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Abstract Wood materials are characterized by complex, hierarchical material structures spanning across var-
ious length scales. The present work aims at establishing a relation between the hygro-elastic properties at
the mesoscopic cellular level and the effective material response at the macroscopic level, both for softwood
(spruce) and hardwood (balsa). The particular aim is to explore the influence on the effective hygro-elastic
properties under variations in the meso-scale morphology. The multi-scale framework applied for this purpose
uses the method of asymptotic homogenization, which allows to accurately and efficiently obtain the effec-
tive response of heterogeneous materials characterized by complex meso-structural geometries. The meso-
structural model considered for softwood is based on a periodic, two-dimensional statistically representative
volume element that is generated by a spatial repetition of tracheid cells. The tracheid cells are modeled as
hexagonal elements characterized by a certain geometrical irregularity. The hardwood meso-structure consists
of a region composed of hexagonal cellular fibers with large vessels embedded, which is connected to a ray
region that is constructed of ray cells. The hardwood fibers are modeled as hexagonal cellular elements, sim-
ilar to softwood tracheids. The rays are represented by quadrilateral cells oriented along the radial direction,
whereby different arrangements are considered, i.e., the ray cells are either regularly stacked or organized as a
staggered configuration. The interface between the fiber and ray regions may also be characterized by a regular
or a staggered arrangement. The meso-structural models for softwood and hardwood are discretized by means
of plane-strain, finite element models, which describe the hygro-elastic response of the wood material in the
radial–tangential plane. For softwood, the sensitivity of the effective elastic and hygro-expansive properties is
explored as a function of the geometrical irregularity of the tracheids. For hardwood, the effective properties
are studied under a variation of the ray cell arrangement, the type of interface between ray and fiber regions,
and the vessel volume fraction. The modeling results agree well with results obtained from other numeri-
cal homogenization studies and show to be in reasonable agreement with experimental data taken from the
literature.

Keywords Softwood · Hardwood · Geometrical and morphological irregularity · Asymptotic homogeniza-
tion · Hygro-mechanical properties

1 Introduction

Wood is a versatile material that has been used throughout the centuries for a wide range of applications,
varying from construction and infrastructure [1] to decoration and art [2]. The hierarchical material structure
of wood involves different length scales, which range from the nano-scale to the macro-scale [3,4]. At the
nano-scale, cellulosemolecules can be identified as shown in Fig. 1a. Thesemolecules are bundled together into
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cellulose micro-fibrils, as shown in Fig. 1b, which are aligned and connected to form fibril aggregates named
macro-fibrils. The macro-fibrils are embedded in a matrix that mainly consists of hemicellulose and lignin, as
shown in Fig. 1c, thereby forming characteristic layers that compose the cell walls. As illustrated in Fig. 1d,
cell walls consist of a primary wall and a secondary wall, whereby the secondary wall is constructed from three
layers, commonly referred to as the S1, S2, and S3 layers. The S2 layer is the thickest of these three layers and
provides the largest contribution to the mechanical properties of wood. The primary wall is connected to the
middle lamella, which bonds together different adjacent wood cells. Wood cells are long and slender hollow
tubes, which are oriented mainly along the axial direction of the stem of a tree. Depending on the wood type,
their location, and their physiological role in the tree, the cells have different sizes and shapes. As shown in
Fig. 1e, at the meso-scale softwood is mainly constructed by one cell type named axial (vertical) tracheids,
which are oriented mostly or exclusively in the axial, or longitudinal, direction. Conversely, the meso-structure
of hardwood is more complex and contains different types of cells. In the axial direction, fibers and axial
parenchyma—which look similar to fibers—can be distinguished; these cells are disrupted by vessels, which
are tubular structures with a relatively large diameter, as shown in Fig. 1f. Hardwood tissue further consists of
ray parenchyma, or rays, which are cellular structures oriented in the radial material direction. At the macro-
scale, the cellular elements along the radial material direction lead to a periodic pattern of concentric rings,
called annual growth rings, as shown in Fig. 1g and h for softwood and hardwood, respectively. Each growth
ring consists of earlywood (light color) and latewood (dark color), whereby latewood is characterized by a
larger cell wall thickness and smaller cell cavities (i.e., lumen) than earlywood.

The hygroscopic nature of wood makes the material relatively sensitive to variations in ambient humidity.
The response of wood to humidity changes is determined by complex interactions between hygro-expansive
phenomena at different length scales and results in dimensional changes and instabilities [8] that may promote
fracture or distortion of the material [9]. For example, recent studies performed onmuseum objects have shown
the presence of moisture-induced cracks and dimensional changes on decorated oak panels in panel paintings
and historical cabinets [10,11]. A detailed modeling of the mechanical, hygro-expansive behavior of wood
in such applications requires the incorporation of the characteristics and diversity of the underlying material
structure and thus should be based on a multi-scale approach. In the literature, most multi-scale models for
wood focus on the mechanical behavior of softwood, thereby considering two-dimensional [4,12–16] and
three-dimensional [17,18] representations of the hierarchical material structure. The length scales included in
these models may range from the scale at which micro-fibrils can be identified to that of the annual growth
rings, whereby the effective material properties are calculated by means of analytical and/or computational
homogenization techniques, see [19] for a comprehensive overview. For example, the hygroscopic response
of softwood has been determined at the macro-scale by applying computational homogenization of a hygro-
expansive, periodic cellular structure, which includes microstructural information such as the geometry of
wood cells, the local material density, and the microfibril angle [20–22]. In addition, several studies consider
the uncertainty in the macroscopic response caused by variations and irregularities in the underlying cell
structure [12,23] or material properties [24]. Due to its relatively complex morphology, to date the multi-
scale modeling of hardwood has only received limited attention. In [4], a two-dimensional multi-scale model
based on the mean field theory is presented for the determination of the elasticity parameters of hardwood,
which includes the low-scale stiffness properties of hemicellulose, amorphous cellulose, crystalline cellulose,
lignin and water, and the meso-scale stiffness contribution of vessels. Furthermore, the effect of ray cells on
the physical properties of hard wood has been investigated by means of several multi-scale approaches, see
[25–28].

