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Abstract In this paper, we present a novel method for
the identification of synchronization effects in multichannel
electrocorticograms (ECoG). Based on autoregressive mod-
eling, we define a dependency measure termed extrinsic-
to-intrinsic power ratio (EIPR) which quantifies directed
coupling effects in the time domain. Hereby, a dynamic
input channel selection algorithm assures the estimation of
the model parameters despite the strong spatial correlation
among the high number of involved ECoG channels. We
compare EIPR to the partial directed coherence, show its
ability to indicate Granger causality and successfully vali-
date a signal model. Applying EIPR to ictal ECoG data of
patients suffering from temporal lobe epilepsy allows us to
identify the electrodes of the seizure onset zone. The results
obtained by the proposed method are in good accordance
with the clinical findings.
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1 Introduction
1.1 Medical background

Epilepsy is a chronic neurological disorder with a prevalence
of ~0.7 % (Hirtz et al. 2007) and is characterized by the recur-
rence of unprovoked and unpredictable seizures. The seizures
can be described as a frequently recurring temporary occur-
rence of hyper-synchronous activity within relatively large
areas of the cortex that severely disturbs normal brain func-
tion. Often, the pathological synchronous activity (synchro-
nizations) starts at a small, localized brain area within the
gray matter and then spreads to its immediate vicinity recruit-
ing more and more parts of the neural network. In the case of
generalized epilepsy, the synchronous neural firing can affect
the whole cortex, in the case of focal epilepsy only parts of
it, the so-called epileptogenic area is affected (Baumgartner
2001).

About one-third of epilepsy patients suffer from therapy-
resistant seizures, i.e., seizures cannot be controlled with anti-
epileptic drugs (Engel 1996). Epilepsy surgery has become a
valuable treatment option for some of these patients render-
ing 70-80 % of them seizure-free and providing them with
the opportunity for a satisfactory life (Clusmann et al. 2002).
The aim of epilepsy surgery is removal of the epileptogenic
brain region, whereby a complete removal of the epilepto-
genic zone is essential in order to abolish the seizures. At the
same time essential brain regions like, e.g., primary motor
and sensory cortex, as well as brain areas supporting language
and memory functions have to be spared in order to avoid
neurological deficits caused by the surgery (Liiders 1992).
Thus, the exact localization of the epileptogenic zone and
of essential brain regions are crucial for the successful sur-
gical treatment of seizures which can only be accomplished
during a thorough presurgical evaluation. This examination
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comprises prolonged video-EEG recording, high resolution
brain imaging, and neuropsychological tests.

Especially in patients with seizures arising adjacent
to essential brain regions, invasive electroencephalogram
(EEG) recordings with chronically indwelling subdural strip
and grid electrodes (termedelectrocorticogram, ECoG) or
depth electrodes have to be applied in order to increase spatial
resolution (Behrens et al. 1994; Zumsteg and Wieser 2000).
However, even with these invasive techniques the epilepto-
genic zone cannot be localized adequately in about 20 % of
patients (Pondal-Sordo et al. 2007). Thus, these patients can-
not be offered a surgical therapy and the electrodes have to
be removed without resective surgery.

In order to localize the epileptic zone and analyze the
propagation of the seizure, visual inspection of raw ECoG
data is performed by clinicians. This is a difficult and time-
consuming task, but still regarded as gold standard (com-
pare Gotz-Trabert et al. 2008; Jenssen et al. 2011 for two
recent studies). Therefore improving the analysis of the ini-
tial seizure propagation using mathematical models is clini-
cally desired: Identifying the spatio-temporal dependencies
in ictal ECoG recordings could fulfill this task.

1.2 Technical background

For localizing the onset zone of the epileptic activity, we
want to visualize coupling effects of the multivariate ECoG
signal. For this purpose, we calculate dependency measures
and depict them in a graph, whose vertices represent the com-
ponents of the signal, and edges indicate dependencies dif-
ferent from zero. This approach yields an intuitive graphical
representation of coupling effects in multivariate time series
(cf. e.g., Dahlhaus 2000; Dahlhaus and Eichler 2003; Eichler
2006a).

A wide variety of different coupling indicators for neuro-
physiological data has been published: Pereda et al. (2005)
give an overview of common nonlinear approaches to the
analysis of neurophysiological data. Among them, similarity
measures have recently been used by Hedge et al. (2005) for
tracking spatio-temporal dependencies in ictal ECoG record-
ings.

Winterhalder et al. (2005) discuss dependency measures in
the linear framework of autoregressive (AR) modeling. Two
important directed coupling indicators are the directed trans-
fer function (DTF) and the partial directed coherence (PDC),
both distinguishing between source and target by indicating
a direction of the dependency. DTF and PDC are based on
a common linear approach to EEG analysis in the literature
(Franaszczuk et al. 1985; Sanei and Chambers 2007; Tong
and Thakor 2009): To model the ECoG signal as a multivari-
ate AR process. Once the AR model has been identified, spec-
tral properties directly follow (Marple 1987). The spectrum
is the basis for the measurement of linear couplings in the
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frequency domain, which reveal relations between elec-
trodes. These inter-dependencies are interpreted as indica-
tions for epileptic synchronous activity.

The DTF was proposed by Kaminski and Blinowska
(1991) for quantifying dependencies in neural signals.
However, when Franaszczuk et al. (1994), Franaszczuk and
Bergery (1998), and Ge et al. (2007) used DTF for epilep-
tic seizure analysis, a manual selection of narrow frequency
bands always had to be performed in order to achieve satis-
fying results.

Wilke et al. (2008) proposed a time-variant version of
DTF for epileptic EEG analysis, which shows promising first
results. Recently, Kim et al. (2010) combined the usage of
DTF with a spatio-temporal source localization algorithm in
order to analyze the propagation of epileptic activity in ECoG
signals.

As DTF is not capable of distinguishing between direct
and indirect influences, Korzeniewska et al. (2003) proposed
an extension termed direct directed transfer function (dDTF),
which only indicates direct coupling effects and ignores indi-
rect ones.

The PDC is another prominent coupling indicator real-
izing this distinction between direct and indirect influences.
It is directly based on the Fourier-transformed coefficients of
the AR model. As the relation between Granger causality—
a concept of directed dependency developed by Granger
(1969)—and DTF is controversial (Eichler 2006b; Kaminski
et al. 2001), Baccala and Sameshima (2001) proposed PDC
in order to provide a frequency-domain picture of Granger
causality.

