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and aBMD were measured at total body, femoral neck 
and lumbar spine using dual-energy X-ray absorptiometry 
(DXA), and hip structural analysis was used to estimate 
bone geometry at the femoral neck. Body composition was 
assessed using DXA. The relationships of FM and LM with 
bone outcomes were analysed using simple and multiple 
linear regression analyses.
Results  Pearson correlation coefficients showed that total 
body (less head) aBMD was significantly correlated with 
LM but not FM. Multiple linear regression analyses showed 
that FM, after accounting for height, age, MVPA and LM 
had no significant relationship with aBMD or hip geometry 
estimates, except for arms aBMD. By contrast, there were 
positive associations between LM and most aBMD and hip 
geometry estimates, after accounting height, age, MVPA 
and FM.
Conclusions  The results of this study suggest that LM, 
and not FM, is the stronger predictor of aBMD and hip 
geometry estimates in physically active boys.
Trial registration  ClinicalTrials.gov ISRCTN17982776.

Keywords  Adolescents · Bone health · Hip structural 
analysis · Body composition · Fat mass · Lean mass

Abbreviations
FM	� Fat mass
LM	� Lean mass
aBMD	� Areal bone mineral density
HSA	� Hip structural analysis
DXA	� Dual-energy X-ray absorptiometry
MVPA	� Moderate-to-vigorous physical activity
BMC	� Bone mineral content
QCT	� Quantitative computed tomography

Abstract 
Purpose  Soft tissues, such as fat mass (FM) and lean 
mass (LM), play an important role in bone development 
but this is poorly understood in highly active youths. The 
objective of this study was to determine whether FM or 
LM is a stronger predictor of areal bone mineral density 
(aBMD) and hip geometry estimates in a group of physi-
cally active boys after adjusting for height, chronological 
age, moderate-to-vigorous physical activity (MVPA), FM, 
and LM.
Methods  Participants included 121 boys (13.1 ± 1.0 years) 
from the PRO-BONE study. Bone mineral content (BMC) 
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Introduction

The pubertal years are recognised as a critical period for 
bone accrual and for the modification of areal bone min-
eral density (aBMD) and bone structure (Wang et al. 2009). 
Bone mass during childhood and adolescence is a key 
determinant of adult skeletal health (Rizzoli et  al. 2010; 
Gracia-Marco 2016). Accumulating a high peak bone 
mass during this period may result in suboptimal skeletal 
development and may predispose to osteoporotic fractures 
in later life (Joeris et al. 2014). Recent attention has been 
given to understanding how modifiable soft tissue compo-
nents, specifically lean mass (LM) and fat mass (FM), are 
related to bone properties during childhood and adoles-
cence (Jackowski et al. 2014; Edwards et al. 2015). How-
ever, there are no previous studies investigating the rela-
tionship between LM and FM and bone outcomes in highly 
active adolescents.

The role of LM in bone development and maintenance 
is well understood, with mounting evidence suggesting that 
LM is a major positive contributor to bone mineral con-
tent (BMC), aBMD and bone microstructure in non-active 
children and adolescents (Gracia-Marco et  al. 2012; Hoy 
et  al. 2013; El Hage et  al. 2009; Farr et  al. 2014; Pietro-
belli et al. 2002; Hrafnkelsson et al. 2013). The functional 
model of bone development suggests that the size, struc-
ture and strength of bones adapt to dynamic loads associ-
ated with muscle contractions rather than to static loads 
associated with body weight (Scott et  al. 2008; Schoenau 
2005). Despite consensus regarding the positive asso-
ciation of LM with bone mass (Hrafnkelsson et  al. 2013; 
Jeddi et  al. 2015; Mosca et  al. 2014; Vlachopoulos et  al. 
2017), the role of FM in bone development during child-
hood and adolescence has not been investigated in highly 
active adolescents. Theoretically, it is plausible that adipose 
tissue exerts both positive and negative effects on bone via 
these endocrine pathways (Streeter et al. 2013; Reid 2008). 
According to the “Functional Muscle-Bone-Unit” the larg-
est physiological loads are caused by muscle contractions, 
which might be increased in highly active adolescents due 
to greater muscle forces produced during participation in 
activities.

