Skip to main content
Log in

The apoptotic response to strenuous exercise of the gastrocnemius and solues muscle fibers in rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purposes of this study were to investigate the effects of strenuous exercise on apoptosis of the gastrocnemius and soleus muscle fibers and clarify the role of oxidative metabolism in the strenuous exercise-induced apoptosis. The experiment was designed with 49 (n = 49) male, 24-week-old, L. Wistar albino rats. Strenuous exercise model was applied to 42 (n = 42) rats and seven (n = 7) rats served as rested controls. All rats were randomly assigned to one of the following groups (n = 7): rested control (C), immediately after exercise (0 h) and 3, 6, 12, 24, and 48 h after exercise. Apoptotic nuclei were shown by single stranded DNA (ssDNA) determination. Oxidative damage in mitochondrial fractions of the muscle tissues was evaluated by malondialdehyde (MDA) levels and reduced/oxidized glutathione (GSH/GSSG) ratios. Caspase-9, -8 and -3 activities and the level of cytochrome c (Cyt c) were measured in the cytosolic fractions of muscle tissues to follow mitochondrial-dependent (intrinsic) or ligand-mediated death receptor (extrinsic) pathways of apoptosis. Plasma interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels were also determined. Based on our results, apoptosis is significantly triggered in muscle fibers by strenuous exercise (P < 0.05). Apoptosis in the soleus muscle tissues mostly depends on the intrinsic pathway and may be triggered by increased oxidative stress. In contrast, extrinsic pathway of apoptosis was predominant in the gastrocnemius muscle and increases of TNF-α and IL-6 may play a significant role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Armstrong R, Phelps R (1984) Muscle fiber type composition of rat hindlimb. Am J Anat 171:259-272

    Article  PubMed  CAS  Google Scholar 

  • Bejma J, Ji LL (1999) Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 87:465-470

    PubMed  CAS  Google Scholar 

  • Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15(1):7-10

    Article  PubMed  CAS  Google Scholar 

  • Carraro U, Franceschi C (1997) Apoptosis of skeletal and cardiac muscles and physical exercise. Aging Clin Exp Res 9:19–34

    CAS  Google Scholar 

  • Cereser C, Guichard J, Drai J, Bannier E, Garcia I, Parvaz P, Revol A (2001) Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with flourescence detection: application to red blood cells and cultured fibroblasts. J Chromatogr B 752:123–132

    Article  CAS  Google Scholar 

  • Cooper CE, Vollaard NBJ, Choueiri, Wilson MT (2002) Exercise, free radicals and oxidative stress. Biochem Soc Trans 30:280–285

    Article  PubMed  CAS  Google Scholar 

  • Dalla LL, Sabbadini R, Renken C, Ravara B, Sandri M, Betto R, Angelini A, Vescovo G (2001) Apoptosis in the skeletal muscle of rats with heart failure is associated with increased serum levels of TNF-alpha and sphingosine. J Mol Cell Cardiol 33(10):1871–1878

    Article  CAS  Google Scholar 

  • Di Meo S, Venditti P (2001) Mitochondria in exercise-induced oxidative stress. Biol Signals Recept 10:125–140

    Article  PubMed  CAS  Google Scholar 

  • Dirks AJ, Leeuwenburgh C (2006) Tumor necrosis factor a signaling in skeletal muscle: effects of age and caloric restriction. J Nutr Biochem 17:501–508

    Article  PubMed  CAS  Google Scholar 

  • Duke RC, Ojcius DM, Young JD (1996) Cell suicide in health and disease. Sci Am 275:80–87

    Article  PubMed  CAS  Google Scholar 

  • Fumarola C, Guidotti G (2004) Stress-induced apoptosis: toward symmetry with receptor-mediated cell death. Apoptosis 9:77–82

    Article  PubMed  CAS  Google Scholar 

  • Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433

    Article  PubMed  CAS  Google Scholar 

  • Goldenthal MJ, Garcia JM (2004) Mitochondrial signaling pathways: a receiver/integrator organelle. Mol Cell Biochem 262:1–16

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Hermann C, Zeiher AM, Dimmeler S (1997) Shear stress inhibits H2O2-induced apoptosis of human endothelial cells by modulation of the glutathione redox cycle and nitric oxide synthase. Arterioscler Thromb Vasc Biol 17:3588–3592

    PubMed  CAS  Google Scholar 

  • Ji LL (1995) Exercise and oxidative stress: role of cellular antioxidant systems. In: Hollozy JO (ed) Exercise and sport sciences reviews. Williams & Wilkins, Baltimore, pp 135–139

    Google Scholar 

  • Kadenbach B, Arnold S, Lee I, Huttemann M (2004) The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochim Biophys Acta 1655:400–408