In the last years, there has been an increasing interest in
this dependency measure: PDC has often been applied to the
analysis of neural interactions (e.g., Sameshima and Baccala
1999; Astolfi et al. 2005), and various extensions to the initial
form of PDC have been proposed: First, Baccala et al. (2007)
generalized their original definition in order to provide a
scale-invariant form. Recently, Takahashi et al. (2010) estab-
lished a link between a slightly redefined form of PDC and
the mutual information rate (MIR), an information-theoretic
consideration of couplings. Finally, Faes and Nollo (2010)
considered an extended version of PDC for the modeling of
instantaneous dependencies between EEG channels.

1.3 Motivation

Our aim is to analyze synchronization effects in multichannel
ECoG data of epileptic patients and to identify these coupling
effects with a high degree of automatism: Unlike the meth-
ods mentioned above, we neither want to manually preselect
ECoG input channels nor explicitly consider specific fre-
quency bands. Our contributions to epileptic seizure analysis
are twofold.
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In order to avoid numerical problems resulting from the
high number of ECoG channels, we suggest an automatic
channel selection prior to computing dependency measures.
This idea is detailed in Sect. 2.4.

Furthermore, we propose a different approach to the iden-
tification of synchronous activity: Contrary to a spectral
analysis, as it is performed by DTF or PDC, we directly
consider couplings in the time domain. In order to assure a
(neuro)physiological interpretation of our methodology, we
search for a coupling indicator with a clear physical inter-
pretability. For this purpose, we introduce a novel depen-
dency measure termed extrinsic-to-intrinsic power ratio
(EIPR) initially defined by Hartmann et al. (2008), which
is discussed in Sect. 2.5.

The method is tested on neural signals for the localization
of the epileptic seizure onset zone. A method based on these
results might be used in the future in order to provide neurol-
ogists with a tool yielding a seizure onset zone localization
which supports them in a clinical environment.

2 Materials and methods
2.1 Definitions and assumptions

In our analysis of multichannel ECoG data, we deal with mul-
tivariate signals X[?] (¢ € Z denoting the time index), which
consist of K real-valued components xi[t], k = 1,..., K.
We call the components xi[7] channels, representing sam-
pled ECoG recordings at a sampling frequency f;. Fourier-
transformed signals are denoted by their respective capi-
tal letter [e.g., x[t] becomes X(f), see Marple (1987) for
details].

In order to process the recorded data, we use a window of
length Ty, therefore containing Nyin = Tywin - fs samples.
Within this data window, we assume the channels to be zero-
mean and stationary, i.e., we have time-invariance of the first-
and second-order statistics. In the remainder of this paper,
we will refer to time indices relative to a data window by n
(therefore we have n = 1, ..., Nyin in each window).

We use common mathematical abbreviations: We denote
the expectation by E {-} and the variance by V {-}. Further-
more, the complex unit is symbolized by i.

2.2 Autoregressive model

For an introduction to multivariate time series analysis, in
particular to multivariate AR modeling, we refer to (Liitke-
pohl 2007) and (Hannan and Deistler 1988).

The proposed method starts with the definition of a stable
multivariate AR model of order p, defined by

p
xin] = > Aljlx[n — jl1+elnl, ()

J=1

where €[n] is white noise with regular covariance matrix .
This model is decomposed component-wise into the sep-
arated contributions of all channels: We define the partial
contribution i 1[n] as

p
i aln] 2" Agaljlxln — j] @)
j=1

with A ;[j] the (k,1)-element of the coefficient matrix A[]
in (1). This allows to write the AR model (1) for each channel
xklnl, k=1,...,K as

xiln] = prln] + D puln] + elnl.
Ik

In order to shrink the regression model, we only consider
partial contribution terms 4 ;[n] which significantly differ
from zero. The explicit choice of inputs yields a model of the
form

xiln] = palnl + D pralnl + &lnl, k=1,...,K.(3)
lellg

Here 1Ly is an extrinsic channel set, which can be a subset
of {1, ..., K}\{k}, allowing for a reduction of the number
of parameters of the AR model. A strategy for such an order
reduction is proposed in Sect. 2.4.

Thus each 1k ;[n] in Eq. (3) reflects the contribution from
(the past of) the respective channel x;[n] to channel xi[n].
As we differentiate between the channel x;[n] and the other
xi[n], I # kin Eq. (3), we introduce the following specifica-
tion: For k = [, we call ug r[n] is the intrinsic contribution;
fork # 1, k. 1[n] is the partial extrinsic contribution. As the
term Z,eLk Mk.1[n] in Eq. (3) is the sum of all partial extrin-
sic contributions, it symbolizes the total amount of inflow to
the channel xi[n] and is therefore denoted by fotal extrinsic
contribution.

A more general definition of the autoregression in the par-
tial contribution term (2), as proposed by Hartmann et al.
(2008), would allow a more flexible lag usage, e.g., permit-
ting non-causal modeling.

2.3 Solution of the normal equations

Under the assumption of short-term stationarity, the solution
of the normal equations (within the data window) yields the
estimated model coefficients Ay ;[ j] in the sense of ordinary-
least-squares (OLS). Second-order statistics needed for their
solution have to be estimated from the data. For this reason,
it is important that the length of the data window is chosen
neither too short nor too long. An appropriate choice has to
establish a good trade-off between estimation errors due to
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For each channel k =1, ...,K:

Initial extrinsic channel set: Ly < {}
Initial extension pool: E; « {1,...,K}\{k}
Calculate BIC(ILy)

Ve € Ey: calculate BIC(c¢) with extrinsic channel
set L, + Ly U{c}

Optimum extension: find best additional channel
Copt +— argmin. BIC(c)
If BIC(L,,,) < BIC(Ly):

Extend extrinsic channel set: Ly < Ly U {cop }

Reduce extension pool: Ey < Ei\{cop }
Update cost function: BIC(ILy) - BIC(L,,,, )
while BIC(L,, ) < BIC(Ly)

Fig. 1 Automatic channel selection algorithm. The bottom—up
construction of the extrinsic channel set Ly is given in pseudo code

instationarity and inaccuracy due to a too small number of
samples.

In particular, in case of neural data such as ECoG record-
ings their highly instationary character requires the use of
short data windows.

