International Archives of Occupational and Environmental Health (2021) 94:1147-1171
https://doi.org/10.1007/500420-021-01677-z

REVIEW ARTICLE q

Check for
updates

Occupational exposure and challenges in tackling M. bovis
at human-animal interface: a narrative review

K.Renuga Devi' - L. J. Lee? - Lee Tze Yan® - Amin-Nordin Syafinaz® - I. Rosnah' - V. K. Chin**

Received: 11 July 2020 / Accepted: 12 January 2021 / Published online: 16 March 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract

Zoonotic tuberculosis caused by Mycobacterium bovis (M. bovis), a member of Mycobacterium tuberculosis complex
(MTBC) has increasingly gathered attention as a public health risk, particularly in developing countries with higher disease
prevalence. M. bovis is capable of infecting multiple hosts encompassing a number of domestic animals, in particular cat-
tle as well as a broad range of wildlife reservoirs. Humans are the incidental hosts of M. bovis whereby its transmission to
humans is primarily through the consumption of cattle products such as unpasteurized milk or raw meat products that have
been contaminated with M. bovis or the transmission could be due to close contact with infected cattle. Also, the transmission
could occur through aerosol inhalation of infective droplets or infected body fluids or tissues in the presence of wound from
infected animals. The zoonotic risk of M. bovis in humans exemplified by miscellaneous studies across different countries
suggested the risk of occupational exposure towards M. bovis infection, especially those animal handlers that have close
and unreserved contact with cattle and wildlife populations These animal handlers comprising of livestock farmers, abattoir
workers, veterinarians and their assistants, hunters, wildlife workers as well as other animal handlers are at different risk of
contracting M. bovis infection, depending on the nature of their jobs and how close is their interaction with infected animals.
It is crucial to identify the underlying transmission risk factors and probable transmission pathways involved in the zoonotic
transmission of M. bovis from animals to humans for better designation and development of specific preventive measures
and guidelines that could reduce the risk of transmission and to protect these different occupational-related/populations at
risk. Effective control and disease management of zoonotic tuberculosis caused by M. bovis in humans are also hindered
by various challenges and factors involved at animal-human interface. A closer look into factors affecting proper disease
control and management of M. bovis are therefore warranted. Hence, in this narrative review, we have gathered a number
of different studies to highlight the risk of occupational exposure to M. bovis infection and addressed the limitations and
challenges underlying this context. This review also shed lights on various components and approaches in tackling M. bovis
infection at animal-human interface.
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Introduction

Zoonotic tuberculosis (zTB) caused by Mycobacterium
bovis (M. bovis), a member of Mycobacterium tuberculosis
complex is considered as a serious public health threat in
low- and middle-income/developing countries and resulted
in economic losses and trade barriers with a huge impact
on the livehoods of marginalized and poor communities
(Cosivi et al. 1998; Jagielski et al. 2016; WHO 2016).
In 2016, there is about 147,000 new cases of zoonotic
tuberculosis with 12,500 deaths reported globally, which
constitutes approximately 1.4% of the tuberculosis bur-
den worldwide. The African regions are heavily affected
with zoonotic tuberculosis followed by Southeast Asian
countries (WHO 2016). Nonetheless, the true incidence
of zoonotic tuberculosis in humans could probably be
underestimated due to poor surveillance system in most
countries, under-reporting and diagnosis challenges in
accurately differentiating M. bovis from M. tuberculosis
(WHO 2016). Despite these challenges, M. bovis has been
well recognized to infect cattle and humans with higher
prevalence of the disease incidence occurred in develop-
ing countries (Miiller et al. 2013; OIE 2015). This has
undoubtedly made bovine tuberculosis a truly global pub-
lic health threat (Cosivi et al. 1998; Miiller et al. 2013;
OIE 2019).

Humans acquired M. bovis infection primarily through
the consumption of unpasteurized milk and dairy products
contaminated with M. bovis or via close contact with cat-
tle infected with M. bovis. The transmission may occur
through eating contaminated cattle meats, inhalation of
infectious droplets exhaled by humans or animals or has
direct contact with the infected animals through the pres-
ence of a wound (de 1a Rua-Domenech 2006; Thoen et al.
2010). M. bovis has a wide range of susceptible hosts to
infect, which include both domestic and wildlife animals.
Cattle, cervids and buffalo are a few of the examples
of maintenance hosts for M. bovis whereas goats, dogs,
sheep, horses, camels, wild ruminants and others are con-
sidered as spill-over hosts. Wild animal and predatory
felines including lions, tigers, leopards and lynx are also
susceptible to the infection (CSFPH 2009). Therefore, it
remains a challenging task to control and eradicate bovine
tuberculosis due to its multi-hosts characteristic.

Strict hygiene controls in livestock management and
milk pasteurization have indisputably reduced zonootic
tuberculosis transmission in developed countries. Never-
theless, the threat of M. bovis infection is still ongoing,
at least in developing countries and in specific occupa-
tional groups/populations working closely with domestic
and wildlife animals (Vayr et al. 2018). Populations that
are at a heightened risk of contracting M. bovis infection
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include livestock farmers, abattoir workers, animal hus-
bandry workers, HIV-positive persons, veterinary person-
nel, butchers, hunter, wildlife workers and live market
workers (Haagsma et al. 2012; Vayr et al. 2018). Further,
populations holding the practice of raw milk consumption
(Silva et al. 2018) and pastoralist communities in Sub-
Saharan African maintaining close contact with livestock
and regularly keeping livestock inside their house are also
susceptible to M. bovis infection (Duguma et al. 2017).
Nevertheless, current data documenting the risk of occu-
pational exposure to M. bovis infection are limited. Most
of the studies are confined to small-scale studies and/or
based on retrospective data review (Cordova et al. 2012;
Haagsma et al. 2012). Also, it is critical to identify the
underlying risk factors and pathways associated with
the transmission of M. bovis to the occupational-related
workers/populations at risk to aid in the development and
implementation of specific preventive measures and guide-
line that are tailored to the different level risk of occupa-
tional exposure to M. bovis infection (Vayr et al. 2018).
In line with the global effort to stop the tuberculosis pan-
demic, it is imperative to capture the real burden of zoonotic
tuberculosis particularly in low- and middle-income coun-
tries as these countries may have minimal to no cattle-con-
trol programme. Apart from that, current disease control and
management on human tuberculosis is focusing on human-
to-human transmission caused by M. tuberculosis. This in
turn will have minimal impact on the control and preven-
tion of zoonotic tuberculosis where disease transmission
is predominantly through animal handling and food inges-
tion. Therefore, it is believed that zoonotic tuberculosis will
become a more critical public health problem, at least in
developing countries (Cousins 2001; Wedlock et al. 2002,
2012; Luciano and Roess 2020). Identification of key chal-
lenges involved at human—animal interface will facilitate
better disease control and management. On the other side,
“Roadmap for Zoonotic Tuberculosis” has been introduced
in 2017 with the emphasis on zoonotic tuberculosis caused
by M. bovis in humans and bovine tuberculosis caused by
M. bovis in animals. The roadmap has prioritized on ten
areas and three core themes with the hope to end the global
tuberculosis epidemic by 2030. One of the ten priority areas
proposed is to reduce the risk of zoonotic tuberculosis trans-
mission to humans by identifying the populations at risk
and the key transmission pathways responsible for zoonotic
transmission. The roadmap also highlighted the need to
define populations at risk of infection, including people with
risk of occupational exposure (OIE, WHO, and FAO 2017).
A closer look into the association between occupational
exposure and M. bovis infection are then needed. There-
fore, in this narrative review, we seek to highlight the risk
of occupational exposure to M. bovis infection and the asso-
ciated challenges involved with the support from previous
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literature. This review also discusses the challenges and pro-
vides some useful windows in tackling M. bovis infection at
animal-human interface.

