Skip to main content
Log in

The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate the effects of different cold-water immersion (CWI) protocols on the inflammatory response to and functional recovery from high-intensity exercise.

Methods

Eight healthy recreationally active males completed five trials of a high-intensity intermittent sprint protocol followed by a randomly assigned recovery condition: 1 of 4 CWI protocols (CWI-10 min × 20 °C, CWI-30 min × 20 °C, CWI-10 min × 10 °C, or CWI-30 min × 10 °C) versus passive rest. Circulating mediators of the inflammatory response were measured from EDTA plasma taken pre-exercise (baseline), immediately post-exercise, and at 2, 24, and 48 h post-exercise. Ratings of perceived soreness and impairment were noted on a 10-pt Likert scale, and squat jump and drop jump were performed at these time points.

Results

IL-6, IL-8, and MPO increased significantly from baseline immediately post-exercise in all conditions. IL-6 remained elevated from baseline at 2 h in the CWI-30 min × 20 °C, CWI-10 min × 10 °C, and CWI-30 min × 10 °C conditions, while further increases were observed for IL-8 and MPO in the CWI-30 min × 20 °C and CWI-30 min × 10 °C conditions. Squat jump and drop jump height were significantly lower in all conditions immediately post-exercise and at 2 h. Drop jump remained below baseline at 24 and 48 h in the CON and CWI-10 min × 20 °C conditions only, while squat jump height returned to baseline in all conditions.

Conclusions

Cold-water immersion appears to facilitate restoration of muscle performance in a stretch–shortening cycle, but not concentric power. These changes do not appear to be related to inflammatory modulation. CWI protocols of excessive duration may actually exacerbate the concentration of cytokines in circulation post-exercise; however, the origin of the circulating cytokines is not necessarily skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

1 h:

1 hour

2 h:

2 hour

24 h:

24 hour

48 h:

48 hour

CWI:

Cold-water immersion

GM-CSF:

Granulocyte macrophage colony-stimulating factor

IFNγ:

Interferon gamma

IL-1β:

Interleukin 1 beta

IL-6:

Interleukin 6

IL-8:

Interleukin 8

IL-10:

Interleukin 10

IL-12 p70:

Interleukin 12 p70

MPO:

Myeloperoxidase

Pre:

Pre-exercise

Post:

Post-exercise

SSC:

Stretch-shortening cycle

TNFα:

Tumor necrosis factor alpha

References

  • Adams GR, Zaldivar FP, Nance DM, Kodesh E, Radom-Aizik S, Cooper DM (2011) Exercise and leukocyte interchange among central circulation, lung, spleen, and muscle. Brain Behav Immun 25:658–666

    Article  PubMed  Google Scholar 

  • Baggiolini M, Clark-Lewis I (1992) Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 307:97–101

    Article  PubMed  CAS  Google Scholar 

  • Bailey DM, Erith SJ, Griffin PJ, Dowson A, Brewer DS, Gant N, Williams C (2007) Influence of cold-water immersion on indices of muscle damage following prolonged intermittent shuttle running. J Sports Sci 25:1163–1170

    Article  PubMed  CAS  Google Scholar 

  • Barnett A (2006) Using recovery modalities between training sessions in elite athletes: does it help? Sports Med 36:781–796

    Article  PubMed  Google Scholar 

  • Bergh U, Ekblom B (1979) Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand 107:33–37

    Article  PubMed  CAS  Google Scholar 

  • Bleakley CM, Davison GW (2010) What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review. Br J Sports Med 44:179–187

    Article  PubMed  Google Scholar 

  • Bøkenes L, Alexandersen TE, Tveita T, Osterud B, Mercer JB (2004) Physiological and hematological responses to cold exposure in young subjects. Int J Circumpolar Health 63:115–128

    Article  PubMed  Google Scholar 

  • Bruunsgaard H, Galbo H, Halkjaer-Kristensen J, Johansen TL, MacLean DA, Pedersen BK (1997) Exercise-induced increase in serum interleukin-6 in humans is related tomuscle damage. J Phys 499:833–841

    CAS  Google Scholar 

  • Butterfield TA, Best TM, Merrick MA (2006) The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J Athl Train 41:457–465

    PubMed  PubMed Central  Google Scholar 

  • Byrne C, Eston R (2002) The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. J Sports Sci 20:417–425

    Article  PubMed  Google Scholar 

  • Carvalho N, Puntel G, Correa P, Gubert P, Amaral G, Morais J, Royes L, da Rocha J, Soares F (2010) Protective effects of therapeutic cold and heat against the oxidative damage induced by a muscle strain injury in rats. J Sports Sci 28:923–935