2.4 Dynamic input channel selection

The estimation of the model coefficients Ay ;[ j] in the normal
equations poses numerical problems, as we deal with a large
number of ECoG channels which are highly correlated both
in time and in the cross-sectional dimension. In order to avoid
this situation, the idea is therefore to automatically reduce the
number of channels in a subset containing all information
important for the regression.

For this reason, we introduced the extrinsic channel set
L in Eq. (3), which defines—per channel xi[n]—the x;[n]
relevant for the AR model. The advantage arising from this
approach is that we do not have to choose Ly = {1... K}\{k}
(as it would be the case in the AR model (1), but can shrink
it to a reduced set of channels. We only consider the chan-
nels {xx, x; : [ € L}, and this selection assures that the
estimation of the model coefficients yields numerically sta-
ble results: The correlation matrix of the small subsystem is
well conditioned and can be inverted without further numer-
ical problems.

We propose an iterative procedure for an automatic selec-
tion of an extrinsic channel set L; for each x;, which is
described in pseudo code in Fig. 1.

The main idea is to iteratively add channels in a bottom—
up fashion until the Bayesian information criterion (BIC)" is

I As the well-known Akaike information criterion (AIC) tends to over-
fit, we use BIC introduced by Schwarz (1978). Statistical properties are
discussed in Hannan and Deistler (1988).
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minimized: In this context, it is defined as (Penm and Terrell
1982)

M In Ny;
BIC(Ly) £ In Serr (g U {k}) + N—Wm )

win
where

Nyin

Ser = D (Eln])®

n=1

is the residual sum of squares and

K
M:(Z(ss(Lk)‘i‘l)'P

s=1
with

1 sely

Bs(Lk):[O S¢Lk.

Hence M = (dim Li+1)- p is the total number of parameters
to be estimated.

Using this criterion our algorithm works as follows: We
start with an empty extrinsic channel set L. Then, we add the
channel x;[n], [ # k of the (K — 1) other ones which is best
in the sense that it leads to the smallest BIC value (4). In the
next step, we again select the “best” out of the remaining ones
and so forth till we cannot decrease the value of the bracket
expression in criterion (4) any more by adding channels. This
(local) minimum determines the extrinsic channel set Iy to be
used for coefficient estimation. Coefficients Ay ;[ j] of chan-
nels x;[n] which were not selected by this iterative procedure
are set to zero.

We expect the algorithm to select extrinsic channels which
contribute significantly to the explanation of the respective
intrinsic channel. We will illustrate this behavior in Sect. 3.2
in detail.

Note that the bottom—up approach of our proposed algo-
rithm is similar to the An algorithm published by An and
Gu (1989), which is however limited to a regression model
without any temporal lags.

2.5 Partial extrinsic power

The aim of the proposed method is to identify directed
dependencies of the multivariate signal x[r], which are
expected to indicate synchronization and coupling effects of
brain regions during epileptic seizures. For similar problems,
numerous alternative measures based on a spectral analy-
sis have been proposed in the literature (compare Sect. 1.2).
However, instead of regarding spectral properties of the AR
model (3), we propose to directly consider the partial contri-
bution term (2) in order to gain information on the influence
of channel x;[n] to channel xi[n].
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The variance of the partial contribution term p ;[n] can
be written as, using (2),

V{ukalnl} = E {pxiln] paslnl}

p P
= > > Acililrgli —iTAL. ©)

j=1j'=1
where ry[s] = E{x/[n+ s]x/[n]} is the autocorrelation

function of channel x;[n].

The partial contribution term iy ; [12] represents the directed
influence of channel x; onto x; by construction, see model
(1). Its variance is a natural measure of the strength of the
influence from x; onto xj. Therefore, we expect it to gain
importance in ictal periods due to the increased synchronous
activity mentioned in Sect. 1.1. For k = [, we speak about the
intrinsic power, for k # [ about the partial extrinsic power.

Note that although the sum of all partial extrinsic contri-
butions 1 ;[n] gives the total extrinsic contribution (i.e., the
inflow from all channels x;[n] onto channel x[n], k # I),
the sum of all partial extrinsic power terms V { Uk, 1} does not

equal the total extrinsic power V {Z lelL, k.1 [n] } , unless all
cross-correlations are zero.

Thus, considering the variance (5) of the respective par-
tial contribution term for all channel combinations k,! =
1,..., K, we expect to obtain an indication for the directed
coupling of each channel x;[n] onto each channel xi[n] in
scalar form. We can finally represent this K x K matrix of
coupling information in a graph.

2.6 Extrinsic-to-intrinsic power ratio (EIPR)

A problem with the variance (5) of the partial contribution
term is its scale-dependence. It is desirable to normalize this
measure appropriately such that it is independent of the signal
power.

It is not obvious how to perform this normalization. One
could, for example, normalize with respect to all target chan-
nels, as done by the PDC, as introduced below. However,
this approach renders the measure dependent of all channels
involved in the regression (cf. Schelter et al. 2009). This will
be detailed in the next subsection.

This motivates our search for an alternative normalization
which is not affected by this kind of limitation. We propose
to use the EIPR

s Y {ir.lnl}

, 6
V{urxlnl} ©

2
M1

which was initially defined by Hartmann et al. (2008). We
assume that the variance of the intrinsic contribution term
in the denominator in (6) is bounded below by a positive

constant®. This assumption was fulfilled in the considered
ECoG recordings (Graef 2008).

EIPR defined in this way quantifies coupling effects of
channel pairs (xg, x;), taking large values for large partial
extrinsic variance and small intrinsic variance. This is the
case when channel x; contributes significant information to
the explanation of channel xi . On the other hand, EIPR shows
only small values for weak influence of x; to x.

2.7 Comparison of EIPR and PDC

The PDC is based on the Fourier-transformed AR model
coefficients (Baccala and Sameshima 2001)

~ 2
|Aki(f)]
~ 2 M
St [Ani(h)]
For frequency f, A(f) € CK*K is obtained as

me(f) =

(N

P
A(f) 2T=D Alple ™ =1-A(f),
j=1
where A[s] are the coefficients of the multivariate AR model
(1), and I denotes the identity matrix.

As mentioned in Sect. 1.2, PDC provides a “frequency-
domain picture” of Granger causality: In particular 7 ; ( f) =
0V f implies that channel x;[n] does not Granger-cause chan-
nel xi[n]; compare (Baccala and Sameshima 2001).