Risk of occupational exposure
and Mycobacterium bovis infection

Overview

A retrospective study of 39 patients with confirmed M. bovis
infection between 1996 and 2008 highlighted that occupa-
tional exposure is one of the most prominent risk factors in
zoonotic transmission of M. bovis infection besides other
risk factors including history of living in rural area and
consumption of unpasteurized milk (Cordova et al. 2012).
Another retrospective study also related the risk of M. bovis
infection to occupational exposure and exposure to regions
that are endemic for bovine tuberculosis (Rodriguez et al.
2009). On the other hand, Baker et al. (2006) had associated
the occupational risk of M. bovis infection with livestock
farming (owners or workers), being an abattoir worker or
veterinary receptionist and drinking unpasteurized milk
(Baker et al. 2006). These aforementioned studies have
undoubtedly suggested a link between occupational expo-
sure and M. bovis infection. We have performed a literature
search using different keywords such as “M. bovis and occu-
pational exposure”, “population and M. bovis”, “animals and
M. bovis” “wildlife and M. bovis”, “M. bovis and humans”,
“M. bovis”, “zoonotic tuberculosis” and ‘“bovine tuberculo-
sis” through PubMed, Scopus and Google Scholar database
to identify the risk of occupational exposure to M. bovis
infection. This section gathered the evidences on the risk
of occupational exposure to M. bovis infection. However,
the information inferred is based on selected studies which
subjected to publication bias and will affect the strength of
evidence across this body of literature. Table 1 depicts the
major findings and limitations of selected published stud-
ies related to risk of occupational exposure and M. bovis
infection.

Occupational risk groups and M. bovis infection

A study by Torres-Gonzalez and his colleagues (2013) clas-
sified occupational groups at risk into three major groupings
(high, medium and low exposure) in accordance to the types
of activity and the conditions and duration of exposure to
cattle. In the study, the high exposure group refers to work-
ers who have direct contact with livestock in closed spaces,
such as abattoir workers, foremen, veterinary personnel con-
ducting cattle necropsies and milkers. Medium risk group
workers include herders, tractor operators, feeders, mainte-
nance technicians, household contacts living in cowsheds

and other veterinary personnel who have direct contact with
livestock in open spaces. As for low-risk group workers, they
include administrative clerks, individuals involved in com-
mercial activities and cowshed owners who are presumably
to have no direct contact with livestock (Torres-Gonzalez
et al. 2013). On the other hand, Deffontaines et al. (2019)
categorized occupational risk groups into livestock farmers
and farm workers (mostly cattle), slaughterhouse workers,
and individuals who monitor the health status of wild ani-
mals and hunters. The classification is based on the current
rise of incidence of animal disease and the heightened risk
of exposed to animals infected with M. bovis. Other occupa-
tional risk groups that are not included in the guidelines for
monitoring employees after being exposed to bovine tuber-
culosis include service providers to farm, knackery workers,
laboratory workers and wildlife park, zoo and animal house
workers due to their potential risk of contracting bovine
tuberculosis (Deffontaines et al. 2013).

Livestock farmers

A plethora of studies have demonstrated the risk of occupa-
tional exposure with M. bovis infection in livestock farm-
ing, especially those who are living or working closely with
cattle (Cleaveland et al. 2007; Oloya et al. 2008; Tigre et al.
2011; Adesokan et al. 2012; Gumi et al. 2012; Torres-Gon-
zalez et al. 2013; Lombardi et al. 2017; Nuru et al. 2017;
Kemal et al. 2019). For instance, Torres-Gonzalez (2013)
reported that the overall prevalence of latent tuberculo-
sis infection (LTBI) in 311 abattoir and dairy farm labor-
ers and their household contacts in Mexico are 76.2 and
58.5% by tuberculin skin test (TST) and interferon-gamma
release assay (IGRA), respectively. Further, the study dem-
onstrated that the prevalence of LTBI and pulmonary tuber-
culosis among livestock workers are higher in comparison
to other populations in Mexico and is robustly associated
with occupational exposure. Also, the prevalence of sympto-
matic bovine tuberculosis is presumably higher in the popu-
lation of livestock workers compared to general population.
These findings clearly suggest a link between M. bovis and
occupational exposure (Torres-Gonzalez et al. 2013). In
North-Western Ethiopia, Nuru et al. (2017) reported that 40
culture samples from 70 human TB lymphadenitis (TBLN)
cases are tested positive for tuberculosis, with two isolates
being identified as M. bovis through spoligotyping analysis,
suggesting the possible zoonotic transmission of M. bovis
to humans. However, further investigations are warranted
on the probable transmission pathways since the evidence
on direct transmission of M. bovis from cattle to humans is
lacking (Nuru et al. 2017). The direct transmission of M.
bovis from infected cattle to livestock farmers and/or live-
stock owners evident by numerous studies highlighting the
occupational risk to M. bovis infection (Oloya et al. 2008;
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Gumi et al. 2012; Torres-Gonzalez et al. 2013). In Uganda,
Oloya and his co-workers (2008) reported that M. bovis had
been identified from three lymph node biopsies of forty-
three patients with cervical lymphadenitis. Furthermore, the
spoligopatterns of M. bovis from these human isolates are
identical to the M. bovis isolates from infected cattle (Oloya
et al. 2008). Similarly, Gumi and his teams (2012) demon-
strated that identical spoligopatterns of M. bovis strains are
found within the pastoralists and their livestock at South-
East Ethiopian (Gumi et al. 2012). Torres-Gonzalez et al.
(2013) also reported that one of the M. bovis strains isolated
from two cases of human pulmonary tuberculosis has been
found to be genetically related to bovine isolate (Torres-
Gonzalez et al. 2013).

The transmission risk factors between livestock workers/
owners with cattle have also been implicated in different
studies. Cleaveland and his collaborators (2007) had con-
ducted a human case—control study in northern Tanzania and
a cattle cross-sectional study involving 622 cattle herds and
10,549 cattle, and questionnaire surveys for 239 households.
In the study, M. bovis is identified in seven of sixty-five
(10.8%) human cervical adenitis cases, with only one case
that involved a household owning infected cattle (Cleaveland
et al. 2007). A cross-sectional study conducted on 35 dairy
farm owners and 384 dairy cattle in South Western Ethio-
pia showed that the prevalence of herds with bovine tuber-
culosis determined by comparative intradermal tuberculin
test (CIDT) is 51.4%. The study also reported that 22.9%
(8/35) of the interviewed households have at least one case
of human tuberculosis in their family, and with 62.5% (5/8)
of these families owning reactor cattle in their dairy herds
(Tigre et al. 2011). Different sources also demonstrated sig-
nificant association between reactor cattle and confirmed
human TB cases among family members of cattle owner
(Ameni and Regasa 2001; Ameni and Erkihun 2007). The
presence of both reactor cattle and human TB cases in a
household serve as an indicative that either human or cattle
could be the main source of infection and vice versa (Cosivi
et al. 1998).

