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Abstract Natural images contain often curvilinear struc-
tures, which might be disconnected, or partly occluded.
Recovering the missing connection of disconnected struc-
tures is an open issue and needs appropriate geometric
reasoning. We propose to find line co-occurrence statistics
from the centerlines of blood vessels in retinal images and
show its remarkable similarity to a well-known probabilis-
tic model for the connectivity pattern in the primary visual
cortex. Furthermore, the probabilistic model is trained from
the data via statistics and used for automated grouping of
interrupted vessels in a spectral clustering based approach.
Several challenging image patches are investigated around
junction points, where successful results indicate the perfect
match of the trained model to the profiles of blood vessels
in retinal images. Also, comparisons among several statisti-
cal models obtained from different datasets reveal their high
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similarity, i.e., they are independent of the dataset. On top of
that the best approximation of the statistical model with the
symmetrized extension of the probabilistic model on the pro-
jective line bundle is found with a least square error smaller
than 2%. Apparently, the direction process on the projective
line bundle is a good continuationmodel for vessels in retinal
images.

Keywords Curvilinear structures · Line co-occurrences ·
Cortical connectivity · Contextual affinity matrix · Spectral
clustering · Perceptual grouping

1 Introduction

1.1 Tracking curvilinear structures

Tree-like structures such as the retinal vasculature, corneal
nerve fibers and roads from aerial photographs for cartog-
raphy are widely studied both in quantitative computer-
aided diagnosis systems in large-scale screening programs,
and high-volume industrial settings. Delineation of curvi-
linear structures in these images is essential for investi-
gating their characteristics. For instance, several studies
highlighted the importance of using quantitative measure-
ments of morphological and geometrical properties of blood
vessels in retinal images for early diagnosis and prog-
nosis of several diseases such as hypertension and dia-
betic retinopathy (e.g., Chapman et al. 2002; Smith et al.
2004).

Despite all improvements in the segmentation of curvi-
linear structures in two-dimensional images, the proposed
methods often present limitations when two or more struc-
tures branch or cross, or when there are areas with missing
information or interruptions (Fraz et al. 2012). Consequently,
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Fig. 1 a A sample image with interrupted segments and b the salient
units identified by our perceptual system

several tracking-based techniques provided solutions for
preserving the connections in tree-shaped networks (e.g.,
Türetken et al. 2012; Cheng et al. 2014; Bekkers et al. 2014;
Estrada et al. 2015; Hu et al. 2015; De et al. 2016). One of
the common approaches has been to manually design cost
functions, which penalized abrupt changes of the contextual
features such as orientation, width and color. These costs
were used in later stages in optimization or graph theory-
based techniques for constructing the full retinal vasculature
network. In these methods, not only the cost functions were
designed manually and depended on existing topological
structures, but also tracing errors were often created due to
the use of imperfect pixel-based vessel segmentations and
skeletons that do not guarantee the connections among pix-
els belonging to one vessel.

1.2 Geometry of primary visual cortex

The human visual system is capable of interpreting visual
scenes and of completing disconnected contours among
interrupted segments, following the Gestalt law of good con-
tinuation (Wertheimer 1938). Figure 1 represents a sample
interrupted phantom image (Fig. 1a) and the units detected by
our perceptual system in different colors (Fig. 1b). Inspired
by this capability, a new method was proposed by Favali
et al. (2016) for resolving the missing and complex con-
nections among blood vessels at junction points in retinal
images. In this approach, first the image is lifted to the
coupled space of positions and orientations using the so-
called orientation score transformation introduced by Duits
et al. (2007b). The multi-orientation score is augmented
with a contextual affinity matrix inspired by the long-range
contextual connections between the multi-orientation pin-
wheel structures discovered in the primary visual cortex
(V1) (Hubel and Wiesel 1962; Bosking et al. 1997). The
affinities in this matrix are augmented by another simi-
larity measurement of the feature of intensity and further
processed in a spectral clustering step, which resulted in
separate groups each representing one individual blood ves-
sel.

