff et al. 2017) and (4) the top
performing RAFT algorithm in the MPI-Sintel benchmark
(Butler et al. 2012). Note that the more recent RAFT algo-
rithm is based on artificial neural networks (Shah and Xuezhi
2021). Motion detection was performed at every other pixel
using method (1), on frames subsampled to 240 × 135 by
method (2), and on the full 480×270 frames by methods (3)
and (4). Therefore, the detected motion using methods (3)
and (4) had four times the density of the motion detected by
methods (1) and (2). All models mentioned above were used
in all experiments with the same set of parameters.

For methods (1), (2) and (3) we used consecutive frames
when performing motion detection. For method (4), how-
ever, we did not obtain any meaningful output due to the
small displacement between frames.Therefore, the opticflow
algorithm was computed using frames that are 1/30 second
apart.

Figure 9(1st column) shows a sample frame of the natural
visual sequencewith a squirrelmovingdownwardonabench.
A small background movement due to hand movement while
shooting the video is also discernible. The phase-based
motion detector captured both the movement of the squirrel
and the background (2nd column). Its performance is compa-
rable to theMR-Flow (4th column) and the RAFT algorithms
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Fig. 9 Comparison of motion detected in a visual sequence shot at 240
fps. (1st column)A sample frame of a 240 fps visual sequence. (2nd col-
umn)Motion detected by the phase-basedmotion detector. (3rd column)
Motion detected by the motion energy algorithm (Shi and Luo 2018).
(4th column) Motion detected by the MR-Flow algorithm (Wulff et al.

2017). (5th column)Motion detected by the RAFT algorithm (Teed and
Deng 2020). Direction of detected motion is indicated by the common
color coding convention (Baker et al. 2011) as well as by arrows on a
sparser grid. See Video S1 for the full video

(5th column), if not better, and much better than that of the
motion energy model (3rd column). The full video is avail-
able as Video S1 in the Supplementary Materials. Additional
examples can be found in Video S2, 3.

Table 1 specifies the code execution environment of the
4 different algorithms. The processing of the phase-based
motion detector is highly efficient on GPUs and can process
170 frames per second. While the motion energy model can
be executed at 480 frames per second, we note that the algo-
rithm jointly processes batches of frames. Since the motion
energy model requires temporal filtering, it will be slowed
down when implemented frame by frame in real-time appli-
cations.

The second type of video sequences were shot at 60 fps
using the same mobile phone at FHD resolution. The raw
sensor data had 13 bit bit-depth.We used only the green color
channel of the raw frames to ensure that the pixel values are
approximately linear with respect to the light intensity of the
visual scenes. Each frame was then resized to 480 × 270
before fed into motion detectors. These videos exhibit rapid
changes in light intensity and contrast across the scene.

Figure 10(1st column) shows a sample frame with a squir-
rel moving up on a tree trunk in the shadow with the rest of
the scene exposed to direct sunlight. To better display the
input, Fig. 10(2nd column) depicts the same frame with a
gamma correction of 2.2. The phase-based motion detec-
tor (3rd column) successfully detected both movement of
the squirrel and the background. The motion energy model
(4th column) detected the background movement (which is
larger than in Fig. 9, but fails to detect the squirrel’s motion
under the shadow. TheMR-Flow algorithm (5th column) and

the RAFT algorithm (6th column) provide a smoother back-
ground motion but fails to detect the moving squirrel. This is
likely due to the fact that the video frames fed into the MR-
Flow algorithm had only 8 bit bit-depth and did not have
enough precision to discern the image of the squirrel under
the shadow. The full video is available as Video S4 in the
Supplementary Materials. Additional videos can be found in
Video S5, 6.

The results presented so far indicate that the phase-based
motion detector performs well under natural light conditions
that can significantly vary in the same scene. In Supple-
mentary Video S7–9, we show how the phase-based motion
detector performs on video sequences that are subject to addi-
tive white Gaussian noise with SNRs ranging from 30 dB to
10 dB. Note that the area with lower contrast is dispropor-
tionally affected by noise.

4.1.2 Quantitative evaluation of phase-based motion
detectors

In order to evaluate the phase-based motion detector quanti-
tatively, we used the same mobile phone to shoot raw images
at a bit-depth of 14 bits and a resolution of 8000 × 6000.
We again only used the green color channel from these raw
images. A sample image and its gamma corrected version are
shown in Fig. 11.