A cross-sectional study revealed that 10% (7 out of 70)
of livestock traders in Nigeria have positive sputum cultures
from which two isolates are being differentiated as M. bovis.
The risk factors associated with bovine tuberculosis in this
study include prolonged cough and the duration of work-
ing years (>3 years) in livestock trade. This study surmised
that there could be undetected pulmonary M. bovis infec-
tion among livestock workers and highlighted the need to
explore the risk of occupational exposure in transmitting M.
bovis infection to larger community (Adesokan et al. 2012).
Ameni et al. (2013) studied the transmission of tuberculosis
between cattle and farmers in Ethiopia. The authors investi-
gated the association between households with tuberculosis
cases and households that were free from tuberculosis with

herds of cattle. The authors observed that cattle owned by
households with tuberculosis cases are more likely to be
tested positive by CIDT than cattle owned by households
that are free from tuberculosis. The authors also reported
that all mycobacteria strains isolated from farmers are M.
tuberculosis while three isolates recovered from cattle are
M. bovis. The findings highlighted the risk of zoonotic trans-
mission of M. bovis to humans as well as reverse zoonosis
transmission of M. tuberculosis to animals (Ameni et al.
2013). A recently published study involving different areas
of Eastern Ethiopia, Kemal et al. (2019) showed that 3 out of
43 farm workers (6.97%) which had direct contact with cattle
had history of tuberculosis infection. Moreover, one of the
farm workers who had contracted tuberculosis infection had
direct and unreserved contacts with cattle in various farms
for 5 years, from which purified protein derivative (PPD)
reactor cattle were identified in two of the farms that he
served. This study highlighted the transmission of M. bovis
infection from animals to humans where detailed probing
on the possible sources and transmission route are needed
(Kemal et al. 2019).

The risk factors that are associated to the increase in
bovine tuberculosis in cattle which subsequently could
heightened the transmission of M. bovis to humans have
been identified in different studies. Cleaveland et al. (2007)
reported that the prevalence of bovine tuberculosis charac-
terized by positive CIDT test is considerably low (0.9%) but
widespread, with about 11.8% cattle herds consisting of at
least one positive reactor. The prevalence of bovine tubercu-
losis is significantly increased with cattle age as well as other
factors such as the number of cattle in the herd, herds housed
within the household at night and cattle herds that have close
contact with wildlife (Cleaveland et al. 2007). Another
cross-sectional study involving cattle raised in a mixed crop-
livestock farming system in Tigray region, Ethiopia, indi-
cated that larger herds, exotic bred, purchase of cattle and
closed barn are the risk factors linked to bovine tuberculosis.
The study also suggested that current dairy development
programme focusing on the introduction of exotic and/or
crossed animals could have influenced the epidemiologi-
cal settings of bovine tuberculosis in the study area (Habitu
et al. 2019). A recently published cross-sectional study
involving five districts in Bangladesh suggested that older
and pregnant cows within larger herds are at heightened risk
of bovine tuberculosis where continuous surveillance and
implementation of bovine tuberculosis control program are
urgently needed (Islam et al. 2020). Collectively, most of
studies discussed above show the significant association of
M. bovis infection in livestock farmers with cattle being the
possible source of infection to human although goats and
other dairy animals can be infected by M. bovis as well (de
la Rua-Domenech 2006). In-depth analysis on the risk fac-
tors for zoonotic transmission of M. bovis which consist of

@ Springer
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the assessment of the risk of M. bovis in cattle and other
susceptible livestock, the mode of transmission from animals
to human, the perception and risk practices of community
should be carried out (Vayr et al. 2018; Sichewo et al. 2020).

Veterinarians and assistants

Veterinarians and assistants are also prone to M. bovis infec-
tions. The transmission of M. bovis to this occupational
group could be through airborne transmission. This could
likely occur when they are performing respiratory investi-
gations or when they are conducting post-mortem analy-
sis (Vayr et al. 2018). In addition, cutaneous transmission
through skin wound or through body parts that are prone to
injuries had been reported. For example, an injury survey
by questionnaire had been conducted among veterinarians
in Michigan in 2001. The survey analysis showed that hands
(29%) and legs (21%) are more likely to be subjected to
injury with strains/sprains (30%) and contusion/abrasion
(30%) being the most common form of injuries sustained
(Wilkins et al. 2009). One case study had documented the
development of cutaneous tuberculosis caused by M. bovis
in a 25-year-old female veterinary surgeon. The authors
depicted that the veterinary surgeon most likely contracted
the infection while euthanizing the animal without wear-
ing gloves and at the time of venepuncture in which her
hands were accidentally contaminated with infected blood
(Twomey et al. 2010). Another case study illustrated the
human and canine pulmonary M. bovis infection within the
same household. The authors explained that the 42-year-old
female could probably contracted M. bovis infection dur-
ing her time as a veterinary nurse for two local practises.
The female assisted in performing tuberculin tests of cattle
herds where one farm that she visited was tested positive
for three skin test reactors with two being culture positive
for M. bovis during post-mortem examination. Also, the
female could probably be infected via contact with badg-
ers, both at her own property and while saving an injured
badger that suffered from a road traffic accident for treatment
(Shrikrishna et al. 2009). Lombardi et al. (2017) conducted
a 5-year surveillance study on human tuberculosis caused by
M. bovis in Italy. The authors revealed that the proportion
of human tuberculosis caused by M. bovis in 511 patients
is significantly associated with determinants such as being
elderly, being Italian-born and extrapulmonary localization.
In the study, nine M. bovis strains had been identified where
three out of six M. bovis isolates of Italian-born patients
resemble the M. bovis strains circulating in the cattle herds
between 2001 and 2016. The authors reported that one of
the M. bovis isolate that matched with the M. bovis isolate
from the cattle herds could be explainable by occupational
exposure involving direct contact between a veterinarian and
infected cattle (Lombardi et al. 2017).
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Abattoir workers

Abattoir workers are also at risk of exposing to and contract-
ing M. bovis as they are involved in handling and manipulat-
ing infected carcasses. A cross-sectional study in Pakistan
revealed that sputum specimens of one out of fifty livestock
farmers and four out of sixteen abattoir workers had been
identified as M. bovis through polymerase chain reaction
(PCR). Further, the authors reported that the working hours
as an abattoir worker is significantly linked with the preva-
lence of zoonotic TB (Khattak et al. 2016). Similarly, Ullah
et al. (2018) observed that three out of twenty-three abattoir
workers and three out of two hundred livestock farmers were
tested positive for M. bovis via PCR in Pakistan (Ullah et al
2018). Apart from that, a study had investigated the role of
infected slaughtered cattle in transmitting tuberculosis to
abattoir workers in Baghdad. The authors showed that two
isolates from abattoir workers are identified as M. bovis.
The authors deduced that infected slaughter cattle could
be the source of zoonotic tuberculosis caused by M. bovis
in humans (Al-Thwani and Al-Mashhadani 2016). On the
other hand, a rare case study reported a 50-year-old healthy
female suffered with pulmonary tuberculosis caused by M.
bovis. The infection is probably a consequence of occupa-
tional exposure where she had been working for almost 7
years at the local freezing works in which animal organs are
clean and packed (Chan and Mpe 2015). Another rare case
study documented the presence of non-healing wound on the
dorsal side of the hand of a 46-year-old male who worked as
a butcher in a slaughterhouse. He had been diagnosed with
pulmonary tuberculosis caused by M. bovis coupled along
with cutaneous granulomatous inflammatory reaction on his
hand (Mertoglu et al. 2018). Similarly, a case report depicted
occupational exposure to M. bovis in a 50-year-old man
who had been previously working in a slaughterhouse and
involved in handling offal for quite some time. He had been
diagnosed with pulmonary tuberculosis caused by M. bovis
where he had most likely been occupationally exposed to
M. bovis infection during his working periods (Sunder et al.
2009). Taken together, the findings from these studies have
clearly stated that abattoir workers are exposed to the risk
of contracting zoonotic tuberculosis caused by M. bovis as
well as the possible roles of infected slaughter animals and
offal in the transmission of M. bovis infection to humans.