    Article  PubMed  CAS  Google Scholar 

  • Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7(27):153–163

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G (2003) Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 304:433–435

    Article  PubMed  CAS  Google Scholar 

  • Leeuwenburg C, Hansen PA, Hollosyz JO, Heinecke JW (1999) Hydoxyl radical generation during exercise increases mitochondrial protein oxidation and levels of urinary dityrosine. Free Radic Biol Med 27:186–192

    Article  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  PubMed  CAS  Google Scholar 

  • Li JX, Tong CW, Xu DQ, Chan KM (1999) Changes in membrane fluidity and lipid peroxidation of skeletal muscle mitochondria after exhausting exercise in rats. Eur J Appl Physiol Occup Physiol 80:113–117

    Article  PubMed  CAS  Google Scholar 

  • Liu OJ, Yeo H, Overvik-Douki E, Hagen T, Doniger SJ, Chyu DW, Brooks GA, Ames BN (2000) Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol 89:21–28

    PubMed  CAS  Google Scholar 

  • Lykkesfeldt J (2001) Determination of malondialdehyde as dithiobarbituric acid adducts in biological samples by HPLC with fluorescence detection: comparison with ultraviolent-visible spectrophotometry. Clin Chem 47:1725–1727

    PubMed  CAS  Google Scholar 

  • Markwell MAK, Hass SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in the membrane and lipoprotein samples. Anal Chem 87:206–210

    CAS  Google Scholar 

  • McArdle A, Pattwell D, Vasilaki A, Griffiths RD, Jacson MJ (2001) Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Am J Physiol Cell Physiol 280:C621–C627

    PubMed  CAS  Google Scholar 

  • McArdle A, Van Der Meulen J, Close GL, Patwell D, Van Remmen H, Huang TT, Richardson AG, Epstein CJ, Faulkner JA, Jacson MJ (2004) The role of mitochondrial superoxide dismutase in contraction-induced generation of reactive oxygen species in skeletal muscle extracellular space. Am J Physiol Cell Physiol 286:C1152–C1158

    Article  PubMed  CAS  Google Scholar 

  • McLennan HR, Degli Esposti M (2000) The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 32:153–162

    Article  PubMed  CAS  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloidbeta. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  • Ostrowski K, Rohde T, Zacho M et al (1998) Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J Physiol 508:949–953

    Article  PubMed  CAS  Google Scholar 

  • Peake JM, Suzuki K, Wilson G, Hordern M, Yamaya K, Nosaka K, Mackinnon L, Coombes JS (2005a) Exercise-induced muscle damage, plasma cytokines and markers of neutrophil activation. Med Sci Sports Exerc 37:737–745

    Article  PubMed  CAS  Google Scholar 

  • Peake JM, Suzuki K, Hordern M, Wilson G, Nosaka K, Coombes JS (2005b) Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur J Appl Physiol 95(5-6):514–521

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration and adaptation. Physiol Rev 80:1055–1081

    PubMed  CAS  Google Scholar 

  • Pedersen BK, Steensberg A, Schjerling P (2001) Exercise and interleukin-6. Curr Opin Hematol 8:137–141

    Article  PubMed  CAS  Google Scholar 

  • Phaneuf S, Leewenburgh C (2001) Apoptosis and exercise. Med Sci Sports Exerc 33(3):393–396

    Article  PubMed  CAS  Google Scholar 

  • Phaneuf S, Leeuwenburgh C (2002) Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age. Am J Physiol Regul Integr Comp Physiol 282:R423–R430

    PubMed  CAS  Google Scholar 

  • Pistilli EE, Jackson JR, Alway SE (2006) Death receptor-associated pro-apoptotic signaling in aged skeletal muscle. Apoptosis 11:2115–2126

    Article  PubMed  CAS  Google Scholar 

  • Podhorska-Okolow M, Sandri M, Zampieri S, Brun B, Rossini K, Carraro U (1998) Apoptosis of myofibers and satellite cells: exercise-induced damage in skeletal muscle of the mouse. Neuropath Appl Neurobiol 24:518–531

    Article  CAS  Google Scholar 

  • Podhorska-Okolow M, Krajewski B, Carraro U, Zabel M (1999) Apoptosis in mouse skeletal muscles after physical exercise. Folia Histochem Cytobiol 24:127–128

    Google Scholar 

  • Pollack M, Leeuwenburgh C (2001) Apoptosis and aging: role of the mitochondria. J Gerontol A Biol Sci Med Sci 56(11):B475–B482

    PubMed  CAS  Google Scholar 

  • Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb RA, Dudley G (1994) Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol 266(35):R375–R380

