Skip to main content

Advertisement

Log in

Alterations in energy system contribution following upper body sprint interval training

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The primary purpose of this study was to examine the influence of different work-to-rest ratios on relative energy system utilization during short-term upper-body sprint interval training (SIT) protocols.

Methods

Forty-two recreationally trained men were randomized into one of three training groups [10 s work bouts with 2 min of rest (10:2, n = 11) or 4 min of rest (10:4, n = 11), or 30 s work bouts with 4 min of rest (30:4, n = 10)] or a control group (CON, n = 10). Participants underwent six training sessions over 2 weeks with 4–6 ‘all-out’ sprints. Participants completed an upper body Wingate test (30 s ‘all-out’ using 0.05 kg kg−1 of the participant’s body mass) pre- and post-intervention from which oxygen consumption and blood lactate were used to estimate oxidative, glycolytic, and adenosine triphosphate-phosphocreatine (ATP-PCr) energy system provisions. An analysis of covariance was performed on all testing measurements collected at post with the associated pre-values used as covariates.

Results

Relative energy contribution (p = 0.026) and energy expenditure (p = 0.019) of the ATP-PCr energy system were greater in 10:4 (49.9%; 62.1 kJ) compared to CON (43.1%; 47.2 kJ) post training. No significant differences were found between groups in glycolytic or oxidative energy contribution over a 30 s upper body Wingate test.

Conclusion

SIT protocols with smaller work-to-rest ratios may enhance ATP-PCr utilization in a 30 s upper body Wingate over a 2-week intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ATP-PCr:

Adenosine triphosphate-phosphocreatine

CON:

Control group

EPOC:

Excess post-exercise oxygen consumption

MP:

Average mean power

PAR-Q+:

Physical activity readiness questionnaire

PP:

Average peak power

PRR:

Perceived readiness rating

SIT:

Sprint interval training

TW:

Average total work

O2peak :

Peak oxygen uptake

30:4:

30 S sprints with 4 min of rest

10:4:

10 S sprints with 4 min of rest

10:2:

10 S sprints with 2 min of rest

References

  • Allen DG, Lamb GD, Westerblad H (2008) Impaired calcium release during fatigue. J Appl Physiol 104(1):296–305

    Article  CAS  Google Scholar 

  • Beneke R, Pollmann C, Bleif I, Leithäuser R, Hütler M (2002) How anaerobic is the Wingate anaerobic test for humans? Eur J Appl Physiol 87(4–5):388–392

    CAS  PubMed  Google Scholar 

  • Bertuzzi R, Melegati J, Bueno S, Ghiarone T, Pasqua LA, Gáspari AF et al (2016) GEDAE-LaB: a free software to calculate the energy system contributions during exercise. PLoS ONE 11(1):e0145733

    Article  Google Scholar 

  • Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK (1996) Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 80(3):876–884

    Article  CAS  Google Scholar 

  • Bogdanis G, Nevill M, Lakomy H, Boobis L (1998) Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiol 163(3):261–272

    Article  CAS  Google Scholar 

  • Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle. Sports Med 43(10):927–954

    Article  Google Scholar 

  • Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ (2005) Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol 98(6):1985–1990. https://doi.org/10.1152/japplphysiol.01095.2004

    Article  PubMed  Google Scholar 

  • Burgomaster KA, Heigenhauser GJ, Gibala MJ (2006) Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl Physiol 100(6):2041–2047. https://doi.org/10.1152/japplphysiol.01220.2005

    Article  PubMed  Google Scholar 

  • Cairns SP (2006) Lactic acid and exercise performance. Sports Med 36(4):279–291

    Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. L. Erlbaum Associates, Hillsdale

    Google Scholar 

  • de Poli R, Roncada LH, Malta ES, Artioli GG, Bertuzzi R, Zagatto AM (2019) Creatine supplementation improves phosphagen energy pathway during supramaximal effort, but does not improve anaerobic capacity or performance. Front Physiol 10:352. https://doi.org/10.3389/fphys.2019.00352