The relative contribution of soft tissues to bone out-
comes in the non-high active paediatric population is 
contentious (Cole et al. 2012; Daly et al. 2008). This dis-
agreement may, in part, be explained by inconsistent and 
often inadequate control of confounding variables, such 
as physical activity, lean mass and fat mass. Longitudinal 
data suggests that physical activity exhibit greater increases 
in LM and bone mass in children and adolescents (Carda-
deiro et al. 2014; Lappe et al. 2014). Moreover, mechanical 
stress on bone during physical activity can interfere with 
bone loss via adaptations in bone structure and geometry 

(Bielemann et al. 2013; Weeks and Beck 2012). However, 
physically active children and adolescents also have a ten-
dency towards lower FM relative to their total body weight 
(Lima et al. 2001). Physical activity as an osteoporosis pre-
vention strategy can exert not only direct effects on bone 
acquisition, but also indirect effects through an associated 
increase in LM (Bailey et  al. 1996; Torres-Costoso et  al. 
2015).

The majority of research examining the effects of body 
composition on bone has focussed upon BMC, aBMD, or 
bone area as its outcomes. However, important differences 
in bone geometry are not captured during the conventional 
assessment of BMC, aBMD or bone area (Petit et al. 2005). 
Based upon a principle first described by Martin and Burr 
(Beck et  al. 1990; Martin and Burr 1984), hip structural 
analysis (HSA) software derives cross-sectional geometri-
cal and mechanical properties of the proximal femur from 
dual-energy X-ray absorptiometry (DXA) acquired images, 
and has been compared favourably with volumetric quanti-
tative computed tomography (QCT) (Prevrhal et al. 2008).

To better understand the relationship between body 
composition and bone health in highly active adolescents, 
the present study aimed to examine whether FM or LM is 
the stronger predictor of aBMD and hip geometry estimates 
while adjusting for height, chronological age, moderate-to-
vigorous physical activity (MVPA).

Materials and methods

Study population

This study is a cross-sectional analysis of baseline data from 
121 male adolescents, obtained between autumn 2014-win-
ter 2015, as part of the on-going longitudinal PRO-BONE 
study at the Children’s Health and Exercise Research Cen-
tre, University of Exeter. The PRO-BONE study has been 
described in detail elsewhere (Vlachopoulos et  al. 2015). 
Briefly, young boys were recruited from schools and sport 
clubs throughout Southwest England. Data were collected 
between autumn and winter 2014/15 in one hundred and 
twenty-one male adolescents: 41 swimmers, 37 football-
ers, 29 cyclists and 14 non-athletes. The inclusion crite-
ria were: (1) boys 12–14 years old, engaged (≥3 h/week) 
in osteogenic (football) and/or non-osteogenic (swimming 
and cycling) sports for the last 3  years or more; (2) boys 
12–14 years old not engaged in any of these sports (≥3 h/
week) in the last 3 or more years (non-athletes). Exclusion 
criteria included: (1) participation in another clinical trial; 
(2) any acute infection within 1 week of inclusion; (3) his-
tory of medical conditions or medications affecting bone 
metabolism; (4) the presence of an injury prior to inclusion 
that may affect sport participation or engagement with the 
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study; and (5) non-Caucasian individuals. The latter was 
necessary to avoid differences in body composition (fat, 
fat-free and bone mass) and biochemical markers between 
ethnic groups (Bachrach et al. 1999). All parents and par-
ticipants provided written consent and assent, respectively, 
and the protocol was approved by: (1) the Ethics Review 
Sector of Directorate-General of Research (European Com-
mission, ref. number 618496), (2) the Sport and Health Sci-
ences Ethics Committee (University of Exeter, ref. number 
2014/766), and (3) the National Research Ethics Service 
Committee (NRES Committee South West—Cornwall & 
Plymouth, ref. number 14/SW/0060).