Hunters, wildlife and zoonoses workers

Occupation-related exposure to M. bovis has also been docu-
mented for hunters and workers who had close contact with
wildlife. Two case reports concerning hunting exposure and
in contact with wildlife has been published (Wilkins et al.
2008). The first case report addresses the possible risk fac-
tors of a 74-year-old man with M. bovis infection. These risk
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factors include handling a buck pole where hunters showed
their killed deer, handling a deer carcass, went after white-
tailed deer, consumption of venison and recreational pro-
viding of food to deer. The second case report focuses on a
29-year-old deer hunter infected by a contaminated hunting
knife on his left index finger while field dressing white-tailed
(Wilkins et al. 2008). Together, possible occupational and
recreational groups that are susceptible to M. bovis in deer
comprise of hunters, taxidermists, trappers, venison consum-
ers and processors (Wilkins et al. 2003). Although another
study reported that M. bovis is not detected among 142
mahouts or owners in Laos despite high tuberculosis sero-
reactivity recorded in elephants, the potential of zoonotic
transmission of M. bovis to the local wild herds and wild-
life workers should not be underestimated (Lassausaie et al.
2015).

Perspectives on occupational exposure and M. bovis
infection

Various occupational-related workers such as livestock farm-
ers, abattoir workers, veterinarian and assistants, hunters,
wildlife workers and other animal handlers who have direct
or indirect contact with susceptible wildlife and domestic
animals are at higher risk of contracting M. bovis infection.
However, there are a few concerns to address in the con-
text of occupational exposure and M. bovis infection. For
instance, the significance and the reliability of the studies
on occupational exposure/populations at risk and M. bovis
infection are limited by inadequate study designs and/or
insufficient sample sizes. Some of the occupational-related
studies have recruited less than 200 human subjects for the
analysis (Oloya et al. 2008; Gumi et al. 2012; Adesokan
et al. 2012; Khattak et al. 2016; Nuru et al. 2017; Kemal
et al. 2019). With zoonotic tuberculosis contributing to
about 1.4% of the global tuberculosis burden (WHO 2016),
the sample sizes illustrated by majority of these available
published studies are simply insufficient for robust statisti-
cal analyses. Additionally, larger scale and more inclusive
studies are required to reflect the true burden of zoonotic
tuberculosis caused by M. bovis in accordance to the levels
of occupational risk exposure (Luciano and Roess 2020).
The available published studies concerning to occupa-
tional exposure and M. bovis infection are in scarcity. Most
of the data are generated from developing countries and the
data from, in particular industrialized and developed coun-
tries, are limited. Further, majority of the available findings
on occupational exposure and M. bovis infection are based
on subnational data confined to a limited number of coun-
tries (Oloya et al. 2008; Adesokan et al. 2012; Khattak et al.
2016; Nuru et al. 2017; Ullah et al. 2018; Vayr et al. 2018;
Kemal et al. 2019; Islam et al. 2020). Hence, the narrow
breadth of currently available data restricted by geographical

representative and the differences in the disease prevalence
across different countries, sociodemographic and eco-
nomical situations as well as food consumption habits and
lifestyle may not be conclusive enough to present a global
picture of the occupational exposure risk, where the true
exposure dynamics could be far more complicated than
anticipated in other parts of the world. Otherwise, these
previously established studies do provide insights on the
occupational groups at risk of M. bovis infection, its associ-
ated transmission risk factors and transmission pathways that
could be useful in the designation and the development of
targeted preventive measures for better disease control and
management.

The prevalence/actual burden of occupational/popula-
tions at risk of M. bovis infection could be underestimated
by the lack of standardization in the laboratory detection
techniques of M. bovis exemplified by various laboratory
detection methods and diagnostic specimens being employed
by different occupational associated studies (Oloya et al.
2008; Ameni et al. 2013; Torres-Gonzalez et al. 2013; Rah-
man et al. 2015; Khattak et al. 2016; Nuru et al. 2017).
A systematic review by Luciano and Roess (2020) high-
lighted the challenges and key gaps in laboratory diagnosis
of human zoonotic tuberculosis with livestock exposure in
low- and middle-income countries. The authors reported
that distinct studies adopted different laboratory methods
including numerous different types of culture methods and/
or miscellaneous molecular detection approaches, some of
which are not suitable for diagnosis of zoonotic tuberculosis
in humans. This eventually could greatly affect the data reli-
ability and the comparison of data across different occupa-
tional-related studies for a comprehensive view is therefore
restricted. The authors suggested the need to have suitable
and standardized laboratory diagnostic methods along with
large prospective studies of at-risk populations to identify
the exposure that enhanced the risk of tuberculosis con-
version/infection to capture the true burden of the disease
(Luciano and Roess 2020).