    Article  PubMed  PubMed Central  Google Scholar 

  • di Prampero PE, Ferretti G (1999) The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respir Physiol 118(2):103–115

    Article  Google Scholar 

  • Forbes SC, Paganini AT, Slade JM, Towse TF, Meyer RA (2009) Phosphocreatine recovery kinetics following low and high intensity exercise in human triceps surae and rat posterior hindlimb muscles. Am J Physiol Regulat Integr Compar Physiol 296(1):R161–R170

    Article  CAS  Google Scholar 

  • Franchini E, Takito MY, Kiss MAPDM (2016) Performance and energy systems contributions during upper-body sprint interval exercise. J Exerc Rehabilit 12(6):535

    Article  Google Scholar 

  • Gaitanos GC, Williams C, Boobis LH, Brooks S (1993) Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 75(2):712–719

    Article  CAS  Google Scholar 

  • García-Pallarés J, López-Gullón JM, Muriel X, Díaz A, Izquierdo M (2011) Physical fitness factors to predict male olympic wrestling performance. Eur J Appl Physiol 111(8):1747–1758

    Article  Google Scholar 

  • Garrett WE, Kirkendall DT (2000) Exercise and sport science. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Gastin P (2001) Energy system interaction and relative contribution during maximal exercise. Sports Med 31(10):725–741

    Article  CAS  Google Scholar 

  • Gillen JB, Percival ME, Skelly LE, Martin BJ, Tan RB, Tarnopolsky MA, Gibala MJ (2014) Three minutes of all-out intermittent exercise per week increases skeletal muscle oxidative capacity and improves cardiometabolic health. PLoS ONE 9(11):e111489

    Article  Google Scholar 

  • Girard O, Mendez-Villanueva A, Bishop D (2011) Repeated-sprint ability—part I. Sports Med 41(8):673–694

    Article  Google Scholar 

  • Harvey L, Bousson M, McLellan C, Lovell DI (2015) The effect of high intensity intermittent exercise on power output for the upper body. Sports 3(3):136–144

    Article  Google Scholar 

  • Haseler LJ, Hogan MC, Richardson RS (1999) Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. J Appl Physiol 86(6):2013–2018

    Article  CAS  Google Scholar 

  • Hazell TJ, MacPherson RE, Gravelle BM, Lemon PW (2010) 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol 110(1):153–160

    Article  Google Scholar 

  • Horswill C, Miller J, Scott J, Smith C, Welk G, Van Handel P (1992) Anaerobic and aerobic power in arms and legs of elite senior wrestlers. Int J Sports Med 13(08):558–561

    Article  CAS  Google Scholar 

  • Iaia FM, Fiorenza M, Perri E, Alberti G, Millet GP, Bangsbo J (2015) The effect of two speed endurance training regimes on performance of soccer players. PLoS ONE 10(9):e0138096

    Article  Google Scholar 

  • Jacobs RA, Fluck D, Bonne TC, Burgi S, Christensen PM, Toigo M, Lundby C (2013) Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol 115(6):785–793. https://doi.org/10.1152/japplphysiol.00445.2013

    Article  PubMed  Google Scholar 

  • Julio UF, Panissa VL, Cury RL, Agostinho MF, Esteves JV, Franchini E (2019) Energy system contributions in upper and lower body wingate tests in highly trained athletes. Res Quart Exerc Sport 90(2):244–250. https://doi.org/10.1080/02701367.2019.1576839

    Article  Google Scholar 

  • Koukoubis T, Cooper L, Glisson R, Seaber A, Feagin J (1995) An electromyographic study of arm muscles during climbing. Knee Surg Sports Traumatol Arthrosc 3(2):121–124

    Article  CAS  Google Scholar 

  • La Monica MB, Fukuda DH, Starling-Smith TM, Clark NW, Morales J, Hoffman JR, Stout JR (2019) Examining work-to-rest ratios to optimize upper body sprint interval training. Respir Physiol Neurobiol 262:12–19