The present work aims at predicting the elastic and hygro-expansive properties of both softwood and hard-
wood in the radial–tangential (RT) material plane via a numerical multi-scale approach, thereby particularly
focusing on the effects caused by morphological variations in the mesoscopic cellular structure. The multi-
scale framework applied is based on the asymptotic homogenization method [29,30] and follows the modeling
strategy presented in [31–33]. Asymptotic homogenization applies to heterogeneous materials characterized
by an underlying fine-scale periodic structure. This multi-scale method enables to represent the heteroge-
neous medium as an equivalent homogeneous domain, by calculating the effective material response from
the fine-scale field variables describing the physics problem at hand. For the determination of the elastic and
hygro-expansive properties of wood, the homogenization procedure starts from the assumption that the dis-
placement field satisfying the local equilibrium conditions can be written in terms of an asymptotic expansion.
This asymptotic expansion is subsequently combined with the equilibrium and constitutive equations for an
arbitrary material point within the fine-scale domain. The effective mechanical and hygro-expansive properties
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Fig. 1 Multi-scale structure of wood, indicating the different length scales involved. aMolecular structure of cellulose; b cellulose
micro-fibrils, composed by both crystalline and non-crystalline regions, arranged into a macro-fibril; c a macro-fibril embedded
into a hemicellulose and lignin matrix, forming a primary cell wall; dwood cell wall, consisting of a primary wall and a secondary
wall composed of three layers (S1, S2, and S3). The cellulose micro-fibrils have different orientations in each layer. Adjacent
cells are connected to each other by the middle lamella (not illustrated in the figure). Images a–d reproduced from [5]; e softwood
cellular structure (spruce). Image reproduced from [6]; f hardwood cellular structure (balsa). Image reproduced from [3]; g cross
section of a softwood log (red pine); and h cross section of a hardwood log (red oak). Images g–h adapted from [7]

are obtained numerically by computing with the finite element method the hygro-elastic response of a periodic
unit cell representative of the fine-scale domain.

The current numerical study investigates for softwood and hardwood the relation between the characteristics
at the mesoscopic scale, represented by the cellular structures displayed in Fig. 1e and f and the macroscopic
scale depicted in Fig. 1g and h, respectively. The softwood unit cell is reflected by two-dimensional honeycomb-
like structures composed of hexagonal elements representative of axial tracheid cells. Inspired by earlier works
that explore the effect of geometrical irregularities on the mechanical response of cellular solids [34–37], a
generic geometrical disorder is introduced in the regular softwood structure by shifting the positions of the
vertical cell walls of the honeycombs randomly along the positive and negatives axes of the radial material
direction. The hardwood unit cell includes fibers, vessels, and rays, whereby the fibers are described by
axial hexagonal elements (similar to the softwood tracheids), and the rays are modeled as quadrilateral cells
oriented along the radial material direction of the hardwood. Following the study presented in [28], different
geometrical arrangements of ray cells are analyzed, whereby the ray regions consist either of cells regularly
stacked on top of each other, or of cells stacked in a staggered fashion, with the staggering of rays quantified
by a specific eccentricity parameter. Finally, two types of interfaces are considered between the fiber and ray
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regions, which are representative of regular and staggered connections. In all simulations, at the mesoscopic
scale an orthotropic hygro-elastic constitutive behavior is assumed for the cell wall material. The extension of
the present model toward a multi-scale model accounting for the nonlinear constitutive response of wood cell
walls, which includes the effects of plasticity and fracture, can be performed along the lines of [38] and is a
topic for future work.

After the construction of the mesoscopic models, the macroscopic effective mechanical and hygro-
expansive properties of wood are computed. For this purpose, the size of the mesoscopic unit cell is chosen
to be sufficiently large in order to be statistically representative of the effective material properties of wood
[39–41]. Accordingly, the macro-scale properties computed for softwood and hardwood reveal the influence
of specific geometrical meso-structural features, such as the irregularity of tracheids in softwood, the type of
ray cell configurations in hardwood, the type of interface between ray and cell regions, and the vessel volume
fraction of hardwood. A comparison of the computed material properties with experimental data taken from
the literature illustrates the predictive capability of the present multi-scale approach.

The paper is organized as follows. Section 2 discusses the procedure of constructing mesoscopic unit
cell models for softwood and hardwood. The asymptotic homogenization framework is reviewed in Sect. 3.
The determination of the representative unit cell size and the influence of the irregularity of tracheid cells on
the effective mechanical and hygro-expansive properties of softwood is investigated in Sect. 4. Subsequently,
Sect. 5 illustrates the influence on the effective hygro-elastic properties of hardwoodby the ray cell arrangement,
the type of interface between fiber and ray regions, and the vessel volume fraction. Finally, in Sect. 6 the main
conclusions of the study are summarized.

In the formulation of the model equations, the following notation for tensors and tensor products is
employed: a, a,A, and nA denote, respectively, a scalar, a vector, a second-order tensor, and an nth-order
tensor. Bymaking use of Einstein’s summation convention, vector and tensor operations are defined as follows:
A dyadic product is represented by a⊗b = aib j ei ⊗ e j , and inner products are provided byA ·b = Ai j b j ei ,
A ·B = Ai j B jkei ⊗ ek and A : B = Ai j B jk , with ei , (where i = x, y, z) the unit vectors of a Cartesian basis.

2 Meso-scale models

2.1 Softwood meso-structure

At the meso-scale level, softwood is defined by a cellular structure of which the predominant elements are
tracheid cells [9], as shown in Fig. 1e. Tracheids are slender cells, with the cell length typically beingmore than
100 times larger than the cell width. Across a transverse section, tracheids appear as an irregular cell structure,
which, in addition to hexagonal elements, also may contain collapsed square and/or rectangular elements.
Within a growth ring, the cell structure is characterized by relatively thin walls in earlywood and by thicker
walls in latewood. In addition, ray parenchyma cells are present, which appear as rectangular prisms that are
oriented along the radial material direction of the softwood. The presence of rays may increase the effective
elastic stiffness [42] and reduce the effective hygro-expansion [8] in the radial material direction. Nevertheless,
since the volume fraction of rays in softwood commonly is small, they are neglected in the present modeling
approach. This is also the case for other types of cells of which the volume fraction is small, such as axial
parenchyma cells and resin canal complexes.

The mesoscopic model of softwood is based on a unit cell with a honeycomb-like configuration representa-
tive of the tracheid cell structure. The reference geometry is chosen as an ideally regular honeycomb structure
consisting of a periodic repetition of hexagonal elements, as illustrated in Fig. 2a. The x- and y-axes of the
Cartesian coordinate system used in this figure are aligned with the radial (R) and the tangential (T ) material
directions of the softwood, respectively.

The lengths of the inclined and vertical cell walls of the reference honeycomb geometry are designated
by � and h, respectively. The cell wall angle θ defines the slope of an inclined cell wall, in accordance with
θ = arctan(�y/�x ), where �x and �y are the horizontal and vertical projections of the inclined cell wall,
respectively. The cell walls have a thickness t , which in the simulations is adjusted to achieve the desired
porosity φ of the honeycomb meso-structure. For an ideally regular honeycomb meso-structure, the effective
macroscopic response of softwood can be derived from the response of a single hexagonal element. However,
when introducing irregularities in the honeycombmeso-structure, a larger unit cellmust be used. This unit cell is
constructed by including a sequence of compatible, irregular hexagonal elements along the radial and tangential
material directions, such that a rectangular L × H unit cell is obtained, with L = 2n�x and H = n(h + �y), as
shown in Fig. 2b. Note that the integer n indicates the number of repetitions of the hexagonal element along
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(c)(b)(a)

Fig. 2 Softwood meso-scale configuration. a Reference geometry represented by a regular hexagonal honeycomb configuration;
b comparison of regular (black lines) and irregular (purple lines) meso-scale unit cells; c irregular meso-scale unit cell. The unit
cell is here constructed by first repeating a set of n = 8 regular hexagonal configurations, followed by shifting the positions of
the vertical walls of the hexagonal cells randomly along the positive and negatives axes of the radial material direction using an
irregularity factor kir = 0.75, see Eq. (1)

the radial direction, which should be chosen sufficiently large for the unit cell to be statistically representative
of the underlying, irregular meso-structure.