The risk of M. bovis infection is increasing globally in
developing countries that have high disease prevalence. The
risk factors associated with the transmission of M. bovis
infection and the probable transmission routes involved for
different occupational exposure should be carefully assessed
at human—animal interface to reduce the zoonotic risk of M.
bovis transmission to humans. The lack of veterinary health
inspection to restrict M. bovis infection in herds coupled
with a broad spectrum of breeding practices (Cleaveland
et al. 2007; Tigre et al. 2011; Ameni et al. 2013; Habitu et al.
2019), working periods and health conditions of the work-
ers (Adesokan et al. 2012; Khattak et al. 2016; Ullah et al.
2018; Kemal et al. 2019), food consumption habits such
as drinking unpasteurized milk or eating raw cattle meat
(Tigre et al. 2011; Cordova et al. 2012; Hambolu et al. 2013;
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Nuru et al. 2017) as well as the conditions of the cattle herds
and the cattle status (Cleaveland et al. 2007; Habitu et al.
2019; Islam et al. 2020) evident by different studies could
possibly explain the heightened risk of M. bovis transmis-
sion in occupational-related setting. The primary transmis-
sion routes in accordance to discern occupational exposure
mainly involved cutaneous, respiratory transmission, which
are often related to wounds and to a lesser extent food con-
sumption practices (Vayr et al. 2018). Identification of trans-
mission risk profiles and transmission pathways enable the
designation of specific control and prevention interventions
to be effectively delivered to the targeted workers at risk
of M. bovis infection. Nevertheless, considerations that the
transmission pathways and risk profiles might be varied at
continental level must be taken into account. Assessment
of different levels risk of occupational exposure to M. bovis
infection should consider the economic, social, and geo-
graphical settings in which the studies are conducted.
Understanding the knowledge, risk perception and
practises of occupational-related workers on bovine tuber-
culosis are crucial to reduce the transmission of M. bovis
infection from animals to humans. However, the findings
on the knowledge, attitude, risk perception and practises of
livestock and abattoir workers towards bovine tuberculo-
sis across different countries/regions are inconsistent with
mixed findings (Tebug et al. 2014; Adesokan et al. 2018;
Sa’idu et al. 2015; Kazoora et al. 2016; Khattak et al. 2016;
Fekadu et al. 2018; Kemal et al. 2019). The knowledge and
awareness of livestock and abattoir workers on zoonotic
threat caused by M. bovis also vary depending on studies.
Some studies reported good knowledge among livestock
farmers and abattoir workers (Tebug et al. 2014; Adesokan
et al. 2018; Sa’idu et al. 2015; Fekadu et al. 2018) while
some are not (Kazoora et al 2016; Khattak et al. 2016).
Sa’idu et al. (2015) reported that the awareness of bovine
tuberculosis of abattoirs is significantly associated with their
age, occupational status and the duration of exposure to cat-
tle carcasses (Sa’idu et al. 2015). The increasing awareness
on the disease, its transmission and zoonotic implication
is important for reduction and preventive measures (Kemal
et al. 2019). On the other side, some studies reported that
a proportion of livestock farmers and abattoir workers are
still practicing risk practises such as drinking unpasteur-
ized milk (Tebug et al. 2014; Kazoora et al. 2016; Kemal
et al. 2019) and consumption of raw cattle meat (Hambolu
et al. 2013; Fekadu et al. 2018) that could expose the public
to the threat of M. bovis infection, regardless of whether
they have good knowledge or awareness of the zoonotic risk
of M. bovis and its mode of transmission. Also, protective
behaviour and practises on preventing M. bovis infection has
been assessed. Khattak et al. (2016) revealed that majority
of the abattoir workers are lacking protective equipment and
do not practice safe working culture (Khattak et al. 2016).
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Another study in Ethiopia revealed a lower uptake of protec-
tive behaviour in elder (Age > 30 years old) and male demo-
graphics. Improvement of zoonotic prevention programme
as well as further interrogation into the prevalence and risk
determinants for zoonotic tuberculosis caused by M. bovis
are highly recommended (Tebug et al. 2014). Also, pub-
lic health interventions should not just be tailored towards
increasing the awareness of zoonotic risk but should also be
focusing on promoting the behavioural change such as the
habit of eating raw meats to effectively prevent and control
zoonotic tuberculosis (Fekadu et al. 2018).

Heath education has been implicated as one of the effec-
tive approaches in dealing with zoonotic tuberculosis. A
study by Kazoora et al. (2016) surmised the need of health
education in improving the attitudes of herdsman and other
farm workers towards zoonotic tuberculosis. It has been
demonstrated that health education on zoonotic tubercu-
losis imposes positive impact on the knowledge, attitudes,
and behaviors of the respondents where good knowledge is
significantly associated with practices that prevent disease
transmission (Kazoora et al. 2016). Indeed, understanding
that bovine tuberculosis as a zoonotic disease by cow owners
are deem critical for policymakers to strategize appropriate
control plans that could alleviate the public health threats it
poses (Munyeme et al. 2010). The acceptability and the suc-
cess of the control measures encompassing routine tubercu-
losis surveillance, compulsory milk pasteurization and meat
inspection, restriction in cattle movement are highly reliant
on the knowledge of cattle owners and their perceived risk of
contracting the disease. Nevertheless, raising the awareness
of zoonotic tuberculosis through health education in high-
risk communities has been considered as the only feasible
preventive approach in developing countries where testing
and cattle slaughtering as well as mandatory pasteurization
of milk and its products are not routinely being practiced
(Wedlock et al. 2002; McGeary 2008; Kazoora et al. 2016).

Further studies should emphasize on evaluating occupa-
tional exposure to M. bovis infection of distinct high-risk
populations and/or occupational groups in industrialized
countries. A systematic review analysis on the occupational
exposure to M. bovis infection conducted by Vayr and his
collaborators (2018) highlighted that the primary preven-
tion modalities in high-risk occupational groups have yet
to be defined despite the diagnosis and treatment for bovine
tuberculosis being well established. Preventive measures can
be designed in a way that focus on the probable M. bovis
transmission pathways for different occupational-related
workers. For example, livestock workers are susceptible to
respiratory transmission of M. bovis because of their direct
and unreserved contact with cattle, and thus respiratory
protective masks should be applied while handling infected
cattle with respiratory symptoms. Cutaneous transmission
of M. bovis through a cut or wound could possibly occur
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in occupational-related workers such as abattoir workers,
veterinarians and their assistants and workers in close con-
tact with wildlife animals, and, therefore, protective gloves
should be used while working with infected animals. Fur-
thermore, occupational-related workers should be given
exposure on the clinical signs of M. bovis infection, its mode
of transmission and associated transmission risk factors and
ways to handle sick animals to abate the risk of transmission
(Vayr et al. 2018). A specific guideline which is tailored to
the degree of occupational exposure as well as taking good
care of occupational-related workers exposed to M. bovis
infection is highly warranted. Indeed, in France, the guide-
line and recommendations on monitoring occupational-
related workers after being exposed to bovine tuberculosis
has been published recently. This guideline will eventually
lead to better management of workers after being exposed
to M. bovis in an occupational setting (Deffontaines et al.
2013).

Tackling M. bovis infection at human-animal
interface

Overview

Outbreaks of severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) (Huang et al. 2020), Zika virus (Sikka
et al. 2016) and Middle East respiratory syndrome coro-
navirus (Annan et al. 2015) have raised the awareness of
public health in disease management and surveillance and
also highlighted the important of One Health approach in
tackling zoonotic infections. Zoonotic tuberculosis has long
been recognised. However, the burden of this disease can-
not be fully elucidated without a comprehensive understand-
ing of the multispecies host—pathogen ecosystem (Carruth
et al. 2016). Furthermore, the epidemiology of zoonotic
tuberculosis varies among different geographical regions
and is influenced by a number of determinants, for instance,
human, socio-economic status of countries, livestock and
wildlife populations, environmental conditions and exist-
ing tuberculosis control programme (Marie-France et al.
2009) which further complicates the control of zoonotic
tuberculosis. To prompt a better control over zoonotic tuber-
culosis, a closer look into animal reservoir and the risk of
transmission at animal-human interface is required (Tep-
pawar et al. 2018). Thus, this section discusses on various
approaches being employed in tackling M. bovis infection at
animal-human interface.

Human component and M. bovis infection

A few studies highlighted the society values and human per-
ceptions as well as the role of humans in the control and

management of bovine tuberculosis and zoonotic risk of
M. bovis in humans. From the perspective of public health,
universal pasteurization of milk and eradication programs
in cattle remain the most prominent approaches to prevent
interspecies transmission of M. bovis (Sa’idu et al. 2015).
A retrospective study by Borja et al. (2018) revealed that
although bovine tuberculosis control program has been
implemented in Fiji since 1980, disease reduction and con-
tainment of the infection are not being achieved. The authors
identified various factors attributed to this scenario which
include the relevance of single intradermal test (SID) proto-
col in cattle, inadequate training for staffs to conduct tuber-
culosis testing, lack of movement control of cattle, absence
of standard protocols for data collection and evaluation as
well as the presence of stray cattle. Revision on the control
program by relevant authorities had increased the detection
rates following an apparent bovine tuberculosis outbreak in
some farms, but also raised concerns for the local livestock
industry, in particular serious economic impact on individual
farmers due to loss of cattle. Overall, the study highlighted
the challenges involved in bovine tuberculosis control and
the need for consideration of technical and social aspects
for effective disease control (Borja et al. 2018). In another
study, Meiring et al. (2018) used the implemented strate-
gies employed for human TB control in South Africa as an
example to explain and compare the feasibility of applying
these strategies in bovine tuberculosis control. The authors
explained that the mitigation of human TB incidence in this
high burden country has been accomplished by increas-
ing awareness of tuberculosis in public and antimicrobial
therapy where both elements are lacking for bovine tuber-
culosis. The authors addressed a number of determinants
such as lack of movement restrictions and proper monitoring
of animals, inadequacy of veterinary resources and manda-
tory testing program or bovine tuberculosis, point-of-care
diagnostic testing for cattle and the prevalence of bovine
tuberculosis in wildlife may be responsible for the persis-
tence of disease. The authors suggested that multisector col-
laborations are much needed to control bovine tuberculosis
(Meiring et al. 2018).