The cortical connectivity representing the contextual con-
nections in V1 can be modeled as the fundamental solution
of the time-independent Fokker–Planck (FP) equation for

Mumford’s direction process (Mumford 1994; Williams and
Jacobs 1997; August and Zucker 2003; Citti and Sarti 2006;
Duits and Almsick 2008). Another closely related model
for perceptual grouping of local orientations is a hypo-
elliptic Brownian motion, whose FP equation describes
hypo-elliptic diffusion without convection for the genera-
tor (Citti and Sarti 2006; Duits and Franken 2009; Agrachev
et al. 2009). These models explain well the notion of asso-
ciation fields introduced by Field et al. (1993) as a model
for contour integration by the human visual system for
image perception. There exist various numerical approxi-
mations, and exact solutions. For a recent overview and
detailed comparison of all the solutions, see Zhang et al.
(2016b) and references therein. Based on this study, the
Fourier-based technique (Duits and Almsick 2008) is the
best approximation of the exact solution, having the smallest
error both in the spatial and Fourier domains. The second
best approximation is provided by the stochastic method
based on the Monte Carlo simulation (Robert and Casella
2005). The stochastic solution was used by Favali et al.
(2016).

1.3 Edge statistics in natural images

Second- and higher-order edge statistics are commonly used
for representing themutual relation between connected edges
in natural images. Several studies (e.g., August and Zucker
2000; Geisler 2008; Sanguinetti et al. 2010; Perrinet and
Bednar 2015) investigated the statistics of the edges in our
surrounding environment and their relation to the adaptation
of connectivity patterns in our perceptual system. These stud-
ies showed that the individual edges are dependent on each
other, and the strongest characteristic determining their con-
nections is their co-circularity relation. In thework byAugust
and Zucker (2000), the edge statistics for several types of
image categories were measured and it was shown that the
resulting patterns were dependent on the structures avail-
able in the images. In a recent study by Perrinet and Bednar
(2015), these low-level edge statistics were used for a high-
level judgmental task successfully. Moreover, Sanguinetti
et al. (2010) showed that there is a close relation between the
statistics of edge co-occurrence and the probabilistic, geo-
metric model of the cortical connectivity in V1.

1.4 Our proposed method

We propose to train the probabilistic connectivity kernel
using the line co-occurrence statistics on the lifted space of
positions and (π -periodic) orientations R

2 × P1 extracted
directly from the retinal images. To this end, we make an
adaptation of the direction process to the projective line
bundles in R

2 × P1 instead of R
2 × S1 (the space of

positions and 2π -periodic orientations), as this extension
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is necessary for comparison of the probabilistic model to
the statistical co-occurrences. By comparing the statisti-
cal kernel to the symmetrized probability kernel, its best
approximation resulting in the least square error is found. In
fact, we show the relation between the probabilistic model
of cortical connectivity and the edge statistics in our reti-
nal imaging application is even closer when including both
symmetrization and a projective line bundle structure. The
dependency of the parameters of the statistical kernel with
respect to the dataset is also investigated using different
retinal image datasets, varying their resolutions and pixel
sizes.

Finally, we show the application of this trained model
in retrieving the vessel connections at locations with com-
plex structures in retinal images. To this end an affinity
matrix is created based on this statistical model and the
similarities among vessel intensities and is analyzed in a
self-tuning spectral clustering technique (Zelnik-Manor and
Perona 2004), which does not need any parameter tuning
and manual thresholding of the eigenvalues. It automati-
cally determines the number of salient groups in the image
by rotating the eigenvectors to create the maximally sparse
representation and by minimizing a clustering cost defined
accordingly.

Summarizing, we demonstrate the following points in this
article:

1. The statistical line co-occurrence kernel learned from
retinal imagesmatches remarkablywell our symmetrized
extension of the probabilisticmodel on the projective line
bundle;

2. The statistical kernels do not change significantly over
different datasets and are reproducible;

3. The low-level line statistics are successfully used to per-
form the high-level task of grouping of the interrupted
blood vessels in the retinal images automatically;

4. Mumford’s direction process is a very good stochastic
model for connecting interrupted vessels in segmented
retinal images.