A geometrical irregularity is introduced in the reference geometry by shifting the positions of the vertical
walls of the hexagonal cells across a specific horizontal distance δfib in either the positive or negative x-
direction. In order to avoid overlap with adjacent vertical cell walls, the horizontal shift has a maximum value
of lx/2, in accordance with its dimensionless form

kir = 2δfib
lx

with 0 ≤ kir ≤ 1. (1)

The positive or negative direction of the horizontal shift kir of an individual vertical cell wall is obtained
through a multiplication by an integer value that is randomly chosen as either −1 or 1. An example of the
irregular mesoscopic structure obtained with this procedure is illustrated in Fig. 2c, which is considered to be
representative of the cellular morphologies commonly observed in the softwood spruce, as shown in Fig. 1e.
The irregular honeycomb cell structure depicted in Fig. 2c is composed by choosing n = 8 hexagonal elements
along the radial material direction and an irregularity factor of kir = 0.75.

2.2 Hardwood meso-structure

The meso-structure of hardwood is more complex than that of softwood and consists of an arrangement of
three different types of cells, i.e., fibers, rays, and axial parenchyma, which are disrupted by vessels [9]. Fibers
are long cellular elements that are oriented in the axial direction of the stem of a tree, and serve to provide
mechanical resistance. Conversely, rays are prismatic cells that are oriented along the radial direction of the
growth rings. In hardwood, the volume fraction of ray cells is considerable, such that their presence has a
significant influence on the effective macro-scale material properties [3,10]. Furthermore, axial parenchyma
cells are characterized by a size and shape similar to ray parenchyma cells. They are, however, oriented
vertically and piled on top of each other, forming a parenchyma strand. Finally, vessels have the function of
conducting water in hardwood; they appear as tubular structures with a diameter that is larger than that of
fibers and parenchyma cells. In the axial direction, vessels are much shorter than fibers, and in the transition
from earlywood to latewood, they can be organized in different patterns.

The proposed meso-structural model for hardwood includes the three main elements, which are the fibers,
rays, and vessels. In the model description, the axial parenchyma cells are considered as fibers, with a similar
hexagonal cell structure. The fiber region is constructed by following the same procedure as employed for the
softwood tracheids, see Sect. 2.1. The reference element representing a hardwood fiber consists of a hexagonal
honeycomb, which is characterized by the cell wall lengths � and h, cell wall thickness t , and cell wall angle
θ , as defined in Sect. 2.1 and illustrated in Fig. 2a. With this reference element, the fiber region is constructed
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by copying the hexagons multiple times along the radial and tangential material directions, respectively, as
shown in Fig. 3a.

In the fiber region, one (or more) vessel(s) can be introduced. The procedure of generating a vessel follows
an approach based on the level set method [43,44]. Accordingly, consider a fiber region Qf consisting of a
sequence of (regular or irregular) hexagonal elements, as described above. A vessel is idealized as an elliptical
void with major and minor ellipse axes D and d , respectively. The vessel domain is referred to as V and its
boundary as ∂V . The boundary of the vessel ∂V can be expressed as the zero level set of a function φ(x), i.e.,

∂V = {x ∈ Qf : φ(x) = 0} . (2)

In particular, the function φ(x) is selected as the signed distance function, whereby honeycomb corner nodes
located inside the vessel, x ∈ V , are characterized by a negative function value, φ(x) < 0, and honeycomb
corner nodes located outside the vessel, x ∈ Qf/V , are characterized by a positive function value, φ(x) > 0.
Accordingly, for a vessel with specific dimensions D and d the corresponding level set function is defined and,
for each hexagonal element in the fiber domain Qf , it is checked whether the corner nodes lie inside or outside
the vessel domain. Subsequently, the nodes located inside the vessel domain are discarded, and the intersection
points between the zero level set and the existing cell walls are connected by straight lines that form the vessel
boundary. Figure 3b illustrates an example of a vessel generated within the hexagonal honeycomb domain.
The green ellipse represents the ideal boundary of the vessel with φ(x) = 0, and the red dots indicate the nodes
inside the vessel domain φ(x) < 0, which are eliminated from the model. The final vessel boundary obtained
with this procedure virtually coincides with the green ellipse in Fig. 3b.

As further illustrated in Fig. 3a, the fiber region is connected to ray parenchyma, which are idealized as
quadrilateral cells with relatively thin cell walls. In fact, a ray cell can be seen as the limit configuration of a
honeycomb cell with a cell wall angle equal to zero, θ = 0. The geometrical features of a quadrilateral ray
cell are described by the cell wall lengths �ray and hray in the radial and tangential directions, respectively, and
by the cell wall thickness tray. For simplicity, it is assumed that in the radial direction the cell wall length �ray
of a ray relates to that of the honeycomb element as �ray = 2�x . The ray cell region is generated by repeating
the quadrilateral cell in the radial and tangential material directions. In accordance with ray cell morphologies
observed in real hardwood meso-structures, as shown in Fig. 1f, the rays cells are generated by either stacking
layers of cells ideally on the top each other, as shown in Fig. 3c, or by stacking layers of cells through applying
a specific horizontal shift δray (in the positive x-direction) across each layer, leading to a so-called staggered
configuration, as shown in Fig. 3d. This horizontal shift is quantified by means of a ray eccentricity parameter
e as

e = 2δray
�ray

with 0 ≤ e ≤ 1 . (3)

If δray = 0, then e = 0, by which the regular ray configuration in Fig. 3c is retrieved. In contrast, if δray is
equal to the cell wall length of the honeycomb structure in the radial direction, δray = �x , the eccentricity
parameter becomes e = 1, and an ideally staggered configuration is obtained, as shown in Fig. 3e. These two
configurations have also been studied in [28].

The interface between the fiber region and the ray region is characterized by a specific geometry that may
influence the effective material response of hardwood. The vertical cell walls of the fibers can be either aligned
with those of the rays, which results in a regular interface, as shown in Fig. 3f, or they can be shifted, leading
to a staggered interface, as shown in Fig. 3g.

