Skip to main content

Advertisement

Log in

Upregulation of osteogenic factors induced by high-impact jumping suppresses adipogenesis in marrow but not adipogenic transcription factors in rat tibiae

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Jump training is a high-impact training regimen that increases bone volume in young bones. The aim of our study was to determine whether downregulation of adipogenesis that is associated with upregulation of osteogenesis is detected after jump training in growing rat tibiae. Four-week-old rats were jump trained for 1, 2, or 4 weeks for 5 days/week, and the height of jumping progressively increased to 35 cm. We performed morphometry to directly quantitate changes in bone volume and marrow adipocyte distribution in tibiae after the jump training. We also examined changes in the expression of osteogenic and adipogenic transcription factor proteins and mRNAs after the jump training. Four weeks of jump training induced an increase in trabecular bone volume, which was associated with the recruitment of runt-related transcription factor 2 expressing cells, as well as a decrease in marrow fat volume. However, peroxisome proliferator-activated receptor-γ2 protein and mRNA expression levels did not change after high-impact jump training. The mRNA expression levels of the adipocyte differentiation genes CCAAT/enhancer-binding proteins (C/EBPs)α, C/EBPβ, and C/EBPδ also showed no change during the training period in jump-trained rats. We suggest that the levels of osteogenic factors that were upregulated by mechanical loading from high-impact jumping suppress adipogenesis in marrow rather than adipogenic transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah BM, Haack-Sorensen M, Fink T, Kassem M (2006) Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone 39:181–188

    Article  PubMed  Google Scholar 

  • Adams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK (1997) Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272:5128–5132

    Article  CAS  PubMed  Google Scholar 

  • Ahdjoudj S, Lasmoles F, Holy X, Zerath E, Marie PJ (2002) Transforming growth factor beta2 inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma. J Bone Miner Res 17:668–677

    Article  CAS  PubMed  Google Scholar 

  • Ahdjoudj S, Kaabeche K, Holy X, Fromigue O, Modrowskia D, Zerath E, Marie PJ (2005) Transforming growth factor-h inhibits CCAAT/enhancer-binding protein expression and PPARg activity in unloaded bone marrow stromal cells. Exp Cell Res 303:138–147

    Article  CAS  PubMed  Google Scholar 

  • Benayahu D, Shur I, Shamgar BE (2000) Hormonal changes affect the bone and bone marrow cells in a rat model. J Cell Biochem 79:407–415

    Article  CAS  PubMed  Google Scholar 

  • Botolin S, Faugere MC, Malluche H, Orth M, Meyer R, McCabe LR (2005) Increased bone adiposity and peroxisomal proliferator-activated receptor-γ2 expression in type I diabetic mice. Endocrinology 146:3622–3631

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain G, Fox J, Ashton B, Middleton J (2007) Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749

    Article  CAS  PubMed  Google Scholar 

  • Cherian PP, Aj Siller-Jackson, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cells 16:3100–3106

    Article  CAS  Google Scholar 

  • David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, Vico L, Guignandon A (2007) Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148:2553–2562

    Article  CAS  PubMed  Google Scholar 

  • Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57:344–358

    Article  CAS  PubMed  Google Scholar 

  • Enomoto H, Furuichi T, Zanma A, Yamana K, Yoshida C, Sumitani S, Yamamoto H, Enomoto-Iwamoto M, Iwamoto M, Komori T (2004) Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. J Cell Sci 117:417–425

    Article  CAS  PubMed  Google Scholar 

  • Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809

    CAS  PubMed  Google Scholar 

  • He S, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25:377–406

    Article  CAS  PubMed  Google Scholar 

  • Heinrich CH, Going SB, Pamenter RW, Perry CD, Boyden TW, Lohman TG (1990) Bone mineral content of cyclically menstruating female resistance and endurance trained athletes. Med Sci Sports Exerc 22:558–563

    Article  CAS  PubMed  Google Scholar 

  • Honda A, Umemura Y, Nagasawa S (2001) Effect of high-impact and low-repetition training on bones in ovariectomized rats. J Bone Miner Res 16:1688–1693

    Article  CAS  PubMed  Google Scholar 

  • Hu E, Kim JB, Sarraf P, Spiegelman BM (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPAR gamma. Science 274:2100–2103

    Article  CAS  PubMed  Google Scholar 

  • Ikegame M, Ishibashi O, Yoshizawa T, Shimomura J, Komori T, Ozawa H, Kawashima H (2001) Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture. J Bone Miner Res 16:24–32

    Article  CAS  PubMed  Google Scholar 

  • Jiang JX, Cherian PP (2003) Hemichannels formed by connexin 43 play an important role in the release of prostaglandin E2 by osteocytes in response to mechanical strain. Cell Commun Adhes 10:259–264