1.5 Paper structure

The rest of the article is structured as follows. In Sect. 2,
the steps for deriving the line co-occurrences from retinal
images and the theoretical details about modeling the corti-
cal connectivity are described. In Sect. 3, after introducing
the datasets, the resulting line co-occurrences are presented
and compared against each other quantitatively and qualita-
tively. The best probability model approximating each kernel
is presented afterward. Application of the statistical kernel in
retinal image analysis is presented at the end of the section.
Finally, the results are discussed and the paper is concluded
in Sect. 4.

2 Methodology

In this section, in addition to introducing the steps for extract-
ing the line co-occurrences from retinal images, a numerical
model of the connectivity kernel is proposed.

2.1 Line co-occurrence

In order to extract the line co-occurrences from retinal
images, a similar approach as themethod of Sanguinetti et al.
(2010) is used. However, there are some differences. We
only use retinal images, which include multiple elongated
structures: the vessels; the vessel centerlines have been used
instead of the edges (the resulting kernel is called line co-
occurrences rather than edge co-occurrences), and no line
polarity has been taken into account; the orientation score
transformation has been used to find the orientation informa-
tion at each point.

Recall that the projective circle P1 is obtained from the
normal circle S1 by identifying antipodal points. The ori-
entation score (OS) transform R

2 → R
2 × P1 is obtained

by correlating the input image f with rotated isotropic
(bi-directional) cake wavelets ψ (Duits and Franken 2009;
Bekkers et al. 2014) in nθ directions (θ ∈ [−π/2, π/2 −
π/nθ ]) as:

U f (x, θ) =
(
Rθ (ψ) � f

)
(x)

=
∫

R2
ψ

(
R−1

θ (y − x)
)
f (y)dy

(1)

where Rθ is the 2D counter-clockwise rotation matrix, the
overline denotes the complex conjugate and �denotes the cor-
relation (Duits et al. 2007b). The cake wavelets are quadratic
anisotropic filters similar to the Gabor wavelets, but unlike
them, their summed Fourier transformations cover the entire
frequency domain (up to the Nyquist frequency), making
them spatially scale-independent. Moreover, the invertibility
property of orientation score transformation prevents infor-
mation loss during the transformation (Duits et al. 2007a,b).
Therefore, the cake wavelets are appropriate choice for lift-
ing the crossing and bifurcating blood vessels regardless of
their varying widths.

The proposed method for finding the line statistics of the
images of a dataset S = {I1, I2, . . . , In}, where Ii ∈ R

2

is the i th retinal image, is explained step by step in Algo-
rithm 1. The initial step is to create a set of interest vessel
positions and orientations for each image. To obtain the ves-
sel pixel locations the vessel ground truth is used, and the
binary vessel centerlines (Ic,i , i = 1, . . . , n) are extracted
in a standard morphological thinning approach (Lam et al.
1992). So if a pixel at location (x, y) belongs to a center-
line, then Ic,i (x, y) = 1, otherwise Ic,i (x, y) = 0. If the
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(xp, yp, θp)

(xq, yq, θq)

xq − xp

yq − yp

θq − θp

Fig. 2 A sample pair of edges with positions and orientations of
(xp, yp, θp) and (xq , yq , θq ). The relative positions and orientations
are depicted. Adapted from (Sanguinetti et al. 2010, Fig. 1)

ground truth is not available, then the vessel segmentation
is obtained using one of the state-of-the-art techniques (e.g.,
Zhang et al. 2016a). The orientations at interest centerline
positions are obtained by lifting the image using the OS
transform (Step 2), and finding the angles with the maximum
response at these locations [θmi (x) in Step 3]. It is worthmen-
tioning that only the real part of the OS has been considered
which acts as a ridge detector on the Gaussian profiles of
blood vessels. Besides, the blood vessels in retinal images
are darker compared to the background. As a result, they get
negative responses (large absolute values) in this transforma-
tion. The negative sign used at Step 3 compensates for that.
These centerline locations and their corresponding dominant
orientations are later used in Step 4 to create a set of interest
points called Li for each image.