Based on the features described above, the rectangular, periodic unit cell for hardwood has a size L × H ,
where L = 2nx�x = nx�ray and H = (ny + 1)h + ny�y + ny,rayhray, where nx and ny are integer values
denoting the repetitions of the fiber structure along the radial and tangential material directions, respectively,
and ny,ray is the number of ray cells in the tangential material direction. An example of ameso-structural model
for hardwood is depicted in Fig. 3a, showing a regular fiber region (with nx = 36 and ny = 12) containing a
single vessel, which is connected to a regular ray region (with ny,ray = 6) via a regular interface. Note that
this meso-structure shows similarities with the meso-structure typically observed for the hardwood balsa, as
illustrated in Fig. 1f.

2.3 Hygro-elastic properties of cell walls

Wood cell walls consist of individual cell wall layers, which are composed of cellulose micro-fibrils embedded
within a lignin andhemicellulosematrix.The cellwall layers are considered to beorthotropic andhomogeneous,
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in correspondence with other modeling studies on wood [23,28]. Since the size of the cell walls in the out-
of-plane, longitudinal direction is much larger than in the in-plane length and thickness directions, for the
determination of the in-plane hygro-elastic response of the wood meso-structure it is reasonable to assume
plane-strain conditions in the longitudinal direction of the cell wall. Accordingly, the in-plane hygro-elastic
constitutive properties in a plane-strainmaterial point of the cell wall are defined by the orthotropic fourth-order
compliance tensor 4Scw and the second-order hygro-expansion tensor βcw as

4Scw =
(

1

E1
− E3

ν213

E2
1

)
e1 ⊗ e1 ⊗ e1 ⊗ e1 −

(
ν12

E1
+ E3

ν13ν23

E1E2

)
e1 ⊗ e1 ⊗ e2 ⊗ e2

−
(

ν12

E1
+ E3

ν13ν23

E1E2

)
e2 ⊗ e2 ⊗ e1 ⊗ e1 +

(
1

E2
− E3

ν223

E2
2

)
e2 ⊗ e2 ⊗ e2 ⊗ e2

+ 1

G12
e1 ⊗ e2 ⊗ e1 ⊗ e2 ,

βcw = β1e1 ⊗ e1 + β2e2 ⊗ e2 ,

(4)

whereby the compliance tensor 4Scw relates to the stiffness tensor 4Ccw via the common relation 4Scw =(
4Ccw

)−1
. The elastic moduli, Poisson’s ratios, and hygro-expansion coefficients appearing in equations (4)

refer to a local Cartesian coordinate system defined along the principal material directions j = 1, 2, 3 of the
cell wall, which are aligned parallel to the cell wall, perpendicular to the cell wall, and in the longitudinal
direction of the cell wall, respectively. Note further that Eq. (4) is constructed by using the symmetry condition
νkl E

−1
k = νlk E

−1
l , with k, l ∈ {1, 2, 3}. The local constitutive tensors given by relations (4) are transformed

to the global Cartesian coordinate system x = (x, y), with the x- and y-axes oriented along the radial and
the tangential material directions of wood, respectively. This is done by applying the usual operations for a
coordinate transformation, which results in the stiffness tensor 4C(x) and the hygro-expansion tensor β(x) that
characterize the local response of wood in each material point x of its meso-structure. The elastic properties of
wood correspond to specific, representative values of the moisture content, which here are equal to 12% and
6% for the softwood spruce and hardwood balsa, respectively. The analysis of the effect of the variation of the
moisture content on the hygro-elastic stiffness properties of wood is a topic for future work, see also [28,45].

3 Multi-scale modeling approach

Consider a two-dimensional macroscopic domain Ω constructed of a periodic repetition of a heterogeneous
meso-structural unit-cell Q, as illustrated in Fig. 4. The macroscopic and mesoscopic domains are associated
with the characteristic lengths L and L = ηL, respectively. In the hypothesis of a strong separation between
the two length scales, i.e., η � 1, the mechanical field variables governing the hygro-elastic problem (dis-
placement, strain, stress) can be assumed to vary smoothly at the macro-scale, while being periodic at the
meso-scale. Consequently, the mechanical quantities may be considered as explicit functions of two variables,
namely a slow macroscopic variable X = (X, Y ) and a fast mesoscopic variable x = (x, y), which are related
as x = X/η. In addition, the moisture content varies smoothly at the macro-scale but is assumed to be uniform
at the meso-scale, so that it only depends on the macroscopic variable X. The asymptotic homogenization
framework used for computing the effective, macroscopic properties from the hygro-elastic response of the
meso-scale cellular wood structure is summarized below and follows the formulation presented in [31–33].

Under the application of a macroscopic mechanical load and/or moisture content variation, the governing
equilibrium equation for a local material point—under the absence of body forces—reads

∇ · σ = 0 , (5)

with ∇· the divergence operator and σ the Cauchy stress tensor that satisfies the hygro-elastic constitutive
relation

σ(X) = 4C(x) : (∇u(X) − β(x) �χ(X)). (6)

Here, u(X) andχ(X) denote the displacement field andmoisture content field, respectively, and∇ indicates the
gradient operator. The response at the macro-scale depends on the material characteristics at the underlying
meso-scale and therefore is described by local constitutive tensors that are periodic functions of the fast
mesoscopic variable x. As illustrated by Eq. (6), the relevant constitutive tensors are the fourth-order elasticity
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Macro-scale

Meso-scale

Ω

ℒ

= ℒ

Fig. 4 Macroscopic domain and underlying periodic meso-structure

tensor 4C(x) and the second-order hygro-expansion tensor β(x). In addition,β(x)�χ(X) represents the hygro-
expansive strain, as induced by a change in moisture content �χ = χ − χr, with χr a reference moisture
content value. Substituting Eq. (6) into Eq. (5) results in a set of differential equations that are functions
of the displacement field at the mesoscopic level. However, the solution of these equations over the full
macroscopic domain  is computationally expensive; moreover, the computed values of the local meso-
structural displacement field and moisture content field are often too detailed to be of practical use. Instead,
the method of asymptotic homogenization assumes that the heterogeneous domain with rapidly oscillating
material properties 4C(x) and β(x) can be replaced by an equivalent homogeneous domain with effective
material properties, which are calculated by an averaging procedure [30,31,33]. Accordingly, the displacement
field u(X) is expressed by means of an asymptotic expansion in terms of η, i.e.,

u(X) = u0(X) + ηu1(X,X/η) + η2u2(X,X/η) + · · · , (7)

while the moisture content field, which is uniform at the meso-scale, is defined as

χ(X) = χ0(X). (8)

The averaging procedure departs from substituting Eqs. (7) and (8) into Eq. (6), followed by inserting the result
into relation (5). This leads to the definition of two sets of mathematical problems. The first mathematical
problem allows to calculate the influence functions 3N1(x) and b1(x) as the periodic solutions of the following
two boundary-value problems, termed unit cell problems [31]

∇x · (4C(x) : (∇x
3N1(x) + 4IS)) = 30 , (9)

∇x · (4C(x) : (∇xb1(x) − β(x))) = 0 , (10)

where 4IS is the fourth-order symmetric identity tensor, defined as I Si jkl = (δilδ jk + δikδ jl)/2, with δi j the
Kronecker delta symbol and ∇x is the gradient operator referring to the fast meso-scale variable x. The
influence functions 3N1 and b1 represent the periodic, meso-scale fluctuations of the displacement field within
the meso-scale structure, due to a variation of the macro-scale strain field ∇u0 and moisture content field χ0,
respectively.