    Article  Google Scholar 

  • Lloyd Jones MC, Morris MG, Jakeman JR (2017) Impact of time and work: rest ratio matched sprint interval training programmes on performance: a randomised controlled trial. J Sci Med Sport 20(11):1034–1038. https://doi.org/10.1016/j.jsams.2017.03.020

    Article  PubMed  Google Scholar 

  • Lovell DI, Mason D, Delphinus E, McLellan C (2013) Upper and lower body anaerobic performance of semi-elite rugby league players. J Sports Med Phys Fitness 53(5):477–482

    CAS  PubMed  Google Scholar 

  • MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM (1998) Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 84(6):2138–2142

    Article  CAS  Google Scholar 

  • Margaria R, Edwards H, Dill D (1933) The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol Legacy Content 106(3):689–715

    Article  CAS  Google Scholar 

  • McMahon S, Jenkins D (2002) Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Med 32(12):761–784

    Article  Google Scholar 

  • Mendez-Villanueva A, Edge J, Suriano R, Hamer P, Bishop D (2012) The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PLoS ONE 7(12):e51977

    Article  CAS  Google Scholar 

  • Parra J, Cadefau J, Rodas G, Amigo N, Cusso R (2000) The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiol 169(2):157–165

    Article  CAS  Google Scholar 

  • Price M, Beckford C, Dorricott A, Hill C, Kershaw M, Singh M, Thornton I (2014) Oxygen uptake during upper body and lower body Wingate anaerobic tests. Appl Physiol Nutr Metab 39(12):1345–1351

    Article  CAS  Google Scholar 

  • Roberts A, Morton A (1978) Total and alactic oxygen debts after supramaximal work. Eur J Appl Physiol 38(4):281–289

    Article  CAS  Google Scholar 

  • Sloth M, Sloth D, Overgaard K, Dalgas U (2013) Effects of sprint interval training on VO2max and aerobic exercise performance: a systematic review and meta-analysis. Scand J Med Sci Sports 23(6):e341–e352

    Article  CAS  Google Scholar 

  • Tabachnick B, Fidell L (2013) Using multivariate statistics, 6th edn. Sage Publications, Thousand Oaks, CA

    Google Scholar 

  • Yamagishi T, Babraj J (2017) Effects of reduced-volume of sprint interval training and the time course of physiological and performance adaptations. Scand J Med Sci Sports 27(12):1662–1672

    Article  CAS  Google Scholar 

  • Zelt JG, Hankinson PB, Foster WS, Williams CB, Reynolds J, Garneys E, Gurd BJ (2014) Reducing the volume of sprint interval training does not diminish maximal and submaximal performance gains in healthy men. Eur J Appl Physiol 114(11):2427–2436

    Article  Google Scholar 

  • Zinner C, Morales-Alamo D, Ortenblad N, Larsen FJ, Schiffer TA, Willis SJ et al (2016) The physiological mechanisms of performance enhancement with sprint interval training differ between the upper and lower extremities in humans. Front Physiol 7:426. https://doi.org/10.3389/fphys.2016.00426

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ML—study design, manuscript writing, data collection, data analysis, revising and editing. DF—study design, manuscript writing, data analysis, revising and editing. TS—data collection, data analysis, revising and editing. NC—data collection, data analysis, revising and editing. VP—manuscript writing, data collection, data analysis, revising and editing.

Corresponding author

Correspondence to Michael B. La Monica.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report.

Additional information

Communicated by Philip D Chilibeck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Monica, M.B., Fukuda, D.H., Starling-Smith, T.M. et al. Alterations in energy system contribution following upper body sprint interval training. Eur J Appl Physiol 120, 643–651 (2020). https://doi.org/10.1007/s00421-020-04304-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-020-04304-w

Keywords

Navigation