    PubMed  CAS  Google Scholar 

  • Primeau AJ, Adhihetty PJ, Hood DA (2002) Apoptosis in heart and skeletal muscle. Can J Appl Physiol 27(4):349–395

    PubMed  CAS  Google Scholar 

  • Rajguru SU, Yeargans GS, Seidler NW (1994) Exercise causes oxidative damage to rat skeletal muscle microsomes while increasing cellular sulfhdryls. Life Sci 54:149–157

    Article  PubMed  CAS  Google Scholar 

  • Reid MB, Li YP (2001) Cytokines and oxidative signaling in skeletal muscle. Acta Physiol Scand 171:225–232

    Article  PubMed  CAS  Google Scholar 

  • Rossig L, Haendeler J, Hermann C, Malchow P, Urbich C, Zeiher AM, Dimmeler S (2000) Nitric oxide down-regulates MKP-3 mRNA levels: involvement in endothelial cell protection from apoptosis. J Biol Chem 275:25502–25507

    Article  PubMed  CAS  Google Scholar 

  • Sandri M, Podhorska-Okolow M, Geromel V (1997) Exercise-induced myonuclear ubiquitination and apoptosis in dystrophin-deficient muscle of mice. J Neuropathol Exp Neurol 56:45-57

    Article  PubMed  CAS  Google Scholar 

  • Sastre J, Pallardo VF, Vina J (2000) Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 49:427–435

    PubMed  CAS  Google Scholar 

  • Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, Korsmeyer SJ (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67

    Article  PubMed  CAS  Google Scholar 

  • Sharon P, Leeuwenburgh C (2001) Apoptosis and exercise. Med Sci Sports Exerc 33:393–396

    Article  Google Scholar 

  • Shephard RJ (2003) Adhesion molecules, catecholamines and leucocyte redistribution during and following exercise. Sports Med 33(4):261–284

    Article  PubMed  Google Scholar 

  • Stevenson JR, Westermann J, Liebmann PM, Hortner M, Rinner I, Felsner P, Wolfler A, Schauenstein K (2001) Prolonged alphaadrenergic stimulation causes changes in leukocyte distribution and lymphocyte apoptosis in the rat. J Neuroimmunol 120:50–57

    Article  PubMed  CAS  Google Scholar 

  • Stewart CE, Newcomb PV, Holly JM (2004) Multifaceted roles of TNF-alpha in myoblast destruction: a multitude of signal transduction pathways. J Cell Physiol 198:237–247

    Article  PubMed  CAS  Google Scholar 

  • Sun XM, MacFarlane M, Zhuang J, Wolf BB, Green DR, Cohen GM (1999) Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem 274:5053–5060

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Tsutomi Y, Shimizu M, Matsuzawa A (1999) Another cell death induction system: TNF-alpha acts as a ligand for Fas in vaginal cells. Cell Death Differ 6(7):638–643

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Yamada M, Kurakake S, Okamura N, Yamaya K, Liu O, Kudoh S, Kowatari K, Nakaji S, Sugawara K (2000) Circulating cytokines and hormones with immunosuppressive but neutrophil-priming potentials rise endurance exercise in humans. Eur J Appl Physiol 81:281–287

    Article  PubMed  CAS  Google Scholar 

  • Van Gurp M, Festjens N, Van Loo G, Saelens X, Vandenabeele P (2003) Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 304:487–497

    Article  PubMed  CAS  Google Scholar 

  • Vasilaki A, Mansouri A, Remmen HV, van der Meulen JH, Larkin L, Richardson AG, McArdle A, Faulkner JA, Jackson MJ (2006) Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell 5:109–117

    Article  PubMed  CAS  Google Scholar 

  • Willis TW, Dallman P, Brooks GA (1988) Physiological and biochemical correlates of increased work in trained iron-deficient rats. J Appl Physiol 65(1):256-263

    PubMed  CAS  Google Scholar 

  • Yuan J, Murrell GA, Trickett A, Wang MX (2003) Involvement of cytochrome c release and caspase-3 activation in the oxidative stress-induced apoptosis in human tendon fibroblasts. Biochim Biophys Acta 1641(1):35–41

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Dokuz Eylul University Research Foundation Grant no: 036.01.01.05. The authors thank Dr. Memduh Bulbul for his excellent technical assistance on the HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Koçtürk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koçtürk, S., Kayatekin, B.M., Resmi, H. et al. The apoptotic response to strenuous exercise of the gastrocnemius and solues muscle fibers in rats. Eur J Appl Physiol 102, 515–524 (2008). https://doi.org/10.1007/s00421-007-0612-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0612-7

Keywords

Navigation