The unit cell problems are completed by imposing periodic boundary conditions in terms of the (unknown)
fields 3N1(x) and b1(x), which require the values assumed by each influence function at corresponding points
on opposite boundaries (left and right; top and bottom) to be equal. Finally, for warranting uniqueness of the
solution, the average of the influence functions across the meso-structural domain Q is required to vanish, i.e.,

1

|Q|
∫
Q

3N1(x)dQ = 30 , (11)
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Table 1 Material density and geometrical properties selected for the regular hexagonal honeycomb configuration representing
the meso-structure of softwood

Density Porosity Inclined cell wall length Vertical cell wall length Cell wall Thickness Cell wall angle
ρ (kg/m3) φ (–) � (μm) h (μm) t (μm) θ (◦)

1 296 0.80 10.0 13.9 2.0 15
2 470 0.68 10.0 13.9 3.3 15
3 620 0.58 10.0 13.9 4.5 15

The selected values are based on [13,20,23,46,47] and are representative of spruce

1

|Q|
∫
Q
b1(x)dQ = 0 . (12)

The second mathematical problem describes the average response of the meso-structural domain via the
effective properties representative of an equivalent homogeneous domain at the macro-scale. Correspondingly,
the effective elastic stiffness 4C̄ and hygro-expansion tensor β̄ are calculated as [31]

4C̄ = 1

|Q|
∫
Q

4C(x) : (∇x
3N1(x) + 4IS)dQ , (13)

β̄ = 1

|Q|
4C̄−1 :

∫
Q

4C(x) : (β(x) − ∇xb1(x))dQ . (14)

To compute the effective hygro-elastic constants 4C̄ and β̄, the unit cell problems (9) and (10) are first solved
numerically for a given meso-structural geometry, followed by substituting the solutions for 3N1(x) and b1(x)
into Eqs. (13) and (14). The meso-structural geometry is discretized by using a finite element method model
consisting of four-node, plane-strain quadrilateral elements. Depending on the size of the meso-structural
domain, the number of elements employed in the numerical simulations ranges between 8×105 and 15×105.
A mesh convergence study was performed to guarantee that the adopted mesh size is sufficiently small to
provide homogenized hygro-elastic properties that are independent of the mesh size. For more details on the
derivation of the effective properties, the solution of the cell problems, and the numerical implementation of
the asymptotic homogenization method, the reader is referred to [30–33].

4 Effective hygro-elastic properties of softwood

4.1 Geometrical features and material parameters

The ranges selected for the meso-scale geometrical and material parameters that serve as input for the com-
putation of the effective macro-scale properties of softwood are based on several sources in the literature
[13,20,23,46,47], and are representative of spruce, as shown in Fig. 1e. Three different wood densities are
selected, ρ = [296, 470, 620] kg/m3, with the lowest and highest values reflecting earlywood and latewood
spruce, respectively, and the intermediate value characteristic of the transition regime from earlywood to late-
wood spruce. Adopting a cell wall density of ρcw = 1470 kg/m3[46], the selected wood densities relate to the
set of porosities φ = 1−ρ/ρcw = [0.80, 0.68, 0.58], respectively. The meso-scale configurations correspond-
ing to these porosities are characterized by the same value of the cell wall lengths, � = 10.0μm, h = 13.9μm,
and cell wall angle θ = 15◦[23]. From the set of porosities, the corresponding cell wall thicknesses are cal-
culated as t = [2.0, 3.3, 4.5] μm, which are indeed representative of cell wall thicknesses observed in the
range of earlywood to latewood spruce [47]. As visualized in Fig. 2, the influence of disorder of the meso-
structural morphology on the macro-scale hygro-elastic properties is investigated by varying the irregularity
factor as kir = [0, 0.25, 0.5, 0.75, 1]. The values of the densities and geometrical parameters are summarized in
Table 1.

The cell walls of spruce are characterized by orthotropic hygro-elastic properties, in accordance with
relation (4). The elasticity parameters adopted in Eq. (4) are taken from [13]. In specific, the elastic moduli
parallel to the cell wall, perpendicular to the cell wall, and in the longitudinal direction of the cell wall, are
E1 = 7.02 GPa, E2 = 4.36 GPa, and E3 = 33.20 GPa, respectively, the in-plane shear modulus isG12 = 1.18
GPa, and the Poisson’s ratios are ν12 = 0.649, ν13 = 0.112, and ν23 = 0.023. Further, as indicated by the
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Table 2 Elastic and hygro-expansive properties of the cell walls characterizing the meso-scale structure of spruce, taken from
[13] and [23], respectively

Elastic modulus Poisson’s ratio Shear modulus Hygro-expansion coefficient
(GPa) (–) (GPa) (–)

E1 E2 E3 ν12 ν13 ν23 G12 β1 β2
7.02 4.36 33.20 0.649 0.112 0.023 1.18 0.06 0.60

The principal directions j = 1, 2, 3 are aligned parallel to the cell wall, perpendicular to the cell wall, and in the longitudinal
direction of the cell wall, respectively

experiments reported in [23], the swelling coefficients of spruce at the mesoscopic level show a large scatter
in value and also may vary substantially with the cell wall thickness. For simplicity, in the present study the
hygro-expansion coefficients in the direction parallel and perpendicular to the cell wall are assumed to be
constant and equal to β1 = 0.06 and β2 = 0.60, respectively; these values account for the experimental
observation that the swelling parallel to the cell wall may be about an order of magnitude lower than in the
thickness direction of the cell wall [23]. The hygro-elastic properties are summarized in Table 2.