A semi-structured interview evaluating the attitude
among farmers and veterinarian in Northern Ireland on
the risk of contracting M. bovis infection depicted that
the risk of M. bovis infection is often downplayed and is
no longer being considered as a public health risk due to
intensive surveillance on farms and pasteurisation of milk
evident by the low-recorded human incidence. Neverthe-
less, the authors highlighted the needs to revise the attitude
and practice by the stakeholders on the occupational and
public health threats of M. bovis infection including devel-
oped nations with ongoing bovine tuberculosis eradication
programmes (Robinson 2019). A study assessing the health
system, policy and dairy farm-level factors which could have
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impact on the zoonotic transmission have been performed in
smallholder peri-urban dairy farms in India (Chauhan et al.
2019). The study focuses on three main themes encompass-
ing knowledge and practices related to bovine tuberculosis,
limited system support for prevention and control of bovine
tuberculosis and lack of effective policies and program-
matic direction in the context of bovine tuberculosis. The
authors highlighted the risky practices of dairy farmers in
diseases transmission and also risky behaviour as a result
of inadequate knowledge and awareness in the presence of
extension services. Furthermore, the authors also reported
that the absence of effective policies and the perception of
stakeholders on bovine tuberculosis remain as significant
barriers in controlling bovine tuberculosis. The authors sug-
gest that these gaps can be addressed through collaborative
research and One Health approaches (Chauhan et al. 2019).

Rahman et al. (2015) pointed out that poor farm biosecu-
rity and poor nutrition are significant management-associ-
ated risk factors of bovine tuberculosis in cattle at farmers’
level (Rahman et al. 2015). A recently published study also
showed the significant association of the positivity of tuber-
culin test with herd management. Farms that have been man-
aged poorly are at 3.6 times greater risk for bovine tubercu-
losis than farms with good management (Kemal et al. 2019).
Similarly, different sources also reported higher bovine
tuberculosis incidence in farms under poor management sta-
tus (Radostits et al. 2006; Tsegaye et al. 2010; Gumi et al.
2011). Good sanitary measures which improve the hygiene
conditions of farms could then prevent the occurrence of
bovine tuberculosis (Kemal et al. 2019). Taken together,
involvement of human component in the control of bovine
tuberculosis and human perceptions such as knowledge, risk
behaviour and practical risk, society values, and perceived
cost—benefits of interventions have great influential power
in disease propagation and disease control and management
(Byrne et al. 2019). The findings from these studies could
serve as baseline data or as recommendations for policy- and
decision-makers to take proper interventions or decisions
in alleviating the impact of bovine tuberculosis on public
health, occupational and veterinary settings.

Modelling approach and M. bovis infection

The application of different types of disease-modelling
approaches of varying complexity in the context of animal
health have been well-implicated in policy development,
design and assessment of surveillance programs and as
predictors of the consequences arising from the introduc-
tion of new diseases and the impact of diseases on control
measurements (Garner and Hamilton 2011; Willeberg et al.
2011a, b). In bovine tuberculosis, various disease models
have been applied to provide estimates on the transmission
rates within- and between-herds (Brooks-Pollock et al. 2014;
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Alvarez et al. 2012; Perez et al. 2002), the latency period
of the disease (Smith et al. 2013a, b; Conlan et al. 2012;
Fischer et al. 2005), the efficacy of the bovine tuberculosis
diagnostic tests (Smith et al. 2013a, b; Conlan et al. 2012;
Fischer et al. 2005), the disease dynamics in wildlife popula-
tions and their contributions to the disease incidence and/
or persistence in livestock (Anderson et al. 2013; Delahay
et al. 2013; Graham et al. 2013) as well as the efficacy of
alternative control approaches in wildlife reservoirs and cat-
tle (Hardstaff et al. 2013; Smith et al. 2013b; Fischer et al.
2005). These distinctive disease models including statistical,
mathematical and simulation modelling enable the elucida-
tion of relationship between different parameters, allowing
the comprehensive analysis of disease transmission dynam-
ics and mechanistic aspects of the disease transmission as
well as providing useful windows on the proper control and
management of M. bovis infection at animal-human-wildlife
interface. For instance, Brooks-Pollock et al. (2014) pre-
sented a dynamic stochastic spatial model which incorpo-
rated within-farm and between-farm transmission for bovine
tuberculosis in Great Britain. The proposed model replicates
the observed yearly increase of infection over time, the
spreading of infection into new regions as well as identifi-
cation of the transmission routes attributed to most of the
newly detected cases which include movement of infected
cattle, poor sensitivity of diagnostic test and reinfection
caused by environmental reservoir, which could have huge
implications on control measures on bovine tuberculosis
(Brooks-Pollock et al. 2014).