One important difference between EIPR and PDC is in
their respective normalization. As mentioned in the previ-
ous subsection, PDC is normalized with respect to all target
channels which renders the measure dependent of all chan-
nels involved in the regression (cf. Schelter et al. 2009). For
an illustration consider any arbitrary three-dimensional AR
model showing the dependencies depicted in Fig.2a. When
we study the coupling between two specific channels of our
AR system, say x» and x1, PDC is influenced by channel
x3, which is not of direct interest to us. This is easily seen
from the denominator of PDC: Changing the value of the AR
model coefficient A3 > affects the denominator of PDC

|A1,2(f)|2
|A12(A + A2 (O] + [As2(H)]

Normalizing with respect to all source channels rather than
to all target channels, as proposed by Schelter et al. (2009),
causes similar problems.

A particular situation where a normalization either to all
source or all target channels involved may lead to mislead-
ing interpretations is as follows: Assume that a seizure focus

mia(f) =

2 The case of V {Hk,k[n]} = 0 would imply that the past of x; does
not contribute to the explanation of x; in the present, i.e., the chosen
x; (alone) explain x; optimally. This is highly unlikely in ECoG data,
which was empirically shown in (Graef 2008).
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is located in the middle below three electrodes. The signals
recorded depend of course on their exact position on the cor-
tex. When studying the brain activity between two of them,
our result is influenced by the position of the third electrode,
which we cannot adapt to our needs (as it is implanted).

EIPR avoids this problem, as its denominator is only based
on the statistics of the intrinsic (currently regarded) channel,
compare (Graef et al. 2009).

Furthermore, it is interesting to note that the variance (5)
of the partial contribution term is closely linked to PDC. Let
us write this variance (5) as integral

V{//Lk,l[n]} = / Suk,l(f) df’ (8)
f

where S, ;(f) denotes the spectral density of the partial
contribution term pug ;[n]. By transforming the partial con-
tribution term (2) into the frequency domain, i.e.

M (f) = A () Xi(f),

we obtain its spectral density

St (F) = |Aki (O] Su(f). ©)

Substituting expression (9) into the spectral representation
(8), we obtain the representation

V {jugslnl) = / B (NP S df. k #1 (10)
f

of the variance of the partial contribution term (1]
[cf. (5) for its definition].

Hence, under the assumption that Sy, (/) > 0 the left-hand
side of (10) is zero if and only if PDC nkzl(f) =0, k # [ for
all frequencies f. Thus, under this assﬁmption x;[n] being
Granger-causal for x[n] is equivalent to V {1z ;[n]} > 0.
In particular EIPR vanishes for Granger non-causality.

Let us finally compare PDC and EIPR in the spectral
domain, which underlines the reflections regarding normal-
ization. When expressing EIPR (6) by the spectral densities
of the partial contribution terms and using expression (9), we
obtain

o AL OISy (DA [ S (N df
S AP Sahdr Ty S DS

(11)

If we represent the PDC (7) by means of expression (9), we
obtain

2
a2 (f) = (A DSa () S

SE A O Sa () X S ()
(12)
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Fig. 2 Dependency graphs of AR models. a illustrates a normalization
problem of the PDC as discussed in Sect. 2.6, A3 ; affects 71|2 5. b shows
the dependence structure of signal model (13) used for the assessment
of EIPR

2.8 Signal model

As a test case for EIPR and the channel selection algorithm,
we consider a simulation based on an example proposed by
Winterhalder et al. (2005). This is an AR system of order
p=>5

x1[n] =0.8x1[n — 114 0.65 x2[t — 4] + €1[n]

x2[n] = 0.6 x2[n — 1]+ 0.6 x4[n — 5] + &2[n] (13)

x3[n]=0.5x3[n—3]1-0.6 x;[n—1]+--+0.4 x2[n—4]+£3[n]
x4[n] = 1.2x4[n — 11 — 0.7 x4[n — 2] + e4[n]

with the covariance matrix of the noise set to identity. We sim-
ulate 100s assuming a sampling frequency of f; = 128 Hz
(for consistency with the ECoG data, compare the next sub-
section). Note that in this artificial case we process the sta-
tionary five-dimensional signal in one single data window
of length Nyi, = 12,800. The imposed dependency paths
of the AR model (13) are shown in Fig.2b. This structure
was successfully retrieved by application of PDC; compare
(Winterhalder et al. 2005).

As it is unlikely in applications that one observes values
of EIPR exactly matching zero, one has to statistically test
whether values of EIPR are significantly different from zero.
As no exact distribution of EIPR is available yet, we make
use of bootstrapping in order to numerically derive signif-
icance thresholds. The idea of the so-called surrogate data
method (see e.g., Kaminski et al. (2001) for an application to
DTF) is to resample the original data independently for each
channel x;[n] for N = 100 times, thus destroying the inter-
channel dependence structure. This repetition gives empirical
distributions of each EIPR n,%’ ; under the null-hypothesis of
non-causality (Ho : px; = 0), namely N realizations of
each ﬁ,%, ;- Here, we use the leave one-out method (LOOM)
introduced by Schlogl and Supp (2006) for the re-sampling
process and subsequent statistical 7 test, as it yields reliable
results in causal analysis (cf. Florin et al. 2011 for a compar-
ative study). EIPR values n,% ; significantly indicate depen-
dency if ’

U
My > ~IN-Lia % +ii2,, (14)
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Fig. 3 X-ray image of patient A in frontal view indicating electrode
positions of the four strip electrodes: A and B below the left temporal
lobe, C and D below the right temporal lobe

where - denotes the empirical mean and 6 (-) the empir-
ical standard deviation of the EIPR values ﬁ,% ; based on
the re-sampled data. fy_j., is the quantile of the Student
distribution with N — 1 = 99 degrees of freedom and
a=1-0.99 =0.01.

2.9 ECoG data

The ECoG data in this study are taken from four female
patients between 31 and 61 years of age suffering from
therapy-resistant temporal lobe epilepsy. The data were
recorded at the Vienna General Hospital, Department of Neu-
rology, in the course of a presurgical investigation.