4.2 Determination of the representative unit cell size

In order to obtain statistically representative information from the meso-structural analyses, the appropriate
size of the mesoscopic unit cell needs to be determined first. The appropriate size of the unit cell is established
from the convergence behavior of the effective elastic and hygro-expansive properties under increasing cell
size, whereby the properties are calculated as a statistical average over 20 meso-structural realizations. This
statistical volume element method typically leads to a considerably smaller unit cell size compared to when
the effective properties are obtained from a single, representative volume element [40,41]. Analogous to the
meso-scale hygro-elastic properties given by Eq. (4), the effective plane-strain hygro-elastic properties at the
macro-scale satisfy the relations

4S̄ =
(

1

Ēx
− Ēz

ν̄2xz

Ē2
x

)
ex ⊗ ex ⊗ ex ⊗ ex +

(
ν̄xy

Ēx
− Ēz

ν̄xz ν̄yz

Ēx Ēy

)
ex ⊗ ex ⊗ ey ⊗ ey

+
(

ν̄xy

Ēx
− Ēz

ν̄xz ν̄yz

Ēx Ēy

)
ey ⊗ ey ⊗ ex ⊗ ex +

(
1

Ēy
− Ēz

ν̄2yz

Ē2
y

)
ey ⊗ ey ⊗ ey ⊗ ey

+ 1

Gxy
ex ⊗ ey ⊗ ex ⊗ ey ,

(15)

with the x- and y- and z-directions reflecting the radial (R), tangential (T) and longitudinal (L) material
directions of wood. Equation (15) shows that the in-plane stiffness properties S̄xxxx , S̄yyyy, S̄xxyy , and S̄yyxx
are dependent on the out-of-plane elastic modulus Ēz and Poisson’s ratios ν̄xz and ν̄yz . For spruce softwood,
however, the values experimentally measured for ν̄xz and ν̄yz are typically very small and lie between 0.014
and 0.035 [6,20,48,49]. Using the Poisson’s ratios for spruce provided in [20], together with the reported
values of the stiffness moduli, shows that the magnitude of the second term of the compliance components
S̄xxxx , S̄xxyy , and S̄yyyy is less than 2.5% of that of the first term. For balsa hardwood, the experimental values
for ν̄xz and ν̄yz are scarce; in [50], these parameters were measured as 0.014 and 0.011, respectively, which, in
combination with the reported stiffness moduli, makes that the magnitude of the second term of the compliance
components S̄xxxx , S̄xxyy , and S̄yyyy is less than 2.1% of that of the first term. Consequently, in the forthcoming
analyses on softwood and hardwood, the stiffness moduli in the radial and tangential material directions can
be approximated with sufficient accuracy as ĒR = Ēx ≈ S̄−1

xxxx and ĒT = Ēy ≈ S̄−1
yyyy , respectively, and the

in-plane Poisson’s ratio may be subsequently determined as ν̄xy ≈ Ēx S̄xxyy .
The apparent stiffness moduli ĒR and ĒT following from the asymptotic homogenization procedure of

spruce softwood are plotted in Fig. 5a and b, respectively, as a function of the dimensionless cell size n =
L/(2�x ), with the parameter n representing the number of hexagonal elements along the radial material
direction, as shown in Fig. 2. Further, Fig. 6a and b illustrate the convergence behavior of the effective hygro-
expansion coefficients β̄R = β̄x and β̄T = β̄y in the radial and tangential material directions, respectively. The
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Fig. 5 Convergence behavior of the effective, macro-scale stiffness properties under a varying size of the meso-scale unit cell for
softwood. a Effective elastic modulus ĒR in the radial direction, and b effective elastic modulus ĒT in the tangential direction,
as a function of dimensionless cell size L/(2�x ) of a disordered meso-structural geometry with irregularity factor kir = 1. The
effective properties are computed by averaging the responses of 20 meso-structural realizations; the confidence bars represent
the range of values calculated from the individual meso-structural realizations

results are computed for the maximum value of the irregularity factor, kir = 1, see Eq. (1), which provides the
largest, and thus most critical size of the statistical volume element. The confidence bars used for plotting the
results represent the scatter in values following from the 20 individual meso-structural simulations. Further,
the average values are depicted by the red dotted lines for a density ρ = 292 kg/m3, by the blue dashed lines
for ρ = 470 kg/m3 and by the black solid lines for ρ = 620 kg/m3. Figure 5 shows that the elastic modulus ĒR
in the radial direction is more than two times larger than the elastic modulus ĒT in the tangential direction, and
that both stiffnesses increase with increasing density. The effective hygro-expansion coefficients illustrated in
Fig. 6 also increase with density, with the value in the transverse direction being about 1.5 times larger than in
the radial direction. It can be clearly observed that all curves asymptote to a limit value under an increasing
(normalized) cell size L/(2�x ). Further, the scatter in values decreases with increasing L/(2�x ), which may
be ascribed to the fact that a larger unit cell contains more statistical information. An effective property is
assumed to be converged if the relative difference with the corresponding asymptotic limit is less than 2%. For
both the effective elastic moduli and the hygro-expansion coefficients, this requirement is met for a relatively
small cell size of L/(2�x ) ≥ 20. Based on this result, in the forthcoming analyses on softwood the length of
the statistically representative mesoscopic unit cell depicted in Fig. 2 is set as L = 40�x , which leads to a
corresponding height of H = 20(h + ly).

4.3 Influence of morphological irregularities on effective properties

The influence of morphological irregularities on the effective hygro-elastic properties of softwood is next
investigated. Figure 7a–d shows the effective elastic modulus ĒR in the radial direction, the effective elastic
modulus ĒT in the tangential direction, the in-plane Poisson’s ratio ν̄RT, and the in-plane shear modulus ḠRT,
respectively, all as a function of the irregularity factor kir given by Eq. (1). The modeling results refer to
20 meso-structural realizations. The elastic moduli ĒR and ĒT computed for spruce wood with a regular
honeycomb structure, kir = 0, turn out to be in good agreement with the results following from the multi-scale
analysis presented in [23], as computed by a different computational homogenization method; in specific, for
the common density value of ρ = 470 kg/m3 the stiffness values show a relative difference of less than 5%. In
addition, the scatter in the results is generally larger for a greater meso-structural disorder, as reflected by an
increasing value of the irregularity factor kir . The elastic moduli ĒR and ĒT are approximately constant over a
large range of values of the irregularity factor kir and only show a slight increase when the irregularity factor
reaches unity. In contrast, the Poisson’s ratio ν̄RT substantially decreases when the meso-structural disorder
becomes larger. Further, the shear modulus ḠRT only decreases significantly with increasing kir for the highest
and intermediate density values; for the lowest density value, it remains approximately constant. Note further
that the values calculated for the Poisson’s ratio ν̄RT appear to be relatively large, especially for low-density
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Fig. 6 Convergence behavior of the effective, macro-scale hygro-expansion properties under a varying size of the meso-scale unit
cell for softwood. a Effective hygro-expansion coefficient β̄R in the radial direction, and b effective hygro-expansion coefficient
β̄T in the tangential direction, as a function of dimensionless cell size L/(2�x ) of a disordered meso-structural geometry with
irregularity factor kir = 1. The effective properties are computed by averaging the responses of 20 meso-structural realizations;
the confidence bars represent the range of values calculated from the individual meso-structural realizations

wood. It has been verified, however, that the corresponding effective stiffness tensor unconditionally has
positive eigenvalues and thus is positive definite, by which elastic stability is guaranteed.

The influence of morphological irregularities on the effective hygro-expansion coefficients β̄R and β̄T is
illustrated in Fig. 8a and b, respectively. Again, the values computed for sprucewoodwith a regular honeycomb
structure, kir = 0, are in good agreement with the values presented in [23]. Further, the radial hygro-expansion
coefficient β̄R increases with increasing irregularity factor, as shown in Fig. 8a, while the tangential hygro-
expansion coefficient decreases, as shown in Fig. 8b.