In the next step, pairs of interest points located at less
than a certain distance (d) from each other are used to cre-
ate a difference set Sdi considering the translation-invariance
property (see Step 5 and Fig. 2). In order to make the set rota-
tion invariant, the relative positions are rotated with respect
to the relative orientations and the shift-twist difference set
Qd
i is created in Step 6.
By counting the number of occurrences of relative posi-

tions and orientations in Step 7 the statistical kernel per
image is created. The statistical kernel of the entire dataset
is obtained by accumulating the individual kernels of all
the images in set S. Finally, the kernel is l1-normalized
and called the data-driven or statistical kernel (Step 8). The
final dimension of this kernel is (2d + 1) × (2d + 1) × nθ .
The parameter d is selected heuristically during experi-
ments.

In another approach, the artery/vein (AV) labels of ves-
sels and the fact that arteries are not directly connected to
veins (Sherwood 2012) are taken into account. By know-
ing these labels, the vessel profiles for arteries and veins are
separated and their line co-occurrences are calculated indi-
vidually (K stat

i,A and K stat
i,V ), using the similar steps as described

before. Finally, the artery and vein histograms are added to
each other to find the final histogram for each retinal image

(K stat
i = K stat

i,A + K stat
i,V ). This is a more accurate assumption

about the connections among vessel centerlines; however, it
is only possible to use this setup if theAV labels are available.
More details about datasets, parameter settings and results are
given in Sect. 3.

2.2 Cortical connectivity in R
2 × P1

Considering Mumford’s direction process in the differential
structure of the sub-Riemannian SE(2) group, the fundamen-
tal solution of the FP equation represents the probability of
having a contour at a certain position and orientation, start-
ing from a reference position and orientation. In order to
model the cortical connectivity kernel in R

2 × P1 (projec-
tive line bundle), we propose to create the connectivity kernel
by adding the solutions of the FP equation in forward and
backward directions in R

2 × S1 (for symmetrization) and
the π -shifted solutions (for taking into account the final peri-
odicity). Therefore, the connection probability between two
points in R

2 × P1 is obtained by:

kprob
(
(x, θ), (x′, θ ′)

)

= 1

4

(
Γ

(
(x, θ), (x′, θ ′)

)
+ Γ

(
(x′, θ ′), (x, θ)

)

+ Γ
(
(x, θ + π), (x′, θ ′)

)
+ Γ

(
(x′, θ ′ + π), (x, θ)

))

(2)

where Γ is the fundamental solution of the time integrated
FP equation centered around (x′, θ ′) represented as:

Γ
(
(x, θ), (x′, θ ′)

)
= RD

α

(
RT

θ (x − x′), θ − θ ′) (3)

with the resolvent kernel RD
α obtained by integrating Green’s

function KD
t : SE(2) → R

+ as:

RD
α (x, θ) = α

∫ ∞

0
KD
t (x, θ)e−αtdt (4)

which is the solution of the following PDE:

(
cos θ∂x + sin θ∂y − D∂2θ − α I

)
RD

α = αδe. (5)

In the above equations, RT
θ is the transpose of Rθ as a

2D counter-clockwise rotation matrix. In a Markov pro-
cess traveling time is memoryless. The only continuous
memoryless distribution is the negatively exponential dis-
tribution T ∼ NE(α) with expected value E(T ) = α−1.
As P(T = t) = αe−αt , parameter α plays a role of a
decay rate. Moreover, δe is the initial condition equals to
δe = δx0 ⊗ δ

y
0 ⊗ δθ

0 ,where ⊗ denotes the tensor product in
distributional sense [see Zhang et al. (2016b) for detailed
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Algorithm 1 The proposed steps for obtaining the line co-occurrence statistics from a set S of retinal images
1: Obtain the binary vessel centerlines (Ic,i ) from the vessel ground truth of each image Ii ∈ S, (i = 1, . . . , n) by a standard morphological

thinning approach.
2: Lift the original image (Ii ∈ R

2,∀i = 1, . . . , n) to the rototranslation group (UIi (x, θ) ∈ R
2 × P1) using isotropic cake wavelets rotated in nθ

directions in Eq. 1 so that θ ∈ {−π/2, . . . ,−π/2 + (π(nθ − 1)/nθ )}.
3: Find the orientation with the highest real value of negative orientation score at each position x of Ii , (i = 1, . . . , n) as:

θmi (x) = argmax
θ

Re(−UIi (x, θ)).