For each scene, we chose a 256×256 window and moved
the window by a specified number of pixel per frame (from
0.25 to 2 with an increment of 0.25), similar to the approach
used in Shi and Luo (2018). For speeds of a fractional
pixel per frame, we used a cubic spline interpolation. We
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Table 1 Comparison of the processing speed of different motion detection algorithms

Algorithm Environment Processing speed (fps)

Phase-based (this work) 1× NVIDIA V100 GPU (Python) 170

Motion energy model (Shi and Luo 2018) 1× NVIDIA V100 GPU (Python) 480

MR-Flow (Wulff et al. 2017) 2× Intel Xeon Gold 5120 CPU (14 cores @ 2.2GHz) (Python) 0.013

RAFT (Shah and Xuezhi 2021) 1× NVIDIA V100 GPU (Python) 5.33

The execution of phase-based motion detector, the MR-Flow algorithm and the RAFT algorithm was frame by frame, while the motion energy
model is executed in batches of frames. Therefore, the actual real-time processing speed may be lower for the motion energy model

Fig. 10 Comparison ofmotion detected in a “raw” visual sequence shot
at 60 fps. (1st column)Asample “raw” frameof a 60 fps visual sequence.
Pixel values are proportional to light intensity. (2nd column) The video
frame with gamma correction of 2.2. (3rd column) Motion detected
by the phase-based motion detector. (4th column) Motion detected by
the motion energy algorithm (Shi and Luo 2018). (5th column) Motion

detected by the MR-Flow algorithm (Wulff et al. 2017). (6th column)
Motion detected by the RAFT algorithm (Shah and Xuezhi 2021).
Direction of detected motion is indicated by the common color cod-
ing convention (Baker et al. 2011) as well as by arrows on a sparser
grid. See Video S4 for full video

Fig. 11 Sample raw images that
are used to generate full screen
motion with ground truth
direction

then obtained a series of video sequences with ground-truth
motion direction and tested howwell the phase-basedmotion
detector can detect motion at every other pixel. In Fig. 12A,
we show the average angular error (AE) in a polar plot for
every tested velocity and angle. AE was largely kept under
2◦, with an overall average of 1.09◦. Figure 12B shows the
end-point error (EPE). The EPE was largely under 0.2 pixels
for speeds up to 1.5 pixel/second. We used a circular domain
with r = 5

8π , expecting that phase aliasing would occur at

velocities larger than 1.6 pixel/frame. As predicted, EPE in
Fig. 12B is much larger for motion velocities above 1.5.

4.2 Evaluation of the entire DNP cascade

In Fig. 13, we evaluate the motion detection in a dynamically
changing environments scenario with light intensity ranging
over 5 orders ofmagnitude. Figure 13 shows results ofmotion
detection for a video sequence processed by, respectively, the
DNP without the MVP feedback, with the MVP feedback,
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Fig. 12 Average A angular error and B end-point error of motion
detected by the phase-based motion detector. The errors are provided
in a polar plot. Each angle represents the error of ground-truth motion

moving in the direction indicated by the angle. Each radius shows the
motion with speed at 0.25 to 2.0 pixel per frame with an 0.25 increment

and with the MVP adaptive feedback blocks. The brightness
of each video sequence increases by a factor of 10 after every
100 frames. A typical frame at each level of brightness is
shown for each video sequence in one of the 5 rows in the
first column.

In the second column, we show the responses of the DNP
without the MVP feedback block. The motion detected is
shown in red arrows.We can see that the phase-based motion
detector fails to detect motion in the lowest and highest
brightness levels, since these responses are saturated.

In the third column, we show the responses of the DNP
with MVP feedback block. The motion detected from these
responses is shown with red arrows. The DNP outputs are
less saturated and the phase-based motion detector is able to
robustly detect motion.

In the fourth column, we show the responses of the DNP
described inSect. 3.2. These responses are largely invariant to
the input brightness levels. The phase-based motion detector
can robustly detect motion from these outputs.