The effective stiffness properties corresponding to spruce wood with a meso-structural density ρ = 470
kg/m3 are finally compared with experimental data obtained from the literature. In the numerical model, the
intermediate density value of ρ = 470 kg/m3 is representative of a spruce meso-structure in the transition
regime between earlywood and latewood and thus may be assumed to reflect the average macro-scale behavior
of spruce that includes contributions of both earlywood and latewood. The experimental data presented in Table
3 have been taken from various references [6,51–54] and relate to spruce with a similar density as used in the
numerical simulations. Table 3 shows for each macro-scale stiffness parameter the average values computed
from meso-structures ranging from ideally regular (kir = 0) to maximally irregular (kir = 1). Despite the
large variations in the experimental data, the ranges predicted for the radial elastic modulus ĒR, the Poisson’s
ratio ν̄TR, and the shear modulus ḠRT are in reasonable agreement with the corresponding experimental
values. Conversely, the predictions for the transverse elastic modulus ĒT and the Poisson’s ratio ν̄RT seem
to, respectively, underestimate and overestimate the experimental values. On overall, the experimental data
reported in [54] show to give the best match with the modeling results.

Comparable differences with experimental results have been reported in other multi-scale modeling studies
of wood [23,28] and are likely to be governed by differences in the values of the cell wall stiffness moduli
adopted in the model and those of the experimental specimens. An additional reason for this discrepancy may
be that the model is a simplification of the real meso-scale structure of softwood, whereby local meso-scale
features, such as the presence of rays, structural differences in earlywood and latewood, and bordered pits, are
ignored. It should be further mentioned that the spread in the experimental stiffness values listed in Table 3 is
typical of wood and may originate from various aspects referring to the heterogeneous, biological character
of the material, such as variations in cell size, the fact that cell walls are not ideally orthotropic, variations in
moisture content, the possible use of a number of test samples that is too low for reaching statistical significance,
and the possible application of tangential specimens for which the growth rings are not arranged ideally parallel
to the load direction over the complete specimen length [6,28].
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Fig. 7 Effective macro-scale stiffness properties for softwood (spruce) with different densities as a function of the meso-scale
irregularity factor kir given by Eq. (1). a Effective stiffness modulus ĒR in the radial direction; b effective stiffness modulus
ĒT in the tangential direction; c effective in-plane Poisson’s ratio ν̄RT; d effective in-plane shear modulus ḠRT. The effective
properties are computed by averaging the responses of 20 meso-structural realizations; the confidence bars represent the range
of values calculated from the individual meso-structural realizations

Table 3 Elastic properties of spruce with a density ρ ≈ 470 kg/m3, as obtained by the numerical model and experiments

Elastic modulus Poisson’s ratio Shear modulus
(GPa) (–) (GPa)

ĒR ĒT ν̄RT ν̄TR ḠRT
Modeling results 0.820–0.952 0.302–0.361 0.720–0.981 0.273–0.368 0.043–0.058
Experimental data
Keunecke et al. (2008) [6] 0.625 0.397 0.48 0.21 0.053
Neuhaus (1981) [54] 0.818 0.420 0.60 0.31 0.042
Wommelsdorff (1966) [53] 0.980 0.429 0.59 0.26 –
Krabbe (1960) [52] 1.11 0.43 – – 0.036
Hörig (1933) [51] 0.699 0.400 0.42 0.24 0.037

The range of values following from the numerical model relates to the complete range of the irregularity factor, kir ∈ [0, 1], as
depicted in Fig. 7 (blue dashed line), with the bounds representing the minimum en maximum average values of the stiffness
parameter. The experimental data have been taken from [6,51–54]. Note that the elastic parameters computed by the numerical
model satisfy the symmetry condition ν̄RT Ē

−1
R = ν̄TR Ē

−1
T
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Fig. 8 Effective macro-scale hygro-expansion properties for softwood (spruce) with different densities as a function of the meso-
scale irregularity factor kir given by Eq. (1). (a) Effective hygro-expansion coefficient β̄R in the radial direction; (b) effective
hygro-expansion coefficient β̄T in the tangential direction. The effective properties are computed by averaging the responses of
20 meso-structural realizations; the confidence bars represent the range of values calculated from the individual meso-structural
realizations

5 Effective hygro-elastic properties of hardwood

5.1 Geometrical features and material parameters

The volume fractions of the fiber, vessel and ray regions, and the material parameters adopted for the mod-
eling of hardwood refer to balsa and are based on the data reported in [3,28]. Several meso-structural con-
figurations are considered, which are representative of densities ranging from low-density to high-density
balsa, with the specific values selected as ρ = [79, 135, 161, 205, 288, 369] kg/m3. Using a cell wall density
ρcw = 1469 kg/m3 [3], the corresponding porosities are φ = 1−ρ/ρcw = [0.95, 0.91, 0.89, 0.86, 0.80, 0.75],
respectively. The total volume fractions of the fiber region and ray region are equal to 0.80 and 0.20, respec-
tively, see also [28]. In the fiber region, the fiber cross sections in balsa are approximated by an ideally
hexagonal shape, as shown in Fig. 3, in correspondence with a regular honeycomb structure with kir = 0.
It is noted that this assumption was also taken in [28]. The cell wall angle is set to θ = 30◦, and the cell
wall thickness is taken t = 0.9 μm. The vertical and inclined cell walls are assumed to have the same
length, with their specific value being varied such that the wood densities selected above are matched, i.e.,
� = h = [20, 10, 8, 6, 4, 3] μm. As indicated in Fig. 3, the meso-scale unit cell is further characterized by
the presence of an elliptical vessel. The measurements presented in [3] indicated that a realistic range of the
vessel volume fraction in balsa is vves = [0.028, 0.088]; hence, the upper and lower values of this range are
considered in the variation study on the vessel volume fraction (Sect. 5.3). For the variation studies regarding
the ray eccentricity (Sect. 4.1) and the fiber–ray interface (Sect. 5.2), a constant, intermediate value of the
vessel volume fraction is chosen, vves = 0.066, whereby the vessel aspect ratio equals D/d ≈ 1.28, see
also [28]. Correspondingly, for the six wood densities selected above, the major and minor axes of the ves-
sel become D = [178.2, 89.1, 71.3, 53.5, 35.6, 26.7] μm and d = [139.4, 69.7, 55.8, 41.8, 27.9, 20.9] μm,
respectively. With the above vessel volume fraction, the volume fraction of the honeycomb cell structure in
the fiber region then becomes 0.80–0.066 = 0.734. The ray region is characterized by rectangular rays. As
mentioned in Sect. 2.2, it is assumed that the cell wall length of the rays in the radial direction corresponds to
length of the honeycomb elements as, �ray = 2�x , whereby � is varied as indicated above. Correspondingly, the
cell wall lengths of the rays are �ray = [34.6, 17.3, 13.9, 10.4, 6.9, 5.2] μm. The height and thickness of the
rays are scaled such that the selected wood densities and the ray volume fraction of 0.2 are matched, leading to
hray = [17.3, 8.7, 6.9, 5.2, 3.5, 2.6] μm and tray = [0.87, 0.43, 0.35, 0.26, 0.17, 0.13] μm, respectively. The
geometrical properties of the honeycomb cell walls, the vessel, and the rays are summarized in Table 4. The
length and height of the hardwood unit cell depicted in Fig. 3, respectively, are defined as L = 2nx�x = nx�ray
with nx = 74, and H = (ny + 1)h + ny�y + ny,rayhray with ny = 12 and ny,ray = 5. Note that the periodic
unit cell for the hardwood balsa has a somewhat larger size than that applied for the analyses on the softwood
spruce, due to the presence of various meso-structural objects, i.e., fibers, vessels, and rays.
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Table 4 Geometrical properties of the honeycomb cell walls, the vessel, and the rays constructing the meso-scale structure of
hardwood balsa