Anthropometry and maturity

Standing height (cm) was measured barefoot using a stadi-
ometer (Harpenden, Holtain Ltd, Crymych, UK; precision 
0.1 cm; range 60–210 cm). Body mass (kg) was measured 
with participants barefoot and in light indoor clothing using 
mean from two devices: an electronic scale (Seca 877, Seca 
Ltd, Birmingham, UK; precision 0.1 kg; range 2–200 kg) 
and a portable bioelectrical impedance analysis device 
(Tanita BF-350, Tokyo, Japan; range 2–200  kg; precision 
100 g). Body mass index (BMI, kg/m2) was calculated as 
body mass divided by height squared.

Pubertal maturation was self-assessed using adapted 
drawings of the five stages of pubic hair development 
(Morris and Udry 1980). The five stages were explained 
to the participants and the validity and reliability of this 
method has been established previously (Duke et al. 1980).

Body composition

Dual‑energy X‑ray absorptiometry (DXA)

All participants were scanned in the supine position using a 
single DXA scanner (GE Lunar Prodigy Healthcare Corp., 
Madison, WI, USA). The device was calibrated each day 
using a lumbar spine phantom. Four scans were performed 
to obtain aBMD (g/cm2), and BMC (g) for the lumbar 
spine (LS, L1–L4), femoral neck of right and left hip, and 
the total body scan. The total body scan was then used to 
obtain data for fat mass (g), lean mass (g) and region spe-
cific data, including total body less head (TBLH), arms 
and legs. TBLH values were used in preference to total 
body for all analyses, and mean values of the right and 
left sides of the body were used where relevant. Analyses 
were performed using GE encore software (2006, version 
14.10.022). A single trained researcher performed and ana-
lysed all DXA scans to standardise the analyses. Partici-
pants asked to remain still and scanned in the supine posi-
tion. The positioning of the participants and the analyses 
of the results were undertaken according to International 

Society of Clinical Densitometry (Crabtree et  al. 2014). 
Previous studies performed in paediatric populations have 
shown that the DXA percentage coefficient of variation was 
between 1.0 and 2.9% depending on the region (Johnson 
and Dawson-Hughes 1991).

Hip structural analysis (HSA)

HSA was performed at the narrow neck region across 
the narrowest point of the femoral neck and the follow-
ing parameters were obtained: (1) hip section modulus 
(mm3)—an indicator of bending strength for maximum 
bending stress in the direction of the image plane; (2) cross 
sectional moment of inertia (mm4)—an index of structural 
rigidity; (3) cross sectional area (mm2)—bone surface area 
in the cross-section after excluding soft tissue and trabecu-
lar space, provides an index of axial compression strength; 
and (4) diameter of femoral neck (mm). The short-term 
precision percentage coefficient of variation of these vari-
ables has been reported to be between 2.4 and 10.1% (Khoo 
et al. 2005).

Physical activity and dietary assessment

Objective measures of PA were collated using wrist accel-
erometers (GENEActiv, GENEA, UK) worn on the non-
dominant wrist with data collected for seven consecutive 
days. To establish time spent in different exercise inten-
sities, 1-second epoch intervals were used. Time spend 
in MVPA was calculated using a cut-off point of ≥1140 
counts per minute (Phillips et  al. 2013; Rich et  al. 2013). 
The MVPA has been calculated as a mean of the days that 
had at least 10  h/day and 3 valid days of week including 
one weekend day. These criteria comply with high reliabil-
ity (r = 0.86) as previously shown the following the recom-
mendation of the accelerometer (GENEA) used (Phillips 
et  al. 2013) and previous studies (Torres-Costoso et  al. 
2015; Janz et al. 2014).

CompEat Pro software (Nutrition systems, VIS Visual 
Information Systems Ltd., UK) was used to estimate intake 
of calcium following self-reported recall of dietary intake 
from the preceding 24 h. The validity and reliability of self-
reported dietary intake has been previously established in 
children (Weber et al. 2004).