The videos corresponding to Fig. 13 can be found in
Supplementary Video S10. Additional video recordings are
available in Supplementary Video S11–15. The parameters
for testing all these video sequences were kept the same.
Therefore, the outputs of the intensity and contrast gain con-
trol DNP looks drastically different from that of the DNP
without the MVP block and the DNP with the global feed-
back block. The outputs are in a similar range when using the
DNP with the adaptive feedback block across all videos. In
most of the tests, however, the finalmotion detector responses
were similar across the three configurations. This is because

the phase-based motion detector can still detect motion even
if the output of the first DNP has lower contrast, as shown
in Fig. 2. However, we expect that motion detection will be
more accurate when using the DNP with adaptive feedback.

5 Discussion

The early visual systemof the fruit fly, as the vertebrate retina,
exhibits highly nonlinear processing of visual information in
the analog domain. In this paper, we offered further insights
into a class of analog nonlinear circuits, called the divi-
sive normalization processors, first proposed in Lazar et al.
(2020), and the roles they can play in modeling early visual
system of the fruit fly. We demonstrated that two cascaded
DNPs can effectively model the robust motion detection
capability of the early visual system in the fruit fly. The two
stages of DNPs, as schematically shown in Fig. 1B, imple-
ment intensity/contrast gain control and elementary motion
detection, respectively.

We first introduced a feedforward DNP underlying the
phase-based motion detector modeling motion detection in
the fruit fly. The DNP modeling of the motion detection
circuit allow us to directly relate the phase-based motion
detector with the classical models of motion detection, such
as the Reichardt motion detector and the motion energy
model. We have extended our previous approach and devel-
oped a method of estimating both direction and velocity
magnitude ofmotion and provided the condition underwhich
the estimation of velocity is accurate. The performance of
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Fig. 13 Evaluation of motion detection using a cascade of two DNPs.
The video sequence has 500 frames. The brightness of the video
increases by a factor of 10 after every 100 frames. The resulting video
sequence has brightness that spans 5 orders of magnitude. (1st col-
umn) A typical frame at a different brightness level in each row. (2nd
column) DNP output without the MVP feedback block. Red arrows
indicate the motion detected from the DNP output. The motion detector
cannot robustly detect motion under very low (first row) or very high
(last row) brightness conditions. (3rd column) DNP output with the

MVP feedback block. Red arrows indicate the motion detected from
the DNP output. The output of the DNP with MVP feedback is slightly
less saturated than the output of DNP without the MVP feedback. The
phase-based motion detector can pick up the subtle differences after
the DNP processes and detects motion. (4th column) The output of the
adaptive feedback DNP. Red arrows indicate the motion detected. The
output of this DNP is mostly invariant of the input brightness level. See
also Supplementary Video S10

the motion detection circuit was quantitatively validated and
extensively compared to other motion detection algorithms,
such as those based on the motion energy model, as well as
optic flow algorithms.

Currently many hardware implementations of bioinspired
visual motion detection are based on the motion energy

model of the mammalian brain (Orchard and Etienne-
Cummings 2014; Shi and Luo 2018). They require a pre-
processing stage to compensate for large luminance/contrast
variation. For example, in Shi and Luo (2018), a threshold
is first applied onto each filtered frame to enhance and nor-
malize contrast. However, the threshold value depends on
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the values of luminance and contrast and a fixed threshold
does not work well under all conditions. On the contrary,
our model works robustly under widely different intensity
and contrast environmental conditions using throughout the
same set of parameters .

As demonstrated in the supplementary videos, the pro-
posed motion detector is very effective on a range of motion
velocities. In contrast, at very low speed, the optic flow
algorithm we tested missed the movement of small objects
whereas the phase-based motion detector was able to detect
them. However, since the phase-based motion detector only
processes local information, it inevitably cannot detect large
displacements between frames as extensively present inmost
of the standard optic flow benchmarks that typically fea-
ture low frame rates. The same also applies to most of
the models based on localized spatial filters such as the
Gabor filters, including those derived from themotion energy
model. While using additional processing after the elemen-
tary motion detection stage can be used to combine local
motion information across space, frame-based processing
does not appear to be a natural solution for living organisms.