A mathematical model which explains the transmis-
sion dynamics of bovine tuberculosis in both cattle and
buffalo populations is established. The study highlighted
the importance to include both cross- infection and con-
taminated environmental transmission routes in the trans-
mission of bovine tuberculosis. Also, simulation analysis
documented that bovine tuberculosis has more detrimental
effect on cattle populations compared to buffalo populations
when all transmission paths are taken into consideration.
Nonetheless, factors such as seasonality, treatment, vertical
transmission route, age classes of both buffalo and cattle
populations and the role of temperature in determining the
survival of M. bovis in the environment should be taken into
account (Phepa et al. 2016). In another study, Brunton and
his colleagues (2018) employed statistical survival models
to study the future risk of cattle herds that contain inconclu-
sive reactor animals to the tuberculin skin test. The authors
demonstrated that significant higher future risk in herds with
inconclusive reactors detected in comparison to those nega-
tive herds, which warrants a careful decision-making when
dealing with the management of inconclusive reactors to
reduce the risk of bovine tuberculosis (Brunton et al. 2018).
Raphaka et al. (2018) had developed a stochastic genetic-
epidemiological model which introduces genetic selection
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in a simulated cattle population to evaluate the impact of
genetic influence for increased bovine tuberculosis resist-
ance on disease prevalence and dynamics in UK. The genetic
model revealed that genetic selection over generations could
substantially reduce the prevalence and severity of bovine
tuberculosis, suggesting that genetic selection could be
another approach that can be utilised to complement the
existing surveillance and management strategies to control
and subsequently eradicate bovine tuberculosis (Raphaka
et al. 2018). Similarly, a study by Tsairidou et al. (2018) via
genetic-epidemiological prediction models and simulation
studies suggested the integration of infectivity into cattle
breeding schemes which could increase and accelerate the
reduction in breakdown risk of bovine tuberculosis than
selection on resistance alone (Tsairidou et al. 2018).
Simulation and mathematical modelling have become
an essential tool for bovine tuberculosis control, especially
where wildlife reservoirs are involved. Different models have
been developed to explore bovine tuberculosis infection and
wildlife reservoirs. A stochastic model is developed to assess
the factors that drive the spreading of bovine tuberculosis
in possum population. It is found that social contact pro-
motes the dissemination of the infection (Barlow 1991). A
spatial stochastic model is used to examine fertility con-
trol as a potential approach to control bovine tuberculosis
in badgers. The study reported that fertility control alone
is unable to completely eradicate bovine tuberculosis from
badger populations in UK. However, it could be effective
if culling is used as part of the integrative strategy (White
et al. 1997). A non-linear transmission comprising of sus-
ceptible and infected possum populations is developed. The
model has been applied to explain the dynamics of bovine
tuberculosis in a heterogenous possum population that taken
into consideration the patchy distribution of the infection
(Barlow 2000). A recently published review by Smith and
Delahay (2018) provided a summary on different badger
bovine tuberculosis models and their roles in supporting
decision-making on controlling bovine tuberculosis in
wildlife. The authors surmised that integration of cattle into
badger tuberculosis models enabled the comparison of the
predicted impacts of various badger management approaches
on the breakdown rates of cattle herds as well as provided an
economic perspective to the control outputs. Also, based on
a cohort of recent models, the authors documented that com-
binatorial strategies which involve management of both host
species (cattle and badger) coupled with vaccination might
be the most effective method to control bovine tuberculosis.
The authors also provided descriptions on how these mod-
els could better reflect the epidemiological and ecological
complexities of the cattle-badger tuberculosis model and the
utilisation of modelling for the management interventions
of bovine tuberculosis. The authors also highlighted how
future data collection can be incorporated into modelling

endeavours and is being optimally utilised by such model
(Smith and Delahay 2018).

Wildlife reservoir and M. bovis

Wildlife animals are considered as maintenance hosts for M.
bovis which include the white-tailed deer in Michigan, USA,
European badger in United Kingdom and Ireland, Australian
brushtail possum in New Zealand (Bengis et al. 2002) and
Eurasian wild boar in the Iberian Penisula, Spain (Naranjo
et al. 2008). Furthermore, African buffalo in South Africa
(de Klerk et al. 2010), red deer in different parts of Europe
(Santos et al. 2015), wapiti and wood bison in Canada (Nishi
et al. 2006) also remain as maintenance hosts responsible
for infection in national parks and hunting estates. These
plethora of maintenance hosts can be the sources of M. bovis
infection for domestic animals and/or in natural parks and
the infection can spill over to infect other unique wildlife
species such as lions, wild dogs, leopard and Iberian lynx
(Buddle et al. 2018). Effective control and eradication of
bovine tuberculosis in domestic animals cannot be accom-
plished without prompt disease control in wildlife reservoir
populations. Partial disease control is attainable in these
maintenance hosts thorough reducing/minimising contact
with livestock, lowering the density of animals or stopping
artificial feeding that could heightened the local densities
of animals (Griffin et al. 2005; O’Brien et al. 2006; Living-
stone et al. 2015). The development and use of vaccine to
control M. bovis infection in wildlife populations are deemed
important to limit the spreading of infection to domestic
livestock. A review by Buddle et al. (2018) proposed that
the adoption of oral Bacillus Calmette Guerin (BCG) vac-
cination could be one of the approaches that can effectively
control and confer protection in wild animals such as Euro-
pean badgers, wild boar, brushtail possums, and deer against
bovine tuberculosis (Buddle et al. 2018). Likewise, another
review by Palmer and Thacker (2018) also documented that
the alleviation of disease severity in deer vaccinated with
human BCG are likely accompanied by reduction in disease
transmission which in turn can diminish the spreading of
M. bovis infection to livestock from wild animals (Palmer
and Thacker 2018). Nevertheless, to optimally utilise BCG
vaccine, it will be imperative for the continuity of field test
BCG vaccine in numerous animal species under different
environments, husbandry systems, varying levels of disease
prevalence and the evaluation of the practicality of differen-
tiate infected from vaccinated animals (DIVA) tests (Buddle
et al. 2018). Besides vaccination, species-specific diagnostic
kits for wildlife are recommended to ease monitoring and to
circumvent the disease from circulating outside of monitored
hosts (Meiring et al. 2018).

Understanding the possible transmission routes of M.
bovis infection between wildlife and domestic animals are
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crucial for disease management. Bouchez-Zacria and his
co-workers (2018) adopted a network modelling approach
to assess the involvement of different types of contact in
the transmission of M. bovis between cattle farms of south-
west France. The authors analysed the empirical network
that consists of cattle farms with known infection status and
molecular types as nodes along with cattle trade data as well
as badger contact networks that built from inferred badger
home ranges as edges. The study demonstrated how both
cattle trade and spatial relationships between cattle farms
together with linkages that related with badger territorial
behaviour could lead to increased risk of contracting M.
bovis infection, highlighting multifactorial M. bovis trans-
mission and also the complexity of multi-host epidemics
(Bouchez-Zacria et al. 2018). In another study, Cosgrove
et al. (2018) used a spatially explicit stochastic simulation
model to interrogate the effects of attractiveness of feed-
ing sites, feed density and spatial and temporal persistence
on the prevalence of bovine tuberculosis in wild deer and
subsequent interspecies transmission in cattle. The study
demonstrated that extended recreational feeding or winter
supplemental feeding is likely enhance bovine tuberculosis
transmission by extending temporal availability. The authors
showed that feeding deer is not just an issue limited to wild-
life managers and hunters, but also for agriculture agencies
and cattle producers as well (Cosgrove et al. 2018).

Brook et al. (2013) suggested that the management
actions to avoid transmission risk of tuberculosis at the
wildlife-livestock interface can be achieved through a “bot-
tom up” approach that concentrates on practical, farm-based
mitigation approaches. Such strategy can be applied on indi-
vidual farm operators, is considerably low cost and is widely
supported by farmers compared to other extreme and con-
troversial alternatives such as wildlife eradication (Brook
et al. 2013). It has undoubtedly changing farm management
could substantially reduce the transmission risk between
livestock and wildlife animals (Brook et al. 2013; Lavelle
et al. 2016; Ribeiro-Lima et al. 2017). The importance of
proper on-farm biosecurity in management of bovine tuber-
culosis has been addressed. VerCauteren and his co-workers
(2018) provide a summary of the history and progress of
research on farm biosecurity undertaken in Michiganto date
and the lessons acquired in managing bovine tuberculosis
The authors also suggested to increase management actions
to combat M. bovis infection in deer that includes vaccina-
tion of wild deer, strategic management habitat manipula-
tions to redistribute deer from farms and precision culling
of deer in proximity to high-risk farms, which could aid in
preventing the transmission of M. bovis from deer to cattle
(VerCauteren et al. 2018). Also, the increased on-farm bios-
ecurity could probably reduce the cattle herd breakdowns
caused by wild deer (Ramsey et al. 2016). Such approach
could serve as a valuable experience sharing which can be
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applied in managing and preventing M. bovis infection in
other wild animals and subsequent interspecies transmission
of the infection to domestic animals.