Statistical analyses

Descriptive data are presented as mean ± standard devia-
tion. To identify associations between bone parameters 
and potential regression covariates, bivariate correlations 
were computed using Pearson product-moment correla-
tion coefficients and Spearman correlation for the cat-
egorical variables. Multiple linear regression analyses 
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were used to assess the relationships of FM with both 
aBMD and hip geometry estimates. aBMD was fur-
ther split into regional analysis of TBLH, total hip, LS 
(L1–L4), femoral neck, arms and legs. Regression models 
were built in three steps. In Model 1, height and age were 
included as covariates. In this study, chronological age 
demonstrated a stronger correlation with most bone vari-
ables than Tanner stage and was, therefore, selected for 
entry into the model. Model 2 included model 1 + MVPA 
to determine its role within this association. Finally, 
model 3 included model 2 + LM to ascertain whether 
LM had an independent effect on bone outcomes. This 
method was repeated to examine the associations of 
LM with aBMD and hip geometry estimates as above, 

but with adjustment for FM instead of LM in model 3. 
In addition, all regression models included a treatment 
dummy variable (football, swimming, cycling, non-ath-
letes) in which non-athletes were the reference group. 
Independence of residuals was verified using the Durbin-
Watson statistic and linearity, normality and homoscedas-
ticity assumptions were assessed through visual inspec-
tion of residual plots. Signs of multicollinearity between 
independent variables in the model were assessed using 
the variance inflation factor (criteria = VIF ≥ 10).

All analyses were performed using the Statistical 
Package for Social Sciences software (SPSS, version 
22.0, Chicago, IL, USA). An alpha level of 0.05 was con-
sidered statistically significant.

Table 1   Descriptive characteristics of young boys (n = 121) participating in the PRO-BONE study

Data presented as mean (standard deviation). Superscript letters denote a higher significant difference with: a (swimmers), b (footballers), c 
(cyclists), d (controls)
BMI body mass index, TBLH total body less head, MVPA moderate-to-vigorous physical activity
a,b,c,d p < 0.05

Parameters All (n = 121) Swimmers (n = 41) Footballers (n = 37) Cyclists (n = 29) Controls (n = 14)

Age (years) 13.1 (1.0) 13.4 (1.0)b,d 12.8 (0.9) 13.2 (1.0)d 12.3 (0.5)
Pubertal maturation (I/II/III/IV/V) (%) 19/28/21/30/2 16/25/16/43/0 24/35/25/16/0 14/29/25/28/4 29/21/21/29/0
Height (cm) 159.9 (10.6) 165.5 (9.7)b,d 155.2 (9.3) 160.8 (9.9) 154.5 (9.9)
Body mass (kg) 48.6 (10.4) 52.4 (9.0)bb 44.3 (7.9) 49.5 (12.3) 48.3 (13.0)
BMI (kg/m2) 18.9 (2.3) 19.0 (1.7) 18.3 (1.4) 18.9 (3.3) 20.0 (3.4)
Fat mass TBLH (DXA), (kg) 8.1 (5.3) 8.3 (3.2) 6.6 (2.4) 8.6 (7.2) 14.1 (8.5)a,b,c

Lean mass TBLH (DXA), (kg) 34.3 (8.1) 41.6 (9.1)b,d 35.4 (7.2) 37.7 (7.5) 31.7 (5.5)
MVPA (min/day) 101.3 (33.8) 85.9 (30.4) 119.8 (29.7)a,d 107.2 (33.3)a 83.2 (26.8)
Calcium intake (mg/day) 991.59 (490.77) 979.5 (438.5) 1017.9 (504.5) 957.7 (526.8) 881.5 (380.7)
Areal bone mineral density (g/cm2)
 Total body less head 0.91 (0.08) 0.918 (0.067)d 0.931 (0.071)d 0.905 (0.086)d 0.828 (0.071)
 Total hip 0.97 (0.12) 0.962 (0.107)d 1.034 (0.085)a,c,d 0.959 (0.116)d 0.830 (0.116)
 Lumbar spine, L1–L4 0.87 (0.11) 0.892 (0.114)d 0.883 (0.095) 0.867 (0.122) 0.791 (0.101)
 Femoral neck 0.95 (0.11) 0.948 (0.098)d 1.001 (0.081)dd 0.975 (0.192)d 0.832 (0.118)
 Arms 0.75 (0.07) 0.784 (0.071)b,d 0.736 (0.047) 0.747 (0.069)d 0.690 (0.049)
 Legs 1.08 (0.11) 1.091 (0.010) 1.124 (0.106) 1.077 (0.116) 0.975 (0.103)