4: Create a set of interest points for each image by using the vessel centerline locations (x ∈ R
2) and their corresponding dominant orientations

(θmi (x)) as:
Li = {(x, θmi (x)) | Ic,i (x) = 1}.

5: Create a difference set defines as:

Sdi = {(xp − xq , θp − θq ) | (xp, θp) ∈ Li , (xq , θq ) ∈ Li , ‖ xp − xq ‖≤ d}.

6: Create the shift-twist difference set as:
Qd

i = {(RT
θ (x), θ) | (x, θ) ∈ Sdi }.

7: Obtain K stat
i so that

K stat
i (x, θ) = the number of occurrences of (x, θ) ∈ Qd

i .

8: Calculate the total statistical kernel for the entire dataset as:

K stat
total =

n∑
i=1

K stat
i

and normalize it as:

K stat = K stat
total

‖ K stat
total ‖l1

.

explanations]. Note that this PDE is defined on R
2 × S1 and

not on R
2 × P1 as the first-order part flips when applying

θ → θ + π . Therefore, in Eq. 2, besides a π -shift, we need
inversion invariance yielding a double symmetric kernel (see
Fig. 3).

In this work the numerical solution has been created
using the Fourier-based technique (Duits andAlmsick 2008),
because it is not only the best approximation to the exact
solution, but also computationally the least expensive one
compared to the other solutions (Zhang et al. 2016b). Refer-
ring to (Fig.13 Zhang et al. 2016b), the slight spatial blurring
with 0 < s � 1 corresponds to a one-pixel bin used in sta-
tistical kernel. So the exact probability kernel (with small
s) is considered with the same resolution as the statisti-
cal kernel. The final probability kernel and the statistical
data-driven kernels are compared in the spatial domain. The
key parameters in creating the probability kernel are α and
D33 = σ 2/2, which determine the expected life time of
the resolvent kernel (E(T ) = 1/α) and the diffusion matrix
(D = diag{0, 0, D33}), respectively (seeZhang et al. (2016b)
for more details). To have uniform notations in the rest of the
article, we assume the following relations hold for both prob-
abilistic and statistical kernels:

kstat(h, g) = kstat(e, h−1g) = K stat(h−1g)

kprob(h, g) = kprob(e, h−1g) = K prob(h−1g) (6)

where g, h ∈ Li for i = 1, . . . , n.
As a side note, the exact non-symmetrized kernel onR

2
�

P1 is given by:

RR
2
�P1

α (x, θ) =
(
F−1

R2 [ω �→
∑
n∈Z

R̂D,a,∞
α (ω, θ + nπ)]

)
(x)

(7)

where R̂D,a,∞
α is expressed in two Mathieu functions in [Eq.

5.5, Zhang et al. (2016b)]. Alternatively, one may take the
simplified exact solution on R

2 × S1 (Eq. 5.11 Zhang et al.
2016b) and consider only the first and third terms in Eq. 2.

3 Experiments

In this section, first the datasets and the parameters used
for finding the data-driven kernels are introduced. Then the
results of the comparison of the data-driven kernels against
each other and comparison of these statistical kernels with
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Fig. 3 a Forward kernel in R
2 × S1, b π−shifted forward kernel in R

2 ×P1, c xy-marginal (obtained by integration over θ) of the forward kernel,
d forward–backward kernel in R

2 × S1, e kprob in R
2 × P1, and f xy-marginal of kprob

the probability kernels are presented. At the end, the applica-
tion of the data-driven kernel in retrieving vessel connections
is explained.