In order to test our method on neural signals, a total of
12 seizures of these patients was analyzed. Two out of four
patients had to be excluded due to strong signal artifacts and
spike—wave complexes during the seizures, respectively. As
our method is based on the detection of synchronization, it is
not suitable for the analysis of spike—wave complexes. The
remaining two patients underwent presurgical evaluation for
8 (patient A) and 7 (patient B) days, respectively. For patient
A, aged 59 years, ECoG was recorded from 28 electrodes
grouped in 4 individual stripes. The X-ray scan of the head
of patient A in Fig. 3 details the positions of the four subdural
strip electrodes: Stripes A and B are situated below the left

Table 1 Onset zone and initial propagation of the analyzed seizures
according to the visual inspection by clinicians. (a)—(d) show the clinical
findings for seizures 1—4 of patient A, (e)—(g) the ones for seizures 1-3
of patient B

Time Electrodes affected

(a) Patient A, seizure 1

03:04:36 B1-B3

03:04:57 B1-B5

(b) Patient A, seizure 2

12:45:51 D6, D7

12:45:52 C1-C6, D1, D4-D7
(c) Patient A, seizure 3

12:31:41 D6, D7

12:31:52 B4, BS, D6, D7

(d) Patient A, seizure 4

15:21:42 Cl

15:21:47 Cl1, D4-D7

(e) Patient B, seizure 1

07:02:02 El, E2

07:02:03 D1, D2, El, E2

(f) Patient B, seizure 2

08:06:34 El, E2

08:06:35 D1, D2, El, E2

(g) Patient B, seizure 3

08:55:41 Immediately generalized

temporal lobe, C and D below the right one. In case of patient
B, aged 61 years, ECoG was recorded from 32 electrodes
grouped in 5 individual stripes: similar to patient A, stripes
A, B, and C are situated below the left temporal lobe, D and
E below the right one.

In all cases data were recorded with a sampling frequency
of 256 Hz using an IT-med® recording system. After record-
ing, the ECoG data were preprocessed in Matlab®: Line
interference was removed with a Notch filter at 50Hz, and
the signals were low-pass-filtered at 64 Hz in order to avoid
aliasing and then downsampled to 128 Hz.

Table 1 summarizes the clinical findings for the seizure
onset time of the two patients. This information was given
by the clinicians based on a visual inspection of raw ECoG
signals and will be used in Sect. 4 in order to evaluate the
results of our method (cf. Sect. 3). As seizure three of patient
B was primarily generalized, we do not evaluate it and thus
consider six seizures in total (Table 1a—f).

Note that the recordings of patient A reveal different later-
alization (cf. the X-ray image in Fig. 3): In case of seizure 1,
onset of epileptic activity is on the left hemisphere, whereas
in case of seizures 2, 3, and 4 the right hemisphere is initially
involved.
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Table 2 Values of EIPR for

2

signal model (13). Imposed k.1 *1 X2 X3 X4

dependencies (bold values) are

correctly recognized, X1 1.00000 0.18039 (0.05877) 0.00005 (0.00126) 0.00001 (0.00194)
99 %-significance thresholds are X2 0.00066 (0.00141) 1.00000 0.00064 (0.00090) 0.75701 (0.24812)
L“d‘ck"“fd in italic between X3 2.09681 (0.12395) 0.26936 (0.04652) 1.00000 0.00003 (0.00133)

rackets
X4 0.00019 (0.00031) 0.00008 (0.00017) 0.00014 (0.00025) 1.00000
3 Results Table 3 Step-wise behavior of the channel selection algorithm for sig-

3.1 Signal model validation by EIPR

In order to show the ability of our method to detect depen-
dencies, we first apply EIPR to the AR model (13)°. Here, we
disable the automatic channel selection algorithm described
in Sect. 2.4 in order to assure that the entire coupling infor-
mation contained in the multichannel signal is used.

We compare our findings to the result of PDC as reported
by Winterhalder et al. (2005). For each source channel x;
and target channel x; with k # [, Winterhalder et al. (2005)
show a frequency plot of PDC nk2 ;(f). These frequency plots
are arranged in a K x K ~matrix plot, where the columns
indicate the source channels and the rows the target channels
(compare Fig.5 in the discussion). Thus, the (k, [)-subplot
quantifies the influence from x; to x. If n,i ;(f) =0Vf, one
can conclude that there is no direct dependency from x; to xi.
However, as it is unlikely in applications that one observes
values of PDC exactly matching zero for all frequencies, one
has to use a statistical test. Thus, Schelter et al. (2005) derived
an asymptotic frequency-dependent confidence interval: For
each frequency f, PDC values below the respective threshold
indicate the absence of any direct coupling.

In contrast to PDC, EIPR condenses the coupling infor-
mation from x; to x; in one scalar value. Therefore, the cou-
pling information [EIPR and significance threshold (14)] can
be represented in a table: In complete analogy to PDC, the
(k, I)-element of the table quantifies the influence from x; to
Xk, and the columns indicate the source channels, the rows
the targets.

As detailed in Table?2, which is constructed in this way,
our measure correctly identifies the imposed dependencies
illustrated in Fig. 2b: The ones which are induced by the sig-
nal model (13) are set in bold-face type. Similar to PDC, we
do not expect to observe EIPR values exactly matching zero
in case of non-causality. We rather have to decide whether
EIPR 77,%’ ; significantly differs from zero by exceeding 99 %
significance thresholds (detailed in italic between brackets
behind the respective EIPR values in Table 2).

3 Simulation of this model was done with the help of the Matlab®
package ARFIT developed by Schneider and Neumaier (2001). In order
to avoid initial transient effects, we generate 13,800 samples and discard
the first 1,000.
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nal model (13). Channels with imposed dependencies are selected. Min-
ima of the BIC values of each step are set in bold-face type for better
traceability

xr  Step Initial regression:
channels, BIC

Extended regression:
additional channel,

Step result

BIC
x1 1 {x1}:0.811 x2: —0.019 Choose x»
x3:0.783 Li = {x2}
x4: 0.755
2 {x1,x2}: =0.019  x3: —0.016 STOP
x4: —0.016 Ly = {x3}
xy 1 {x2}:0.623 x1:0.624 Choose x4
x3:0.625 Ly = {x4}
x4: 0.011
2 {x2, x4}: 0.011 x1:0.015 STOP
x3:0.015 Lo = {x4}
x3 1 {x3}: 1.165 x1:0.377 Choose x
x2:0.592 L3 = {x1}
x4:1.143
2 {x3,x1}: 0.377 x2:0.001 Choose xp
x4:0.348 L3 = {x1, x2}
3 {x3,x1,x2}: 0.001 x4:0.005 STOP
L3 = {x1, x2}
x4 1 {x4}: 0.014 x1:0.018 STOP
x2:0.018 L4 = {}
x3:0.018