Bone mineral content (g)
 Total body less head 1505.02 (359.78) 1622.75 (325.44)d 1473.49 (338.6) 1478.97 (353.2) 1234.38 (347.86)
 Total hip 27.64 (6.26) 28.79 (5.56)d 28.78 (6.18)d 27.31 (5.92)d 21.12 (5.55)
 Lumbar spine, L1–L4 39.68 (10.63) 42.97 (11.37)d 38.54 (8.93) 38.91 (10.78) 32.64 (8.67)
 Femoral neck 4.36 (0.78) 4.46 (0.66)d 4.53 (0.74)d 4.35 (0.76)d 3.52 (0.73)
 Arms 209.64 (63.23) 243.39 (64.01)b,d 188.34 (48.05) 210.62 (59.05)d 155.89 (40.58)

Legs 742.14 ± 171.22 775.78 (136.24)d 747.84 (175.02) 733.99 (171.45) 612.28 (179.47)
Hip structural analysis
 Hip section modulus (mm3) 530.93 (126.51) 558.3 (121.4)d 548.1 (116.7)d 530.8 (123.3)d 395.0 (123.4)
 Cross sectional moment of inertia (mm4) 8331.52 (2643.78) 8943.5 (2573.6)d 8471.6 (2606.6)d 8403.1 (2552.4)d 6020.7 (2673.0)
 Cross sectional area (mm2) 134.85 (22.71) 137.2 (20.2)d 140.9 (20.4)d 135.9 (22.7)d 109.8 (21.0)
 Diameter of femoral neck (mm) 30.6 (2.81) 31.2 (2.6)d 30.5 (2.8) 30.7 (2.6) 28.4 (2.5)
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Results

Participant characteristics are summarised in Table 1. The 
mean age of participants was 13.1 ± 1.0  years. Most par-
ticipants (91.6%) exceeded the current recommendation for 
children and adolescents to accumulate at least 60 min of 
MVPA per day.

Age, pubertal stage, height and weight were each pos-
itively correlated with aBMD at all sites, as well as with 
all hip geometry estimates (p < 0.001). MVPA was nega-
tively associated (p < 0.01) with aBMD of the arms only. 
Calcium intake was associated with any measure of aBMD 
or hip geometry estimates (data not shown). Figures 1 and 
2 show the associations of total body (less head) aBMD 
with FM and LM, respectively. aBMD was not significantly 

correlated with FM (r = −0.040; p = 0.664), however, it was 
positively correlated to LM (r = 0.761; p < 0.001).

Table  2 shows the results of the regression analysis 
between FM and bone outcomes after adjusting for poten-
tial confounders. After adjusting for height and age in 
model 1, FM was only negatively associated with aBMD 
of the LS explaining 14% of the variance. The significant 
negative association between FM and aBMD of the LS 
remained unchanged after MVPA was added into the model 
2. Finally, the inclusion of LM as a covariate in model 3 
rendered the association of FM with LS aBMD as not sig-
nificant. However, a positive association for FM with arms 
aBMD was observed (β changes from 0.043 to 0.113).

Regarding the hip geometry estimates, in model 1 FM 
had a negative association with hip section modulus and 
cross sectional moment of inertia, explaining 10 and 12% 
of the variance respectively. After adjusting for MVPA in 
model 2, the negative association of FM with cross sec-
tional moment of inertia was marginally attenuated but 
remained significant, whereas the association with the hip 
section modulus was not significant. Finally, with the addi-
tion of LM in model 3, the significant association between 
FM and cross sectional moment of inertia was lost.

Table  3 shows the results of the regression analysis 
between DXA measured LM and bone outcomes after 
adjusting for potential confounders. In model 1, after 
adjusting for height and age, LM had a significant posi-
tive association with aBMD at all sites except in the fem-
oral neck, explaining between 9 and 37% of the variance. 
Adjustment for MVPA in model 2 and FM in model 3 did 
not significantly change the positive associations between 
LM and aBMD outcomes. Similar outcomes were also 
observed for LM and all hip geometry estimates in models 
1, 2, and 3.