As discussed in many of the examples, the phase-based
motion detector takes advantage of very high data rates, pos-
sibly approaching the analog domain. Note that the fly early
visual system processes visual scenes in the analog domain.
Thus, our model suggests a possible reason why processing
in both the early visual system of the fruit fly and the retina of
vertebrates is analog. That is, the analog processing is neces-
sary to accurately extract motion in the early visual systems.
Hence, it is of interest to implement this algorithm in analog
neuromorphic hardware (Stocker 2006) in the future.

While recent advances in optic flow algorithms based on
artificial neural networks has led in benchmark tests to high
accuracy in motion estimation, the amount of data required
for training is still very high. Moreover, although deep learn-
ing has significantly improved the run time over traditional
optic flowmethods, they are still far from achieving real-time
processing capability. In contrast, the phase-based motion
detection algorithm requires no training and can process
video sequences in real-time. The examples in the supple-
mentary videos show that, under natural environments the
phase-based motion detector can detect motion that is unde-
tectable by algorithms based on deep learning. Most likely
the datasets used to train these models did not contain such
examples and the trained model cannot generalize robustly
under these conditions.

We showed that the performance of the DNP modeling
the very first stage of visual processing, i.e., the photorecep-
tor/amacrine cell layer, was critical for subsequent motion
detection in dynamic environments where the light intensity
can vary by orders of magnitudes. We provided a detailed
characterization of the I/O of this class of DNPs with respect
to different parameter choices, and gave insights into how

they perform intensity and contrast gain control (Lazar et al.
2020).

Furthermore, we advanced here a DNP architecture with
an adaptive feedback MVP block. We showed that the
response of the DNP with adaptive MVP feedback is largely
independent of the background light intensity levels in the
visual scenes. Due to its adaptive nature, the circuit is robust
to variation of parameters.

While the structure of DNP modeling the photorecep-
tor/amacrine cell layer directly corresponds to the anatomical
structure of the neural circuit, as depicted in Fig. 1A and B,
the phase-based motion detection circuit is more abstract.
Notably, the fly motion detection circuit is separated into
ON and OFF pathways. In the ON pathway (see Fig. 1 (in
yellow)), visual motion resulting in a brightness increase is
detected. Visual motion that causes a brightness decrease
is detected in the OFF pathway (see Fig. 1 (in purple)). It
has been shown that a full Reichardt motion detector can be
subdivided into a two-quadrant model (Eichner et al. 2011)
where one quadrant corresponds to the ON pathway pro-
cessing brightness increases and the other corresponds to the
OFF pathway processing brightness decreases. Mapping the
proposed motion detection circuit into these pathways is of
future interest.

Overall, the work presented here demonstrated the power
of DNPs in modeling computation arising in visual pro-
cessing circuits of the fly brain. As fly visual circuits that
are involved in other visual tasks have similar connectiv-
ity features such as extensive feedback loops, we expect
that divisive normalization can serve as a key computational
building block in visual processing in the bee/ zebrafish
vision systems and the retina of vertebrates (Sanes and
Zipursky 2010). Additional types of DNPs and further under-
standing of their properties will shed light on employing
DNP-based algorithms in computer vision.
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A Models of elementary motion detectors in
fruit flies

We briefly review in Appendix A.1 the structure of the ele-
mentary motion detectors and in Appendix A.2, the structure
of the local phase-based motion detector.

A.1 Reichardt motion detector

Modeling elementary motion detection circuits in fruit flies
has been strongly influenced by the classical work ofHassen-
stein and Reichardt (1956) and Barlow and Levick (1965).
Figure 14 depicts the elaborated Reichardt motion detector
of van Santen and Sperling (1985). With properly chosen
parameters, this motion detector is equivalent to the motion
energy detector of Adelson and Bergen (1985) modeling
direction sensitive complex cells in the mammalian visual
cortex.

The Reichardt motion detector can explain many opto-
motor responses (Borst 2014). Electrophysiological observa-
tions of lobula plate tangential cells located downstream of
these elementary motion detectors are sensitive to wide-field
motion. They are, however, extremely sensitive as well to the
overall brightness and contrast level of visual scenes. Since
light intensity during day and night may vary by at least 6
orders ofmagnitude (Cronin et al. 2014), theReichardt detec-
tor, by itself, cannot match the robustness of the Drosophila
motion detection circuits.