3.2 Analysis of the channel selection algorithm

In a next step, we analyze the dynamical channel selec-
tion algorithm by applying it to the AR model (13) without
subsequent calculation of EIPR. As stated in Sect. 2.4, we
expect our algorithm to select the extrinsic channels which
contribute significantly to the explanation of the respective
intrinsic channel. The simple structure of signal model (13)
allows to verify this design: In this artificial case, the imposed
signal model dependencies (cf. Fig. 2b) exhaustively define
the important extrinsic channels for each intrinsic one. Unlike
in the case of ECoG recordings, we do not have any addi-
tional weak dependencies here which we want to single out
for numerical reasons.

Table3 illustrates the results of this simulation. As
expected, the algorithm builds up the extrinsic channels sets
in accordance with the imposed dependencies.
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First, consider channel xi, which is only influenced by
x3. The algorithm sets L; = {x»}, as in the first step the
BIC value of the extended regression using channels x; and
x is minimal. In the second step, a further increase of the
number of regressors does not lead to a decrease of the infor-
mation criterion any more, and the algorithm stops returning
Ly = {x2}.

Next, consider channel x;. Similarly to the previous case,
itis only influenced by one channel, namely x4, and we obtain
Ly = {x4}.

The situation is different in case of channel x3 which
is influenced by x; as well x;. In a first step, the algo-
rithm selects the channel with the strongest influence
[AR coefficient of —0.6, cf. model (13)], x;. In a second
step, x7 is chosen (AR coefficient of 0.4). In a third step, the
information criterion cannot be reduced, and the algorithm
stops returning L3 = {x1, x2}.

Finally, we obtain an empty extrinsic channel set for x4,
as the regression based on x4 alone minimizes BIC.

3.3 Application to neural data

We apply our proposed methodology, i.e., regression with
dynamically selected channels and subsequent calculation
of EIPR, to ECoG recordings from epilepsy patients in order
to localize the seizure onset zone. Its identification is based
on the analysis of the dependency measure calculated in the
initial seconds of the seizure, given the exact seizure onset
time (cf. Sect. 2.9).

The ECoG data used for this purpose were acquired as
described in Sect. 2.9 and include a total number of six epilep-
tic seizures, four of patient A and two of patient B. Data were
processed within windows of 4 s, as this value turned out to
be a good trade-off for the estimation quality of the corre-
lation matrix between estimation errors due to instationarity
and inaccuracy due to a too small number of samples. An
AR model order of p = 7 was chosen. This allows for the
modeling of a spectrum with three peaks (e.g., in the #-band
and two others) and slowly changing components (Marple
1987). This choice is in good accordance with simulations
yielding the optimal model order (Graef 2008).

The results obtained with EIPR within the first window
after seizure onset are illustrated in Fig. 4. In each subplot, the
frontal view onto the patient’s head is symbolized (compare
Fig. 3 for the corresponding X-ray scan of patient A). In each
of these six illustrations, the cranium is symbolized by a thick
line according to the surgeon’s draft. Light gray lines indicate
the implanted subdural stripes, and circles represent the exact
electrode positions. Electrodes which belong to the seizure
onset zone according to the visual inspection are symbolized
by filled circles. For easier comparison of Fig.4 with the
clinical findings detailed in Table 1, important electrodes are
labeled with their respective identifier.

Plots (a)—(d) represent the four seizures of patient A at the
respective time of seizure onset, plots (e)—(f) two seizures of
patient B. An arrow from electrode x; to electrode x; indi-
cates that r],%, / exceeds a threshold, i.e., indicates strong direct
coupling from x; to xz. These two electrodes are associated
with an area of increased coupling activity.

For patient A, the indicated areas comprise electrodes on
both hemispheres. In case of seizure 1 (plot a), the electrodes
B2 and B3 show the highest EIPR on the left hemisphere.
At the onset time of the three subsequent seizures, the respec-
tive area of highest EIPR values is located on the right hemi-
sphere: electrodes C2, C3, D6, and D7 for seizure 2 (plot b);
Cl1, C4, D5, and D6 for seizure 3 (plot c); C1, C3, C4, D5,
D6, and D7 for seizure 4 (plot d). As for patient B, EIPR
identifies the electrodes E1 and E2 on the right hemisphere
for seizures 1 (plot ) as well as 2 (plot f). The third seizure
of patient B is not shown, as it immediately generalizes (cf.
Sect. 2.9).

For both patients, the areas of increased coupling activity
asindicated by EIPR coincide well with the respective seizure
onset zones specified by the clinicians (compare Table 1). In
case of patient A, our results are in good accordance with the
visual inspection detailed in Table 1. Note that our method-
ology correctly indicates the increased couplings on the left
hemisphere for the first seizure and on the right hemisphere
for the three subsequent seizures. Thus EIPR correctly iden-
tifies the different lateralization of the initial epileptic activity
in patient A. Considering patient B, our results are in very
good accordance with the clinical findings. For both seizures,
we identify increased couplings between the two electrodes
which show initial epileptic activity according to the visual
inspection.

4 Discussion
4.1 EIPR as coupling indicator

In this paper, we introduce a novel approach to the quantifi-
cation of directed couplings. The proposed dependency mea-
sure EIPR indicates Granger causality (as does the PDC), but
has the advantage of a clear physical interpretation as a power
ratio, compare expression (6). As mentioned in Sect. 2.6, its
normalization assures that the measured coupling strength
between two channels is notinfluenced by others. This behav-
ior is in contrast to the one of PDC (Graef et al. 2009) whose
confidence level depends on all neighborhood channels in
order to compensate for the normalization effect (Schelter et
al. 2005).