    Article  PubMed  Google Scholar 

  • Castellani JW, M. Brenner IK, Rhind SG (2002) Cold exposure: human immune responses and intracellular cytokine expression. Med Sci Sports Exerc 34:2013–2020

    Article  PubMed  CAS  Google Scholar 

  • Clarke RS, Hellon RF, Lind AR (1958) Vascular reactions of the human forearm to cold. Clin Sci 17:165–179

    PubMed  CAS  Google Scholar 

  • Costello JT, Culligan K, Selfe J, Donnelly AE (2012) Muscle, skin and core temperature after −110 °C cold air and 8 °C water treatment. PLoS One 7:e48190

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ettema GJC (2001) Muscle efficiency: the controversial role of elasticity and mechanical energy conversion in stretch-shortening cycles. Eur J Appl Physiol 85:457–465

    Article  PubMed  CAS  Google Scholar 

  • Gregson W, Black MA, Jones H, Milson J, Morton J, Dawson B, Atkinson G, Green DJ (2011) Influence of cold-water immersion on limb and cutaneous blood flow at rest. Am J Sports Med 39:1316–1323

    Article  PubMed  Google Scholar 

  • Halson SL, Quod MJ, Martin DT, Gardner AS, Ebert TR, Laursen PB (2008) Physiological responses to cold water immersion following cycling in the heat. Int J Sports Physiol Perform 3:331–346

    PubMed  Google Scholar 

  • Herrera E, Sandoval MC, Camargo DM, Salvini TF (2010) Motor and sensory nerve conduction are affected differently by ice pack, ice massage, and cold water immersion. Physical Ther 90:581–591

    Article  Google Scholar 

  • Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–13

    Article  PubMed  Google Scholar 

  • Horita T, Komi PV, Nicol C, Kyröläinen H (1996) Stretch shortening cycle fatigue: interactions among joint stiffness, reflex, and muscle mechanical performance in the drop jump. Eur J Appl Physiol Occup Physiol 73:393–403

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leuko Biol 77:598–625

    Article  PubMed  CAS  Google Scholar 

  • Lee EC, Watson G, Casa D, Armstrong LE, Kraemer W, Vingren JL, Spiering BA, Maresh CM (2012) Interleukin-6 responses to water immersion therapy after acute exercise heat stress: a pilot investigation. J Athl Train 47:655–663

    Article  PubMed  PubMed Central  Google Scholar 

  • Leeder J, Gissane C, van Someren K, Gregson W, Howatson G (2012) Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med 46:233–240

    Article  PubMed  Google Scholar 

  • Nemet D, Meckel Y, Bar-Sela S, Zaldivar F, Cooper DM, Eliakim A (2009) Effect of local cold-pack application on systemic anabolic and inflammatory response to sprint-interval training: a prospective comparative trial. Eur J Appl Physiol 107:411–417

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicol C, Komi PV, Horita T, Kyröläinen H, Takala TE (1996) Reduced stretch–reflex sensitivity after exhausting stretch-shortening cycle exercise. Eur J Appl Physiol Occup Physiol 72:401–409

    PubMed  CAS  Google Scholar 

  • Nieman DC, Konrad M, Henson DA, Kennerly K, Shanely RA, Wallner-Liebmann SJ (2012) Variance in the acute inflammatory response to prolonged cycling is linked to exercise intensity. J Interferon Cytokine Res 32:12–17

    Article  PubMed  CAS  Google Scholar 

  • Paulsen G, Mikkelsen UR, Raastad T, Peake JM (2012) Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 18:42–97

    PubMed  Google Scholar 

  • Peake JJ, Nosaka KK, Suzuki KK (2005a) Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev 11:64–85

    PubMed  Google Scholar 

  • Peake JM, Suzuki K, Hordern M, Wilson G, Nosaka K, Coombes JS (2005b) Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur J Appl Physiol 95:514–521

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK (2007) IL-6 signalling in exercise and disease. Biochem Soc Trans 35:1295–1297

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK (2011) Muscles and their myokines. J Exp Biol 214:337–346

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK, Ostrowski K, Rohde T, Bruunsgaard H (1998) The cytokine response to strenuous exercise. Can J Physiol Pharmacol 76:505–511

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK, Steensberg A, Keller P, Keller C, Fischer C, Hiscock N, van Hall G, Plomgaard P, Febbraio MA (2003) Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Eur J Physiol 446:9–16

    CAS  Google Scholar 

  • Pedersen BK, Akerstrom TCA, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Phys 103:1093–1098