An schematic diagramof the elaborated Reichardtmotion
detector is shown in Fig. 14. The output v(t), a functional of
the input stimulus u(x, y, t), can be written as

v(t) =
∫

R6
h1(x1, y1)h2(x2, y2) [g2(s1)g1(s2) − g1(s1)g2(s2)] ·
u(x1, y1, t − s1)u(x2, y2, t − s2)dx1dy1ds1dx2dy2ds2,

(32)

where h1, h2 denote the two spatial filters and g1, g2 denote
the two temporal filters shown in Fig. 14. Note that the output
of the elaborated Reichardt motion detector is a quadratic
function of the input.

Fig. 14 Aschematic diagramof the elaborated Reichardtmotion detec-
tor

A.2 Local phase-basedmotion detector

In Lazar et al. (2016), we proposed a motion detec-
tor based on local phase information. With processing
in the phase domain, the operation of the motion detec-
tor does not depend on the scale of the Fourier ampli-
tude of the input stimuli. In what follows, we provide
a brief overview of the local phase-based motion detec-
tor.

The local phase-based motion detector consists of 2
staged circuits, for detecting motion surrounding a ref-
erence point in the visual field. In the first stage, the
local phase (defined below) and its time derivative are
extracted. In the second stage, the extracted phase is pro-
cessed to indicate the presence and the direction of motion.
This two-stage detector can be repeated in parallel for
any number of reference points covering the entire visual
field.

If v = (
vx (t), vy(t)

)
is the instantaneous motion velocity

pair, the translated signal considered here amounts to,

u(x, y, t) = u(x − sx (t), y − sy(t), 0), (33)

where

sx (t) =
∫ t

0
vx (s)ds, (34)

sy(t) =
∫ t

0
vy(s)ds. (35)

Consequently, the motion velocity and the time derivative of
the phase satisfy the differential equations

dφx0,y0

dt
(ωx , ωy, t) = −dsx (t)

dt
ωx − dsy(t)

dt
ωy
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+vx0,y0(ωx , ωy, t), (36)

for all (ωx , ωy) ∈ R
2 with the initial conditionφx0,y0(ωx , ωy, 0),

where v is assumed to be a small term (Lazar et al. 2016).

A.3 Definition of arctan2

arctan2(y, x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

arctan
( y
x

)
if x > 0,

arctan
( y
x

) + π if x < 0 and y ≥ 0,
arctan

( y
x

) − π if x < 0 and y < 0,
π
2 if x = 0 and y > 0,

−π
2 if x = 0 and y < 0,

undefined if x = 0 and y = 0,

(37)

B Constructing video sequences with
different light intensity and contrast levels

Here we provide details for constructing visual scenes with
different light intensity and contrast levels.

B.1 Constructing video sequences with different
light intensity levels

Each pixel of the original video sequence had 8-bit preci-
sion. We note that the pixel values were already gamma
corrected during recording. Prior to testing the motion detec-
tion algorithm, we performed preprocessing of the original
video sequences to (1) undo the gamma correction effect by
transforming the pixel values to be approximately propor-
tional to the light intensity levels and, (2) change brightness
levels. First, we scaled the value of each pixel from between
0 and 255 to between 0 and 1 and denoted the scaled video
sequence by u0. We then generated an input video sequence
as u(x, y, t) = 10u0(x,y,t) with an approximately scaled ver-
sion of the light intensity of the original visual scene. The
light intensity of the video sequence was furthermore artifi-
cially increased by a factor of 10 after every 100 frames, i.e.,
u(x, y, t) = 10u0(x,y,t)+k, k = 1, 2, 3, 4.

To help discern the contents of the visual scenes at every
brightness level, Fig. 2(2nd row) shows log10(u) instead of u
itself, with log10(1) displayed as pure black and log10(106)
displayed as pure white.

B.2 Constructing video sequences with different
contrast levels

We generated the video sequences ui (x, y, t) = 100 ·
10c

i (u0(x,y,t)−0.5), where ci is the scaling factor for each con-
trast level. Note that locally, the contrast is different even

within a single frame. Here the increase between contrast
levels refers to the contrast difference evaluated at the same
spatial position for two different time instances.

C Steady-state responses of DNPs

We derive here the steady state response of DNPs in several
different configurations, including (1) temporal DNPs with
feedforward normalization, (2) temporal DNPs with feed-
forward and feedback normalization and (3) spatio-temporal
DNPs with global feedback. For each configuration, we then
illustrate how the DNP parameters affect their steady-state
response curve.