Due to its construction, EIPR successfully validates the
signal model (13). It retrieves the imposed dependencies
(compare Table2), as does PDC (compare Fig.5). In both
cases, the couplings x; — x3 (position (3,1) in the scalar
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Fig. 4 Couplings at time of
seizure onset in patients A and
B. Each plot represents the
frontal view onto the patient’s
head according to the surgeon’s
draft. a—d represent the four
seizures of patient A at the
respective time of seizure onset,
plots (e), (f) two seizures of
patient B. In each illustration,
the thick line symbolizes the
cranium, and implanted
electrode stripes are indicated in
light gray color. Circles
represent the corresponding
electrode positions, arrows
indicate high EIPR values.
Electrodes which are part of the
seizure onset zone according to
Table 1 are represented by filled
circles. The areas of highest
EIPR values coincide well with
the respective seizure onset
zones
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(a) Patient A, seizure 1 (data window:

03:04:36 - 03:04:40)

(b) Patient A, seizure 2 (data window:
12:45:51 - 12:45:55)

(C) PatientA,seizure3(datawindow:
12:31:41 - 12:31:45)

- : left

(e) PatientB,seizure1(datawindow:
07:02:02 - 07:02:06)

(d) PatientA,seizure4(datawindow:
15:21:42 - 15:21:46)
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(f) PatientB,seizure2(datawindow:
08:06:34 - 08:06:38)
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Fig. 5 PDC matrix plot of the signal model (13), confer (Winterhalder
et al. 2005). The plots on the diagonal show the spectra of the respec-
tive channels (x-axis: frequency in Hz, y-axis: spectrum in dB scale).

matrix / matrix plot) and x4 — xp (position (2,4) in the
scalar matrix / matrix plot) are predominantly indicated.

Here, we want to discuss three additional aspects regard-
ing the comparison of EIPR and PDC.

First, we observe an interesting behavior of EIPR: The
statistically significant values in Table2 exceed the non-
significant ones by a factor of 100. Even at a first glance
at such an EIPR table (without comparing the EIPR values
to their respective significance thresholds) we would obtain
an idea about the underlying dependence structure. Note that
the PDC matrix plot in Fig.5 creates a similar impression,
but in case of EIPR the tendency to separate significant from
non-significant values is stronger. This is a result of the nor-
malization discussed above.

Second, the EIPR values in Table 2 range between 0 and
2, PDC is normalized between 0 and 1. The reason for the
scatter of the EIPR values is the following: The variance
of the extrinsic contribution term in the nominator of EIPR
represents the power of the extrinsic contribution, which is
the integral of the corresponding power spectral density over
all frequencies [compare expression (11)]. In the nomina-
tor of PDC the same integrand shows up, but for a single
frequency [compare expression (12)]. Therefore, EIPR takes
large values for couplings where PDC is increased over a
wide frequency range, compare Fig.5. In particular, this is
the case for the two couplings mentioned above, x; — x3
and x4 — xp. Vice versa, PDC vanishing over a large fre-

A subplot on position (k,[), k # [ (x-axis: frequency in Hz, y-axis:
PDC) visualizes the influence of x; to x; measured by n,%’l(f ). The
imposed dependencies are correctly identified

quency band results in very small EIPR values (e.g., coupling
X3 — Xp).

Third, an advantage of EIPR is its compact representation
in the form of a matrix of (physically meaningful) scalar val-
ues as in Table2. This allows for a simultaneous comparison
of the individual EIPR values with their respective signifi-
cance thresholds even in case of large scale differences. In
contrast, a PDC matrix representation has the drawback of
being difficult to interpret. One has to consider the respective
subplot and compare PDC to the significance threshold for
all frequency points. However, as mentioned in Schelter et al.
(2005), this point-wise comparison is not straight-forward.
Consider for example the significant couplings x» — x3
and the non-significant ones x3 — x4 for both measures.
Comparing the EIPR values '7%,2 and ni3 with their respec-
tive significance thresholds is easily performed in Table 2. In
case of the PDC matrix plot in Fig. 5, this simple evaluation
is not possible. Small PDC values and significance thresh-
olds are not easily visible due the large scale differences.
In order to allow for a clear visualization of the PDC values
and their thresholds in each subplot (simultaneously visible),
each subplot would have to be scaled differently. Compare
Fig.6 for an illustration, where the scaling of the two sub-
plots of couplings x — x3 and x3 — x4 is performed in
this way. Here, the PDC values and significance thresholds
of both couplings are visible, at the price of a scale difference
of factor 100. This would render the comparison of the PDC
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Fig. 6 Zoom into two subplots of the PDC matrix plotin Fig. 5 (x-axis:
frequency in Hz, y-axis: PDC). a zoom of the subplot on position (3,2)
indicating the dependence xo — x3, b zoom of the subplot on position
(4,3) indicating the dependence x3 — x4. PDC values are illustrated
by solid lines, significance thresholds by dotted lines. For each plot, a
different zoom factor is necessary to allow for a simultaneous visual-
ization of PDC values and significance thresholds. A direct comparison
between the different plots is difficult

values between different subplots in a matrix plot such as
Fig. 5 difficult.

We want to conclude this part of the discussion with two
comments on the interpretation of EIPR.

EIPR is not normalized between O and 1, which is a draw-
back in comparison to PDC. In particular, this impairs the
comparison between different systems, as equal EIPR val-
ues might not indicate the same coupling strength in distinct
multichannel signals.

On the other hand, EIPR allows for an interpretation
similar to the signal-to-noise ratio (SNR): Given a signal
x[n] = u[n] + z[n] consisting of meaningful information
u[n] and background noise z[n], the SNR is commonly
defined (using the logarithmic dB scale) as

SNR £ 10 Ig (%) .

Thus EIPR can be intuitively interpreted: The extrinsic con-
tribution takes the roles of the information we are inter-
ested in, and the intrinsic contribution is seen as background
noise. This interpretation underlines the influence of the
extrinsic information for quantifying the coupling strength,
which is in particular important in the dependence analysis
of epileptic ECoG recordings. We will discuss this setting in
Sect. 4.3.

@ Springer

4.2 Behavior of the channel selection algorithm

As demonstrated in Sect. 3.2, the dynamic channel selec-
tion algorithm behaves as expected in simulations, selecting
channels with influence and discarding the others: Applied
to the signal model (13), it builds up the respective extrinsic
channel sets in accordance with the dependencies imposed.
Moreover, it is capable of prioritizing extrinsic channels with
strongest influence.