When human health is being threatened during the trans-
mission of zoonotic diseases, the options for intervention
usually require insights from stakeholders whose discerning
values systems attributed to decision on disease manage-
ment Gormley and Corner (2018) assessed the role of dif-
ferent stakeholder values systems in wildlife interventions
and tuberculosis control and eradication strategies in several
countries. The authors identified that the determinants influ-
encing the consensus on disease management and control
strategies rely on the infected species in concerned (reservoir
status and the society value inferred to each species), ethi-
cal considerations on culling sentient wild animals, types of
interventions being proposed and the concerns on economic
cost—benefit effectiveness. The review also reported that
interventions that are generally being accepted in one region
may not be acceptable in another area, even amongst widely
similar stakeholder groups. Effective control of tuberculosis
warrants identification and long-term engagement with all
crucial stakeholders to reach consensus on ethical frame-
works that emphasize and justify control options, especially
where sacrificing wild animals is concerned (Gormley and
Corner 2018). Using white-tailed deer in USA as a study
model, Cross et al. (2018) adopted the risk information seek-
ing and processing (RISP) model to assess how deer hunters
seek out information on probable human health risks relating
to M. bovis exposure from which could assist managers to
collect data necessary to decision-making on future manage-
ment outcomes. It also enables us to better know how stake-
holders acquire knowledge and their perceptions on disease
management in wildlife. Such RISP model approach could
potentially be applied across a wide spectrum of studies
related to veterinary disease management in future (Cross
et al. 2018).

Potential zoonotic risks to humans from hunting and
wildlife consumption also offer different perspectives. Many
potential zoonotic pathogens are transmitted from wildlife
to humans through wild meat trade (Cantlay et al 2017).
Since the availability of wild meat varies between species,
the chances of contracting zoonotic in humans from the
pathogens are more likely to occur through wildlife trad-
ing as well (Cantlay et al 2017). Also, owing to the wildlife
trade distribution networks which allow regional movement
of animals and cross-species transmission of pathogens from
numerous species of different sources and within the close
proximity between wildlife and humans could be another
concern (Karesh et al. 2007). Therefore, detailed probing
on wildlife trading is needed to prevent the risk of zoonotic
transmission and cross-species infection. A nationwide sur-
veillance system across different geographical regions for M.
bovis testing and transmission data should be established to
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capture the real scenario of bovine tuberculosis in domestic
and wildlife reservoir populations.

Diagnosis challenges of M. bovis at animal-human
interface

In developing countries, the global burden of bovine tuber-
culosis (BTB) among human population is around 10%,
which attributes to 2.1% of pulmonary TB and 9.4% of
extrapulmonary TB cases (Hambolu et al. 2013). Current
diagnosis for human TB focuses on pulmonary diseases
caused by M. tuberculosis while zoonotic TB caused by M.
bovis often results in extrapulmonary diseases which even-
tually result in a slight delay in treatment (Cousins et al.
1989; Carruth et al. 2016; Teppawar et al. 2018). Added to
this, M. bovis is clinically undistinguishable from M. tuber-
culosis along with inconclusive findings using tuberculin
skin test and direct smear microscopy further complicated
the diagnosis and prompt treatment of patients infected with
M. bovis (Centers for Disease Control and Prevention 2016;
WHO 2016; Olea-Popelka et al. 2017). Moreover, in most
developing countries, direct smear microscopy is the only
method to diagnose tuberculosis, where species speciation
is impossible under this circumstance. This will further limit
the collection of diagnostic data for surveillance study and
also impair the efficacy of the treatment. On the other hand,
M. bovis is intrinsically resistant towards pyrazinamide, a
standard first-line anti-TB drug. Without prompt diagnosis
and drug susceptibility testing, patients with zoonotic TB
may receive less effective treatment. Moreover, some M.
bovis strains exhibit resistance to other first-line anti-TB
drugs such as isoniazid and rifamcipin. The resistance to
at least two first-line anti-TB drugs will result in multid-
rug resistance phenomenon, which is an emerging public
health threat globally and poses huge challenges on human
tuberculosis control and treatment (Carruth et al. 2016; Tep-
pawar et al. 2018). Altogether, rapid and affordable molec-
ular diagnostics tools with high sensitivity and specificity
are warranted for the diagnosis of M. bovis infection. In
view on this, the application of omics and high throughput
sequencing technologies may offer undisputable role in the
breakthrough of diagnosis and treatment of M. bovis-related
infection.

In developed countries, bovine tuberculosis control pro-
gram in animals, particularly in cattle has been probed by
test and slaughter procedures, which consist of compara-
tive intradermal tuberculin skin test (CIDT) or intradermal
tuberculin test to identify infected animals, followed by
isolating and immediate slaughter and necropsy to examine
tuberculosis-associated lesions. (Cousins 2001; Wedlock
et al. 2002). A large numbers of low-middle income coun-
tries do implement this kind of policy; however, it is usu-
ally neither being well-executed, nor sufficiently funded to

support the program (Wedlock et al. 2002). Apparently, sus-
picion or surveillance of bovine tuberculosis should not be
proceeded with immediate slaughter and necropsy. A more
attainable way is to test and separate tuberculosis-positive
animals from uninfected animals without immediate kill-
ing. Only under robust diagnostic evidence should post-mor-
tem analysis, culture and species speciation be conducted
to confirm bovine tuberculosis. Invention of non-lethal or
non-invasive diagnostic tools or biomarkers is strongly sug-
gested to overcome this issue. For example, Lorente-Leal
et al. (2019) had developed a real-time PCR assay based on
the mpb70 gene to detect the presence of mycobacteria spe-
cies in clinical bovine tissue specimens. The assay developed
displayed good sensitivity and specificity when compared to
bacteriological culture and could be potentially employed to
detect Mycobacterium tuberculosis complex in animal tis-
sues (Lorente-Leal et al. 2019). A study by Hadi et al. (2018)
had discovered immune complex proteins from M. bovis in
experimentally infected cattle through multidimensional pro-
teomic approach which could be potentially applied to diag-
nose bovine tuberculosis. The authors also suggested ways
to improve the method before validation on larger datasets is
performed (Hadi et al. 2018). Effective bovine tuberculosis
control urges the need to continuously invest and develop
diagnostic tools and control programs that fit all susceptible
M. bovis hosts. Prompt diagnosis and treatment are required
to avoid unnecessary downstream cost, or to prevent any
ongoing disease transmission and propagation. Therefore,
considerable efforts with sustainable investments in the best
diagnostics and interventions programs to implement these
measures are well justified.

Conclusion

Accumulated evidences revealed the threat of M. bovis infec-
tion on public and veterinary health systems. The lack of
public awareness on zoonotic tuberculosis and its conse-
quences is definitely a serious concern and something to
ponder on. Nationwide and global surveillance and report-
ing systems across different countries on bovine tuberculosis
are warranted to reflect the true burden of the disease. Ongo-
ing research into better diagnosis tools helps to accurately
identify the mycobacteria species for prompt treatment or
management in both animals and humans. The growing
risks of occupational exposure to bovine tuberculosis neces-
sitate the collaborations from multi-sectoral to prevent dis-
ease transmission and propagation at animal-human inter-
face. Larger scale studies involving different geographical
regions are recommended to assess the impact of M. bovis
infection and the risk of occupational exposure. Identifica-
tion of specific occupational-related workers/populations
at risk along with proper implementation of preventive
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measures and specific guidelines could aid in disease man-
agement and control of M. bovis infection.
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