3.1 Materials

Two retinal datasets have been used in this study. The public
DRIVE dataset (Staal et al. 2004) including 40 color fun-
dus images taken with a Canon CR5 non-mydriatic 3CCD
camera, with a resolution of 565 × 584, a pixel size of
25µm/px and a field of view of 45◦. The second dataset
is the public IOSTAR dataset1 (Abbasi-Sureshjani et al.
2015) including 24 images taken with a scanning laser
camera (SLO) with a resolution of 1024 × 1024, a pixel
size of 14µm/px and a field of view of 45◦. The ves-
sel ground truth and the AV labels are available for both
datasets. Figure 4 shows two sample images (4a) from
these two datasets together with their vessel (4b) and AV
ground truth images (4c). The skeletons extracted from the
vessel ground truth images are also presented there (4d).
The color-coded images in the last column (4e) show the
dominant angle at each pixel location (see Step 3 of Algo-
rithm 1).

1 Available at: http://www.retinacheck.org/datasets.

3.2 The statistical kernels

The statistical kernel as explained in Sect. 2.1 is calculated
for both datasets. The number of discrete orientations used
is nθ = 16, and d is set to 65. For each image both the
full vasculature ground truth and the AV-separated ground
truth images have been used and at the end, two different 3D
histograms (K stat) are obtained per dataset. The histograms
extracted directly from the full vasculature network are called
K stat
DR and K stat

IO and the ones obtained from the AV-separated
datasets are called K stat

DR−AV and K stat
IO−AV. DR stands for the

DRIVE, IO stands for the IOSTAR dataset, and AV stands
for AV-separated.

Two different visualizations of the final statistical kernels
are shown in Figs. 5 and 6. The rows in Fig. 5 from top
to bottom represent the K stat

DR , K
stat
DR−AV, K

stat
IO and K stat

IO−AV,
respectively. Each square has the dimension of 131×131, and
it depicts the value of the kernel at fixed relative orientation
(K stat(x, θc), θc ∈ {±π/8,±π/16, 0}). The kernel values of
only five orientations are depicted as the information at other
angles is very small. As seen in these figures, the maximum
values of the statistical kernels occur at small orientation dif-
ferences, i.e., two aligned lines are more probable to appear
in the images. This probability decreases when the orienta-
tion differences increase. Comparing these four histograms
qualitatively, the statistical kernels of the DRIVE dataset are
a bit less elongated compared to the ones of the IOSTAR
datasets. Moreover, the separation of the lines of arteries and
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Fig. 4 Two sample images from the IOSTAR (top row) and the DRIVE (bottom row) datasets. a The original images, b the vessel and c the AV
ground truth images (artery in red and vein in blue), d the vessel skeleton and e the color-coded orientation maps

Fig. 5 The statistical kernels obtained in Step 8 of Algorithm 1 for
each dataset. The value of θ is shown for each column, and the values
of all figures are clipped between 0 to 0.2 of the maximum value of the
K stat
DR

veins from each other results in less noisy histograms for
both datasets; however, the difference is very small. Figure 6
visualizes the isosurfaces of these four data-driven kernels,
which shows their high similarity.

These data-driven kernels are compared with each other
quantitatively, and their mutual differences are obtained as
the absolute error =‖ K stat

1 − K stat
2 ‖l2 , where K stat

1 and
K stat
2 are the two statistical kernels in comparison. These least

square errors are presented in Table 1 for each pair of kernels.
Based on these quantitative results, their differences are very
small. Therefore, it is possible to use them interchangeably,
regardless of the dataset or the ground truth used for obtaining
them.