This behavior strengthens our hypothesis that the algo-
rithm performs well in ECoG data: Here, we encounter many
influences with few important ones (representing epileptic
activity): The order according to which the extrinsic chan-
nel set is built up is important, as the proposed forward-
selection procedure does not search through the whole
parameter space. Due to the simulation results discussed
above, we are confident that the algorithm’s focus on
strongest influence selects the important channels first, thus
including the channels of interest in the extrinsic channel
set. This assures that EIPR can be calculated and visual-
ized between highly coupled channels in the subsequent
step.

4.3 Seizure onset zone localization

In this paper, we assume that the area of highest EIPR val-
ues in the initial seconds after seizure onset indicates the
seizure onset zone. Our reasoning is the following: As men-
tioned in Sect. 1.1, in case of focal epilepsy the pathological
synchronous activity starts at a small localized brain area.
Departing from this seizure onset zone it spreads to its imme-
diate vicinity recruiting more and more parts of the neural
network. This leads to a hyper-synchronous behavior of the
observed channels. One could imagine a “focus” located in
the seizure onset zone driving the surrounding channels by
imposing its oscillatory frequency in the course of the recruit-
ing process. This could be interpreted as a kind of infor-
mation transfer: Imagine one electrode in the focus, say xi,
influencing the behavior of the surrounding electrodes, say
x> and x3, in the initial phase of the seizure. Then, sticking
to this image of information transfer, we expect the extrin-
sic contributions from x; to x, and x3 to show high values
and the intrinsic contribution terms of x, and x3 to be small.
This results in high EIPR values r]fz and 77%3, we observe
increased directed coupling activity symbolized by arrows.
By limiting our representation to the highest EIPR values
within each analysis, we focus on these pathological synchro-
nizations and do not regard others (e.g., weak physiological
ones).

In the course of the recruiting process, we obviously
expect feedback mechanisms within the seizure onset zone
due to the excessive synchronous activity. Therefore, we
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expect to see two different kinds of arrows: Besides uni-
directional information out-flow from the seizure onset zone
into the surrounding areas we will typically observe arrows
pointing from one electrode to another within the seizure
onset zone. In both cases, the associated electrodes are the
ones we aim to identify.

We believe that the results presented in Sect. 3.3 strengthen
this hypothesis and would like to discuss two aspects regard-
ing the quality of our findings.

The first interesting aspect is the indicated direction of
information flow. Consider seizure 4 of patient A in Fig.4d.
We observe a clear path of information flow departing from
the electrode C1 (marked as seizure onset zone by the clin-
icians) to D5 and onwards to D6. In plots (a), (b), (e),
and (f), we encounter the second type of expected arrows,
information flow within the seizure onset zone. These cases
exactly meet our expectation. However, in plot (c) the direc-
tion of information flow is opposite. An arrow points from
C1 to the seizure onset zone, which is due to the fact that
electrode C1 shows strong anteceding rhythmic activity.
This pattern was not classified as epileptic by the clinicians
but contributes to the explanation of D6 in the regression
model.

The second aspect we want to mention is the temporal
delay between EIPR indications and clinical findings. Con-
sider seizure 2 of patient A in Fig.4d, which shows coupling
activity between D6 and D7 and C2 and C3. In this case, EIPR
indicates the seizure onset zone as well as the initial subse-
quent propagation: According to Table 1, the seizure onset
zone comprises electrodes D6 and D7 at 12:45:51, but the
synchronization swaps over to others within 1s (12:45:52).
As the employed data window of 4s comprises data from
12:45:51 to 12:45:55, these fast spectral changes influence
the regression. The situation is slightly different in the case of
seizure 4 of patient A in plot (d). The seizure onset zone com-
prises the electrode C1 on the right hemisphere at 15:21:42,
which is correctly indicated by the EIPR. However, the elec-
trodes D5, D6, and D7 are also highlighted, but are only
affected 5 after seizure onset (15:21:47). We thus observe
an anticipation of 5s, which is outside the employed win-
dow of 4s. Thus, the question arises whether EIPR might
be able to identify slow spectral changes of the signal which
are difficult to detect by visual analysis of the raw ECoG
recordings.

In all investigated seizures, the indicated area of highest
EIPR values is well correlated with the seizure onset zone as
indicated by the clinicians. In particular, we are able to track
the different lateralization of patient A (onset of seizure 1 on
the left hemisphere, onset of seizures 2, 3, and 4 on the right
hemisphere). We would like to point out that in these cases
the achieved spatial accuracy of our method is in the range
within 1-2 cm (the distance between the electrodes is ~1 cm,
compare the X-ray image in Fig. 3).

4.4 Concluding remarks

In this paper, we proposed a novel dependency measure
which is capable of reliably measuring coupling effects in
multivariate signals as well as an automatic channel selec-
tion algorithm. In particular, we are able to identify syn-
chronization effects in ictal multichannel ECoG recordings
which allows us to draw conclusion on the localization of
the seizure onset zone in the given examples. We want to
conclude this discussion with two side-remarks detailing
alternatives.

First, the temporal lag order of the regression is kept con-
stant. As a potential drawback, this might lead to under-
or over-fitting of the AR model and consequent erroneous
dependencies. In order to avoid this situation one could
extend the regression to a model with variable temporal lag
order [determined by means of an extended version of the
BIC criterion (4)]. In this case, the model would better reflect
the spectral properties of the EEG (Marple 1987), but at the
price of a higher computational effort: As a function of the
data-driven model order a dynamic window length (which is
currently fixed) would have to be defined such that a suffi-
ciently reliable estimation of the necessary AR parameters is
possible.

Second, in this paper we use a dynamic channel selec-
tion algorithm (cf. Fig. 1) to overcome the estimation issues
due to the high correlation in the cross-sectional dimension.
Another approach which might be appropriate for this task
is penalized regression, e.g., LASSO as introduced by Tib-
shirani (1996). Here, one is confronted with the solution of
a convex problem instead of the linear normal equations.
Only recently, Chiang et al. (2009) successfully applied this
approach to neural data, calculated PDC, and visualized the
indicated brain connectivity of participants taking part in a
virtual-reality experiment.

Concluding, we believe that the aspects discussed in this
section strengthen our hypothesis of EIPR being a use-
ful measure for the characterization of neurophysiological
dependencies. Therefore, we think that our methodology has
the potential to assist clinicians in the presurgical evalua-
tion of epilepsy patients by objectivating the visual ECoG
examination: Tracking the synchronization effects over time
might indicate the seizure onset zone as well as the initial
propagation of the epileptic activity.
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