The above regression analyses were repeated using 
BMC regional analyses leading to similar results (data not 
shown).

Discussion

Using multiple linear regression analysis, this study found 
LM, and not FM, to be the strongest predictor of aBMD 
and hip geometry estimates in a group of physically active 
boys even after adjusting for various confounding vari-
ables. Our findings, therefore, support previous reports that 
LM has a strong positive relationship with bone outcomes 
(Gracia-Marco et al. 2012; Hoy et al. 2013; El Hage et al. 
2009; Farr et al. 2014), explaining as much as 38% of the 
variance in aBMD independently of FM. Conversely, FM 
was found to be negatively associated with a few param-
eters related to the structure and strength of bone, and once 
LM was accounted for, the relationship between FM and 

Fig. 1   Association between fat mass (DXA, kg) and areal bone min-
eral density (DXA, g/cm2) in young boys. Pearson product-moment 
correlation coefficient, r = −0.040, p = 0.664

Fig. 2   Association between lean mass (DXA, kg) and areal bone 
mineral density (DXA, g/cm2) in young boys. Pearson product-
moment correlation coefficient, r = 0.761, p < 0.001
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Table 2   Multiple linear regression analysis of areal bone mineral density (aBMD) and hip structural analysis in young boys (n = 121) participat-
ing in the PRO-BONE study with regard to DXA derived fat mass

Significant results are in bold (p value <0.05). All models included a treatment dummy variable (group: football, swimming, cycling and con-
trol)
β standardised regression coefficient, Semip corr semi-partial (part) correlation, aBMD areal bone mineral density
a Model 1 In additional to DXA derived fat mass (total body less head, kilograms), the following independent variables were entered into the 
model: height (centimeters) and age (years)
b Model 2 model 1 + moderate-to-vigorous physical activity (minutes per day)
c Model 3 model 2 + DXA derived lean mass (total body less head, kilograms)

Dependent variables FAT MASS (DXA)

Model 1a Model 2b Model 3c

β Semip corr p value β Semip corr p value β Semip corr p value

aBMD (g/cm2)
 Total body less head 0.018 0.016 0.781 0.016 0.014 0.804 0.083 0.072 0.158
 Total hip −0.089 −0.078 0.255 −0.087 −0.077 0.246 −0.058 −0.050 0.463
 L1–L4 −0.158 −0.140 0.050 −0.160 −0.141 0.049 −0.090 −0.078 0.230
 Femoral neck −0.052 −0.046 0.518 −0.050 −0.044 0.534 −0.030 −0.026 0.716
 Arms 0.054 0.047 0.468 0.049 0.043 0.507 0.134 0.116 0.034
 Legs 0.035 0.031 0.586 0.033 0.029 0.613 0.096 0.084 0.103

Hip structural analysis
 Hip section modulus (mm3) −0.118 −0.104 0.049 −0.110 −0.097 0.062 −0.055 −0.047 0.308
 Cross sectional moment of inertia (mm4) −0.135 −0.120 0.028 −0.127 −0.112 0.036 −0.062 −0.054 0.238
 Cross sectional area (mm2) −0.099 −0.088 0.120 −0.094 −0.083 0.140 −0.044 −0.038 0.463
 Diameter of femoral neck (mm) −0.094 −0.083 0.190 −0.086 −0.076 0.225 −0.018 −0.016 0.778

Table 3   Multiple linear regression analysis of areal bone mineral density (aBMD) and hip structural analysis in young boys (n = 121) participat-
ing in the PRO-BONE study with regard to DXA derived lean mass

Significant results are in bold (p value <0.05). All models included a treatment dummy variable (group: football, swimming, cycling and con-
trol)
β standardised regression coefficient, Semip corr semi-partial (part) correlation, aBMD areal bone mineral density
a Model 1 In additional to DXA derived lean mass (total body less head, kilograms), the following independent variables were entered into the 
model: height (centimeters) and age (years)
b Model 2 model 1 + moderate-to-vigorous physical activity (minutes per day)
c Model 3 model 2 + DXA derived fat mass (total body less head, kilograms)

Dependent variables LEAN MASS (DXA)