Fig. 6 The level sets of the a K stat
DR and b K stat

DR−AV shown at 0.0125 of
the maximum value of the K stat

DR , and the levels sets of the c K
stat
IO and d

K stat
IO−AV shown at 0.025 of the maximum value of the K stat

IO

Table 1 The least square errors obtained by comparing each pair of the
statistical kernels

K stat
1 K stat

2 Error(%)

DR I O 1.14

DR DR − AV 0.51

DR IO − AV 2.14

IO IO − AV 1.01

IO DR − AV 0.69

DR − AV IO − AV 1.66
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Table 2 The least square errors and the corresponding parameters
resulting in these errors between the statistical and probability kernels

K stat Error (%) α D33 σ

DR 0.3275 0.0024 0.00170 0.0583

DR − AV 0.55 0.0048 0.00210 0.0648

IO 0.8109 0.0080 0.00130 0.0509

IO − AV 1.04 0.0098 0.00085 0.0412

3.3 Comparison to the probability model

In this section we find the best approximations of the statis-
tical kernels by comparing them against various probability
kernels (obtained using Eq. 2) with different parameters. The
kernels that result in the least square errors are considered as
the best approximations. In our experiments, the parameter α
takes 50 different values from 0.00001 to 0.01 and the param-
eter D33 takes 100 values from 0.000001 to 0.005. These
ranges are determined heuristically. Theminimum errors and
the corresponding parameters for each kernel are presented
in Table 2. Based on these results, the errors are very small
for all the kernels. The largest error is related to the K stat

IO−AV,
which is close to 1%.

A sample qualitative comparison of these two types of
kernels is shown in Fig. 7. In addition to very similar pro-
files of the two kernels in Fig. 7a–c the summations of the
line distribution over the spatial dimension also matches the
information density of the probability kernel at every θ layer
(Fig. 7c). In both kernels, the maximum value appears at
θ = 0 as expected.

3.4 Application in retinal image analysis

In this section, the application of the statistical model of the
cortical connectivity pattern in identifying vessel connec-
tions in retinal images is explained.

In this method the vessel connections are retrieved from
image segmentations (not necessarily centerlines). So an
initial segmentation of the image I (using the aforemen-
tioned segmentation techniques proposed in the literature)
is required. The binary image representing the segmentation
is called Is. Repeating the steps as the ones proposed inAlgo-
rithm 1 (Steps 2, 3 and 4) the image is lifted (UI), dominant
orientations (θm) are obtained, and the set of interest points
is created as:

L = {(x, θm(x)) | Is(x) = 1}.

Consideringm = |L|, anm×m affinity matrix (A) is created
to take into account the connection probability between each
pair of points in set L and is later aggregated with another
affinity matrix ( Ã) representing the similarities of the corre-

(a) (b)

(c)

(d)

Fig. 7 Comparisonbetween the K stat
DR and its best approximatingkernel

K prob
DR : the level sets at 0.012 of the maximum value of a the statistical

and b the probability kernels, c the summation of the values of the two
kernels over the spatial dimension at different angles, and d the line
distribution at five different orientations θ ∈ {±π/8,±π/16, 0} in the
data-driven (top row) and the probability kernel (bottom row)

sponding vessel intensities. So for each pair of (xi , θm(xi ))
and (x j , θm(x j )) ∈ L:

Afinal(xi , x j ) = A(xi , x j ) Ã(xi , x j )

= kstat((xi , θm(xi )), (x j , θm(x j ))

×Gσint (In(xi ) − In(x j )),

i, j = 1, . . . ,m. (8)

where Gσint (x) is the normalized Gaussian kernel with the
standard deviation of σint and In is the image intensity in
normalized green channel. Here we normalized luminosity
and contrast using themethod by Foracchia et al. (2005). The
final affinity matrix is analyzed using the self-tuning spectral
clustering technique (Zelnik-Manor andPerona 2004),which
identifies the salient groups in the image automatically.

As discussed before, the differences between the kernels
obtained from the same datasets are very small and they can
be used interchangeably. Hence, for analyzing the retinal
image patches taken from the DRIVE and IOSTAR datasets
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Fig. 8 Some example retinal patches selected from the DRIVE (D1 –
D5) and the IOSTAR (I1 – I5). The first three rows from top to bottom
indicate the intensity, main orientations and the AV labels of the vessels.