C.1 Steady-state I/O of temporal DNPs with
feedforward normalization

We first characterize the steady-state response of temporal
DNPs with feedforward normalization. The output of the
temporal DNP with feedforward normalization is given by

vi (t) = T 1ui

T 2ui
, (38)

and the steady-state response to a constant intensity value I
amounts to

vi (I ) = a0 + a1 I + a2 I 2

c0 + c1 I + c2 I 2
. (39)

To ensure that the denominator is always positive, we also
assume that the coefficients a0, a1, a2, c0, c1, c2 are positive.
Therefore,

vi (0) = a0
c0

, (40)

determines the response level at the lowest possible light
intensity level, and

vi (∞) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a2
c2

, if c2 �= 0,
∞ , if c2 = 0, a2 �= 0,
a1
c1

, if c2 = a2 = 0, c1 �= 0,
∞ , if c2 = a2 = c1 = 0, a1 �= 0,
a0
c0

, if c2 = a2 = c1 = a1 = 0.

(41)

Clearly, it is not desirable to have vi (∞) = ∞. We are
interested in the case where vi (∞) > vi (0), i.e., a2

c2
> a0

c0
if

c2 �= 0 or a1
c1

> a0
c0

if c2 = 0 and c1 �= 0.

Here we assume that 0 ≤ a0 	 c0, and thus vi (0) ≈ 0.
We also consider normalizing vi (∞) to 1. Therefore, either

a2
c2

= 1, when a2 �= 0 and c2 �= 0, (42)
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or

a1
c1

= 1, when c2 = 0. (43)

Let I ′ = log10(I ), we have

vi (I ′) = a0 + a110I
′ + a2(102I

′
)

c0 + c110I
′ + c2(102I

′
)
. (44)

If a2 = c2 = 0, then

vi (I ′) = a0 + a110I
′

c0 + c110I
′

= a0
c0 + c110I

′ + 1
c0
a1
10−I ′ + c1

a1

≈ 1
c0
a1
10−I ′ + c1

a1

(45)

is a sigmoidal function.
Otherwise, we have

dvi (I ′)
dI ′ = (a1c0 − a0c1)eI

′ + 2(a2c0 − a0c2)e2I
′ + (a2c1 − a1c2)e3I

′

(c0 + c1eI
′ + c2(e2I

′
))2

.

(46)

Substituting a2 = c2 and a0 	 c0,

dvi (I ′)
dI ′ = a1c010I

′ + 2c2c0102I
′ + c2(c1 − a1)103I

′

(c0 + c110I
′ + c2(102I

′
))2

.

(47)

Figure 15 shows two qualitatively different steady-state
response resulted from two sets of parameters. To guaran-

tee dvi (I ′)
dI ′ > 0,∀I ′, i.e., ensuring vi (I ′) is monotonically

increasing, we must have c1 ≥ a1. In Fig. 15A, the “over-
shoot" in the mid-range light intensity levels is due to a1 >

c1. In contrast, when a1 ≤ c1, the steady-state response is
sigmoidal.

C.2 Steady-state I/O of temporal DNPs with
feedforward and feedback normalization

We now characterize the steady-state response of temporal
DNPs with feedforward and feedback normalization. With
both feedforward and local-feedback normalization, the out-
put of the DNP can be expressed as

vi (t) = T 1ui

T 2ui + T 3vi
, (48)

and the steady-state response to a constant intensity value I
is given by

vi (I ) = a0 + a1 I + a2 I 2

c0 + c1 I + c2 I 2 + d1vi + d2(vi )2
. (49)

Therefore, vi (I ) is the real, positive root of the cubic equation

d2(v
i )3 + d1(v

i )2 + (c0 + c1 I + c2 I
2)vi

−(a0 + a1 I + a2 I
2) = 0. (50)

By denoting A = −(a0 + a1 I + a2 I 2) and C = (c0 + c1 I +
c2 I 2), we have

d2(v
i )3 + d1(v

i )2 + Cvi + A = 0. (51)

If d2 = 0, then

vi = −C ± √
C2 − 4d1A

2d1
. (52)