    CAS  Google Scholar 

  • Peiffer JJ, Abbiss CR, Watson G, Nosaka K, Laursen PB (2009) Effect of cold-water immersion duration on body temperature and muscle function. J Sports Sci 27:987–993

    Article  PubMed  Google Scholar 

  • Peterson JM, Pizza FX (2008) Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro. J Appl Phys 106:130–137

    Google Scholar 

  • Pizza FX, Koh TJ, McGregor SJ, Brooks SV (2002) Muscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions. J Appl Physiol 92:1873–1878

    Article  PubMed  Google Scholar 

  • Pointon M, Duffield R, Cannon J, Marino FE (2011) Cold water immersion recovery following intermittent-sprint exercise in the heat. Eur J Appl Physiol 112:2483–2494

    Article  PubMed  Google Scholar 

  • Pournot H, Bieuzen F, Duffield R, Leprêtre PM, Cozzolino C, Hausswirth C (2010) Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur J Appl Physiol 111:1287–1295

    Article  PubMed  Google Scholar 

  • Puntel GO, Carvalho NR, Amaral GP, Lobato LD, Silveira SO, Daubermann MF, Barbosa NV, Rocha JBT, Soares FAA (2011) Therapeutic cold: an effective kind to modulate the oxidative damage resulting of a skeletal muscle contusion. Free Radic Res 45:133–146

    Article  CAS  Google Scholar 

  • Rupp KA (2012) Intramuscular temperature changes during and after 2 different cryotherapy interventions in healthy individuals. J Orthop Sports Phys Ther 42:731–737

    Article  PubMed  Google Scholar 

  • Smith LL (1991) Acute inflammation: the underlying mechanism in delayed onset muscle soreness? Med Sci Sports Exerc 23:542–551

    PubMed  CAS  Google Scholar 

  • Stacey DL (2010) Effects of recovery method on performance, immune changes, and psychological outcomes. J Orthop Sports Phys Ther 40:656–665

    Article  PubMed  Google Scholar 

  • Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529(Pt 1):237–242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suzuki K, Nakaji S, Yamada M, Totsuka M, Sato K, Sugawara K (2002) Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev 8:6–48

    PubMed  Google Scholar 

  • Swenson C, Swärd L, Karlsson J (1996) Cryotherapy in sports medicine. Scand J Med Sci Sports 6:193–200

    Article  PubMed  CAS  Google Scholar 

  • Tee JC, Bosch AN, Lambert MI (2007) Metabolic consequences of exercise-induced muscle damage. Sports Med 37:827–836

    Article  PubMed  Google Scholar 

  • Thorsson OO, Lilja BB, Ahlgren LL, Hemdal BB, Westlin NN (1985) The effect of local cold application on intramuscular blood flow at rest and after running. Med Sci Sports Exerc 17:710–713

    Article  PubMed  CAS  Google Scholar 

  • Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:R1173–R1187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tomiya A (2004) Myofibers express il-6 after eccentric exercise. Am J Sports Med 32:503–508

    Article  PubMed  Google Scholar 

  • Vaile J, Halson S, Gill N, Dawson B (2007) Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol 102:447–455

    Article  PubMed  Google Scholar 

  • Warren GL, Lowe DA, Armstrong RB (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 27:43–59

    Article  PubMed  CAS  Google Scholar 

  • White GE, Wells GD (2013) Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise. Extrem Physiol Med 2:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilcock IM, Cronin JB, Hing WA (2006) Physiological response to water immersion: a method for sport recovery? Sports Med 36:747–765

    Article  PubMed  Google Scholar 

  • Yanagisawa O, Fukubayashi T (2010) Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle. Clin Radiol 65:874–880

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa O, Homma T, Okuwaki T, Shimao D, Takahashi H (2007) Effects of cooling on human skin and skeletal muscle. Eur J Appl Physiol 100:737–745

    Article  PubMed  Google Scholar 

  • Yanagisawa O, Takahashi H, Fukubayashi T (2010) Effects of different cooling treatments on water diffusion, microcirculation, and water content within exercised muscles: evaluation by magnetic resonance T2-weighted and diffusion-weighted imaging. J Sports Sci 28:1157–1163

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Research Programs in Applied Sport Sciences for funding this study, iCool Sport Australia and the Canadian Sport Institute of Ontario for providing equipment, and Defence Research and Development Canada for providing means for immunological analyses.

Conflict of interest

The authors report no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian E. White.

Additional information

Communicated by Fabio Fischetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, G.E., Rhind, S.G. & Wells, G.D. The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. Eur J Appl Physiol 114, 2353–2367 (2014). https://doi.org/10.1007/s00421-014-2954-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2954-2

Keywords

Navigation