Model 1a Model 2b Model 3c

β Semip corr p value β Semip corr p value β Semip corr p value

aBMD (g/cm2)
 Total body less head 0.734 0.292 <0.001 0.734 0.291 <0.001 0.770 0.299 <0.001
 Total hip 0.358 0.143 0.037 0.367 0.145 0.034 0.342 0.133 0.053
 L1–L4 0.837 0.333 <0.001 0.840 0.333 <0.001 0.801 0.311 <0.001
 Femoral neck 0.237 0.094 0.182 0.245 0.097 0.169 0.233 0.090 0.203
 Arms 0.930 0.370 <0.001 0.921 0.365 <0.001 0.980 0.381 <0.001
 Legs 0.690 0.275 <0.001 0.688 0.273 <0.001 0.730 0.284 <0.001

Hip structural analysis
 Hip section modulus (mm3) 0.627 0.250 <0.001 0.663 0.263 <0.001 0.639 0.248 <0.001
 Cross sectional moment of inertia (mm4) 0.740 0.295 <0.001 0.777 0.308 <0.001 0.750 0.292 <0.001
 Cross sectional area (mm2) 0.563 0.224 <0.001 0.589 0.233 <0.001 0.570 0.221 <0.001
 Diameter of femoral neck (mm) 0.754 0.300 <0.001 0.791 0.313 <0.001 0.783 0.304 <0.001



839Eur J Appl Physiol (2017) 117:833–842	

1 3

bone variables was eliminated. These findings were con-
sistent when substituting BMC as the dependent variable. 
Finally, objectively measured MVPA did not appear to play 
an important confounding role within the association of 
either LM or FM with bone health.

The strong relationship between LM and indices of bone 
strength and structure in the current study is supported by 
the mechanostat theory, which suggests that the skeleton 
continually adapts its strength to the loads to which it is 
exposed (Schoenau and Frost 2002; Rauch et  al. 2004). 
Since the largest physiological load comes from muscle 
contraction, the theory postulates that increasing muscle 
mass (and thus muscle force) during childhood and ado-
lescent growth will increase the mass and strength of bone 
(Schoenau and Frost 2002; Rauch et  al. 2004). Moreover, 
genetic factors are thought to influence both muscle and 
bone (Tanaka et  al. 2014), and several factors that deter-
mine bone strength by acting directly on osteoblasts and/
or osteoclasts also affect muscle. These include growth 
hormone, androgens and adrenocortical steroid analogues, 
in addition to calcium (Schoenau and Frost 2002; Cour-
teix et al. 2015). In the present study, self-reported dietary 
intake of calcium was not associated with any measure of 
aBMD (data not shown). While this may reflect the limi-
tation of a single, self-reported 24-hour food recall, a lack 
of correlation between daily calcium intake and bone out-
comes is consistent with many observational and interven-
tional studies in this area (Lloyd et al. 2002).

There is disagreement regarding the relative impor-
tance of LM and FM for bone health, in addition to the 
effect of FM alone on bone outcomes during childhood 
and adolescence. The findings of the current study agree 
with previous reports demonstrating negative associations 
between FM and some parameters of bone health (Hong 
et  al. 2010; Hrafnkelsson et  al. 2010; Savers and Tobias 
2010), as well as those suggesting that bone strength is 
primarily related to dynamic loads associated with mus-
cle contractions rather than to static loads associated with 
body weight (Pietrobelli et  al. 2002; Janicka et  al. 2007). 
In a cohort of male adolescents and young adults, Janicka 
and colleagues demonstrated either weak positive or non-
significant relations between FM and bone measures using 
simple linear regressions (Janicka et  al. 2007). However, 
after adjusting for LM, FM had either a negative associa-
tion or no association with CT and DXA bone parameters. 
Comparably, Gracia-Marco et  al. (2012) established posi-
tive associations between FM and BMC of the whole body 
and femoral neck in adolescent boys. However, following 
the inclusion of LM as a covariate, the associations of FM 
with both BMC and aBMD at several sites were inverted. 
It should be noted that the relationship between FM and 
bone might be different due to the different effects of fat 
depots on bone microarchitecture as previously observed 