For vi to be real and non-negative, the coefficients must sat-
isfy C2 ≥ 4d1A, and

vi =
√
C2 − 4d1A − C

2d1
. (53)

If d2 �= 0, then the discriminant

	 = 4	3
0 − 	2

1

27d22
, (54)

where

	0 = d21 − 3d2C, (55)

	1 = 2d31 − 9d2d1C + 27d22 A. (56)

In addition, we define

D = 3

√
	1 + √−	

2
. (57)

If 	 > 0 then the cubic equation has 3 real roots. In
this case, since A < 0 by definition, and there must exists a
positive root with value between 0 and 1, we must have the
other 2 roots negative. Therefore, the steady-state solution
must be the positive root that amounts to

vi = − 1

3d2

(

d1 + D
−1 + √−3

2
+ 	0

D−1+√−3
2

)

. (58)
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Fig. 15 Steady-state responses
of feedforward DNPs exhibit
two different characteristics. A
The steady-state response of a
feedforward DNP with
“overshoot" response. The
following parameters were used:
a0 = 1, a1 = 1, 000, a2 =
10, c0 = 100, 000, c1 =
10, c2 = 10. B Monotonically
increasing steady-state response
of a feedforward DNP. The
following parameters were used:
a0 = 10, a1 = 10, a2 =
0.1, c0 = 100, 000, c1 =
10, c2 = 0.1

If 	 ≤ 0 then the cubic equation has only one real root,
and the steady-state response amounts to

vi = − 1

3d2

(
d1 + D + 	0

D

)
. (59)

To sum up, the steady-state response of a temporal DNP
with feedforward and feedback normalization is given by

vi (I ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−C+
√
C2−4d1A
2d1

if d2 = 0,

− 1
3d2

(

d1 + D−1+√
3 j

2 + 	0

D −1+√
3 j

2

)

if d2 �= 0, 	 > 0,

− 1
3d2

(
d1 + D + 	0

D

)
if d2 �= 0, 	 ≤ 0

(60)

where

A = −(a0 + a1 I + a2 I
2), (61)

C = (c0 + c1 I + c2 I
2), (62)

D = 3

√
	1 + √−	

2
, (63)

	0 = d21 − 3d2C, (64)

	1 = 2d31 − 9d2d1C + 27d22 A. (65)

In Fig. 16, we compare the steady-state responses of the
single-channel self-feedback DNP with different d1 and d2
values.

Fig. 16 Effect of d1 and d2 on the steady-state response of single-
channel feedback DNP. The DNP is constructed with the following
parameters: a0 = 0, a1 = 0, a2 = 0.01, c0 = 100, c1 = 0, c2 = 0.01

C.3 Steady-state I/O of spatio-temporal DNPs with
global feedback

Finally, we characterize the steady-state response of spatio-
temporal DNPs with global feedback normalization. The
response of a spatio-temporal DNP can be expressed as

vi (t) = T 1ui

T 2ui + T 3vi + L4v
, (66)

for i = 1, 2, . . . , N . The steady-state response is given by
the system of equations

vi (I) = a0 + a1 I i + a2(I i )2

c0 + c1 I i + c2(I i )2 + d1vi + d2(vi )2 + ∑N
k=1 g

k
1v

k + ∑N
k=1

∑N
l=1 g

kl
2 vkvl

, (67)
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for i = 1, 2, . . . , N , where I = [
I 1, I 2, . . . , I N

]
is a vector

of constant intensity values that are presented to each pho-
toreceptor i , and

gk1 =
∫

R

hk4(t)dt, k = 1, 2, . . . , N , (68)

gkl2 =
∫

R2
hkl4(t1, t2)dt1dt2, k, l = 1, 2, . . . , N . (69)

After rearranging terms, the steady-state response of the
spatio-temporal DNP should satisfy the following equations

d2(v
i )3 +

∑

k,l

gkl2 vkvlvi + d1(v
i )2 +

N∑

k=1

gk1v
kvi

+
(
c0 + c1 I

i + c2(I
i )2

)
vi −

(
a0 + a1 I

i + a2(I
i )2

)
= 0,

(70)

for i = 1, 2, . . . , N . The zeros can be found by using Pow-
ell’s hybrid method (Powell 1970) efficiently.
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