    CAS  PubMed  Google Scholar 

  • Ju YI, Sone T, Okamoto T, Fukunaga M (2008) Jump exercise during remobilization restores integrity of the trabecular architecture after tail suspension in young rats. J Appl Physiol 104:1594–1600

    Article  PubMed  Google Scholar 

  • Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem L (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto T, Shimizu M (2000) A method for preparing 2- to 50-μm-thick fresh-frozen sections of large samples and undecalcified hard tissues. Histochem Cell Biol 113:331–339

    CAS  PubMed  Google Scholar 

  • Ke HZ, Jee WS, Mori S, Li XJ, Kimmel DB (1992) Effects of long-term daily administration of Prostaglandin-E2 on maintaining elevated proximal tibial metaphyseal cancellous bone mass in male rats. Calcif Tissue Int 50:245–252

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Gao Y, Ueta C, Yamaguchi A, Komori T (2000) Multilineage differentiation of Cbfa1-deficient calvarial cells in vitro. Biochem Biophys Res Commun 273:630–636

    Article  CAS  PubMed  Google Scholar 

  • Komori T (2005) Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem 95:445–453

    Article  CAS  PubMed  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Irie K, Ikegame M, Ejiri S, Handa K, Ozawa H (2001) Role of stromal cells in osteoclast differentiation in bone marrow. J Bone Miner Metab 19:352–358

    Article  CAS  PubMed  Google Scholar 

  • Luu YK, Capilla E, Rosen CJ, Gilsanz V, Pessin JE, Judex S, Rubin CT (2009) Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary induced obesity. J Bone Miner Res 24:50–61

    Article  CAS  PubMed  Google Scholar 

  • Mandrup S, Lane MD (1997) Regulating adipogenesis. J Biol Chem 272:5367–5370

    Article  CAS  PubMed  Google Scholar 

  • Menuki K, Mori T, Sakai A, Sakuma M, Okimoto N, Shimizu Y, Kunugita N, Nakamura T (2008) Climbing exercise enhances osteoblast differentiation and inhibits adipogenic differentiation with high expression of PTH/PTHrP receptor in bone marrow cells. Bone 43:613–620

    Article  CAS  PubMed  Google Scholar 

  • Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2 transcription factor and TGF-β/BMP signaling pathways. Aging Cell 3:379–389

    Article  CAS  PubMed  Google Scholar 

  • Morrie EK (1985) Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skeletal Radiol 14:10–19

    Article  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, Crombrugghe B (2002) The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  CAS  PubMed  Google Scholar 

  • Notomi T, Okazaki Y, Okimoto N, Saitoh S, Nakamura T, Suzuki M (2000) A comparison of resistance and aerobic training for mass, strength and turnover of bone in growing rats. Eur J Appl Physiol 83:469–474

    Article  CAS  PubMed  Google Scholar 

  • Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Risser WL, Lee EJ, LeBlanc A, Poindexter HB, Risser JM, Schneider V (1990) Bone density in eumenorrheic female college athletes. Med Sci Sports Exerc 22:570–574

    Article  CAS  PubMed  Google Scholar 

  • Rosen ED (2005) The transcriptional basis of adipocyte development. Prostaglandins Leukot Essent Fatty Acids 73:31–34

    Article  CAS  PubMed  Google Scholar 

  • Sen B, Xie Z, Case N, Ma M, Rubin C, Rubin J (2008) Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable β-catenin signal. Endocrinology 149:6065–6075

    Article  CAS  PubMed  Google Scholar 

  • Umemura Y, Ishiko T, Tshjimoto H, Miura H, Mokushi N, Suzuki H (1995) Effects of jump training on bone hypertrophy in young and old rats. Int J Sports Med 16:364–367

    Article  CAS  PubMed  Google Scholar 

  • Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S (1997) Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res 12:1480–1485

    Article  CAS  PubMed  Google Scholar 

  • Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research (Project No. 20300217 to H. Takekura and N. Kasuga) from the Japan society for the Promotion of Science, by a Grant-in-Aid for Science, and by Grants-in-Aid for Scientific Research from the National Institute of Fitness and Sports in Kanoya (President’s Discretionary Budget 2008 to H. Takekura).

Conflicts of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsumu Yuki.

Additional information

Communicated by Jacques Poortmans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuki, A., Yotani, K., Tamaki, H. et al. Upregulation of osteogenic factors induced by high-impact jumping suppresses adipogenesis in marrow but not adipogenic transcription factors in rat tibiae. Eur J Appl Physiol 109, 641–650 (2010). https://doi.org/10.1007/s00421-010-1383-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1383-0

Keywords

Navigation