in young oligo-amenorrheic female athletes (Singhal et al. 
2015). Analogous to our results, both Janicka and Gracia-
Marco determined strong and positive associations of LM 
and bone outcomes after adjusting for other confounders 
(Gracia-Marco et al. 2012; Janicka et al. 2007). The find-
ings of these authors suggest that while adolescents with 
higher FM may have greater bone properties, this associa-
tion can be fully explained by their greater amount of LM 
(Gracia-Marco et al. 2012). On the other hand, Pietrobelli 
and colleagues suggested that BMC was positively associ-
ated with both FM and LM, even after controlling for each 
other, as well as for age and sex (Pietrobelli et  al. 2002). 
Nonetheless, BMC was found to have a stronger associa-
tion with LM than FM. Interestingly, femoral neck aBMD 
was the only variable in which we did not find an associa-
tion with LM. However, the rest of the hip geometry esti-
mates showed significant associations.

A novel feature of our study is the inclusion of DXA-
derived HSA to reflect the geometrical and mechani-
cal properties of bone. This provides clinically important 
information regarding the strength of bones that may not be 
captured by the more traditional measure of either aBMD 
or BMC. Our findings are supported by previous work. El 
Hage et al. (2011) found LM to be the strongest predictor 
of cross sectional area, cross sectional moment of inertia, 
section modulus and cortical thickness in adolescent boys. 
They also reported LM being a stronger predictor of both 
cross sectional area and section modulus than FM. Petit and 
colleagues reported that LM was significantly associated 
with section modulus at the femoral shaft and narrow neck, 
and once LM was accounted for, section modulus was 
equivalent in overweight and healthy weight young sub-
jects (Petit et al. 2005). They too reported that FM was not 
associated with bone geometry outcomes, a finding consist-
ent with our results after adjustment for age, height, MVPA 
and LM.

Previous findings in pre pubertal children indicated that 
FM is associated with increased bone size but negatively 
associated with volumetric bone density (Cole et al. 2012). 
These findings were independent of LM and may explain 
the effect of increased mechanical loading from excess 
body mass on bone formation. The findings of the present 
study provide similar evidence in active adolescents that 
FM is not related to bone density and strength. In addition, 
the results of multiple linear regression analysis indicate no 
significant change in indices of either aBMD or hip geom-
etry estimates with increasing FM, for a given LM. This 
suggests that two physically active boys with equal LM but 
differing FM have similar bone properties.

The present study has several strengths. A unique 
inclusion compared to many studies is the evalua-
tion of hip geometry estimates in addition to traditional 
bone mineral outcomes. HSA provides insight into the 
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geometrical and mechanical properties of bone whilst 
avoiding the considerably higher radiation exposure that 
QCT would require. Another strength of this study is the 
adjustment for key confounders in the regression analy-
ses, including height, chronological age, MVPA, FM 
and LM. Dietary intake of calcium was considered for 
entry into the regression models, but were found to have 
no associations with aBMD or hip geometry estimates. 
MPVA was measured objectively using accelerometers 
thus eliminating the potential errors of subjective recall. 
Conversely, while bone properties reflect both past and 
present physical activity, measuring MVPA using accel-
erometers does not provide information regarding past 
activity.

Some limitations of this study deserve comment. The 
cross-sectional design of the study does not enable conclu-
sions to be drawn about a causal relationship between body 
composition and bone health. Confirmation of these results 
using a longitudinal analysis of data from the PRO-BONE 
study will be a future endeavour. As with all DXA-based 
studies, the two-dimensional nature of DXA is a limitation 
when examining the three-dimensional structure of bone, 
particularly during growth. Finally, the HSA algorithm 
assumes that bones are fully mineralised, which may not be 
the case for the participants in the current study. Additional 
studies using QCT may address this limitation.

Conclusion

The results of this study show a greater association of LM 
with aBMD and hip geometry estimates than FM in active 
boys, irrespective of height, chronological age and MVPA. 
Thus, the focus concerning bone health during childhood 
and adolescence should move away from adiposity or total 
body weight, and rather place a greater emphasis on physi-
cal activity participation and subsequent lean body mass 
accrual during this time.
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