The last row represents the final clustering results after removing the
small groups (noise). Detected clusters are shown in different colors

we only use the K stat
DR−AV and the K stat

IO−AV kernels, respec-
tively. For testing the method, several patches with the sizes
of 51×51 and 101×101 have been selected around junctions
from theDRIVEand IOSTARdatasets, respectively.Avessel
segmentation by Abbasi-Sureshjani et al. (2015) developed
for both color RGB images and SLO images is applied on
these patches. After segmenting the images, the positions,
orientations and normalized intensities for the vessel pixels
are extracted.

Figure 8 shows five image patches for each dataset. The
first five patches (D1 – D5) belong to the DRIVE, and the
second five patches (I1 – I5) are selected from the IOSTAR
datasets. For each patch, from top to bottom the vessel
intensities, the color-coded orientation maps [representing
the values of θm(x)], the AV labels and finally the cluster-
ing results have been presented. As seen in this figure, the
detectedfinal perceptual units (shown in different colors) cor-
respond to the separate blood vessels existing in the image
patch. These patches have been selected in a way to rep-
resent several complex topological structures of the blood
vessels, varying the number of the vessel bifurcations and
crossings and existence of parallel or curved vessels. For all
the experiments the parameter σint was set to 0.2. Despite the
complexity of the structures, using orientation and intensity
features for determining the contextual connections among
pixels individuates well the blood vessels from each other.
Using the feature of intensity helps in the cases where there
is an abrupt change in the orientation but not the intensity,
e.g., in D3 and D4. Moreover, the presence of disconnec-
tions (e.g., in I5) does not affect the correct grouping. In
addition to these patches, 20 more patches per dataset have

been analyzed. For all these cases, the method is successful
in correctly grouping the vessel pixels. The limitation arises
when both the feature of intensity and orientation of a vessel
are very noisy or change suddenly. In these cases, the vessel
splits into smaller clusters. Involving additional contextual
information such as curvature or scale may help in resolving
this problem as proposed by Abbasi-Sureshjani et al. (2016).

4 Conclusion

In this work, we exploit the relation between the statistical
co-occurrences of line elements in natural images and the
high-level task of contour grouping in our brain, and use
it in the retinal image processing for contour completion.
Firstly, the steps for obtaining the rotation and translation-
invariant line statistics from different retinal image datasets
are explained. Secondly, their relation to the symmetrized
probability kernel of the direction process on the projective
line bundlemodeling the cortical connectivity is investigated.
The results reveal their remarkable high similarity. However,
in edge co-occurrences (rather than line co-occurrences) of
natural images (e.g., Sanguinetti et al. 2010) the shapes seem
to resemble the shape of the hypo-elliptic heat kernels (with-
out convection) in R

2 × P1, but the relation needs further
investigation. In addition, all the statistical kernels obtained
from different datasets are compared with each other quanti-
tatively and qualitatively. The obtained results indicate their
high similarity and reproducibility despite the differences in
the datasets and the setups used.
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Furthermore, the statistical kernels were used directly
to retrieve the individual vessels from segmented retinal
images. The successful results show that Mumford’s direc-
tion process is a very good model for centerlines of vessels,
and together with the Lie group theory, the proposed connec-
tivity analysis technique is useful for retinal image analysis.
Using the data-driven kernel (that does not need parameter
tuning) in addition to adding the automatic self-tuning spec-
tral clustering technique, forms a robust and fully automatic
connectivity analysis technique. This provides an effective
solution for challenging situations in which most of the
methods fail (but our visual perception succeeds) because of
non-perfect imaging conditions, interruptions or occlusions.

Themethodpresentedhere for extracting line co-occurren-
ces from retinal images and the improved connectivity
analysis approach can be extended to a rich number of other
application areas which contain curvilinear structures such
as corneal never fibers, plant roots and road networks. For
each dataset, it is possible to learn the connectivity kernel
and use it directly for similar images.

Since the visual cortex deploys additional contextual
information and its receptive fields are not only sensitive
to orientation, but also other information (such as scale and
curvature), one potential extension of the method is to use
this additional information in deriving the line statistics and
creating higher-order kernels.
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