Density Porosity Cell wall Cell wall Cell wall Vessel Vessel
length thickness angle major axis minor axis

ρ (kg/m3) φ (–) � = h (μm) t (μm) θ (◦) D (μm) d (μm)

1 79 0.95 20 0.9 30 178.2 139.4
2 135 0.91 10 0.9 30 89.1 69.7
3 161 0.89 8 0.9 30 71.3 55.8
4 205 0.86 6 0.9 30 53.5 41.8
5 288 0.80 4 0.9 30 35.6 27.9
6 369 0.75 3 0.9 30 26.7 20.9

Ray Ray Ray
length height thickness
�ray (μm) hray (μm) tray (μm)

1 34.6 17.3 0.87
2 17.3 8.7 0.43
3 13.9 6.9 0.35
4 10.4 5.2 0.26
5 6.9 3.5 0.17
6 5.2 2.6 0.13

Table 5 Elastic and hygro-expansive properties of the cell walls characterizing the meso-scale structure of balsa

Elastic modulus Poisson’s ratio Shear modulus Hygro-expansion coefficient
(GPa) (–) (GPa) (–)

E1 E2 E3 ν12 ν13 ν23 G12 β1 β2
15.8 7.1 45.4 0.29 0.07 0.04 2.6 0.06 0.60

The elastic properties have been taken from [28]. As a working assumption, the hygroscopic properties of balsa have been taken
the same as those of spruce, as given in Table 2, due to the absence of experimental data in the literature. The principal directions
j = 1, 2, 3 are aligned parallel to the cell wall, perpendicular to the cell wall, and in the longitudinal direction of the cell wall,
respectively

The cell wall properties of balsa have been taken from [28]. Accordingly, the elastic moduli in the directions
parallel to the cell wall, perpendicular to the cell wall, and in the longitudinal direction of the cell wall are
equal to E1 = 15.8 GPa, E2 = 7.1 GPa, and E3 = 45.4 GPa, respectively. The in-plane shear modulus is
G12 = 2.6 GPa, and the Poisson’s ratios are ν12 = 0.29, ν13 = 0.07 and ν23 = 0.04. Experimental values
of the hygro-expansion coefficients of hardwood cell walls are not available in the literature; hence, as a
working assumption, these parameters are set equal to those of the softwood spruce, as given in Table 2. The
hygro-elastic material properties at the cell wall level of balsa are summarized in Table 5.

In the following subsections, the influence of various meso-structural features on the predicted effective
hygro-elastic properties of hardwood is investigated, whereby these effective macroscopic properties have
been computed according to relation (15). The response of meso-structures that possess rays with different
degrees of eccentricity is analyzed in Sect. 5.2. In Sect. 5.3, the effect of the interface between the ray and the
fiber regions on the effective hardwood properties is studied, finally followed by considering the effect of the
vessel volume fraction in Sect. 5.4.

5.2 Influence of ray cell eccentricity on effective properties

Figures 9 and 10, respectively, illustrate the effective elastic and hygro-expansive properties of balsa as a
function of the density ρ, for ray cell arrangements characterized by different degrees of eccentricity, e =
[0, 0.25, 0.5, 0.75, 1], with the eccentricity parameter e given by Eq. (3). The effective elastic properties
calculated with the asymptotic homogenization method are depicted together with experimental data taken
from the literature [50,55,56]. In the simulations, the interface between the ray and fiber regions is assumed to
be regular, as depicted in Fig. 3f. Further, the hexagonal honeycomb structure modeling the fibers is assumed
to be regular, with kir = 0, as shown in Fig. 3a. Figure 9 illustrates that the elastic moduli ĒR and ĒT and
the in-plane shear modulus ḠRT increase with increasing density. Conversely, the in-plane Poisson’s ratio
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Fig. 9 Effective macro-scale stiffness properties for hardwood (balsa) with different ray eccentricities e, as a function of the
density ρ. a Effective stiffness modulus ĒR in the radial direction; b effective stiffness modulus ĒT in the tangential direction; c
effective in-plane Poisson’s ratio ν̄RT; d effective in-plane shear modulus ḠRT. The experimental data for the effective stiffness
moduli have been taken from [50,55,56].

ν̄RT drops when the density increases. Figure 9a clearly indicates that the eccentricity of the ray cells has a
negligible influence on the predicted effective elastic modulus ĒR along the radial direction. This is caused by
the fact that the load transfer by the ray cells along the radial direction is not affected by their eccentricity, as
shown in Fig. 3. The experimental values for the radial stiffness ĒR of balsa are characterized by some scatter,
but nevertheless fall relatively close to the model prediction, and, on average, show a comparable increase
with growing density. The spread in the experimental stiffness values can be ascribed to the heterogeneous,
biological character of wood, as explained in more detail in Sect. 4.3.

Figure 9b illustrates that the effective stiffness ĒT in the transverse direction is highly sensitive to the ray
cell arrangement. In specific, the transverse modulus ĒT experiences a considerable drop under increasing ray
eccentricity, which mainly takes place in the range 0 < e ≤ 0.5; for e > 0.5 the transverse stiffness modulus
turns out to be almost insensitive to ray eccentricity, and approaches the limit curve corresponding to an ideally
staggered configurationwith e = 1. The experimental data for ĒT fall in between the numerical results obtained
for a regular ray configuration, e = 0, and an ideally staggered ray configuration, e = 1. In particular, for a
relatively low hardwood density ρ < 150 kg/m3 the experimental data are close to the modeling result for a
meso-scale hardwood structure with e = 0.5, while for a higher hardwood density ρ ≥ 150 kg/m3 they closely
match the modeling results for e = 0.25. Figure 9c illustrates that the in-plane Poisson’s ratio ν̄RT decreases
with increasing density and increases only slightly with increasing ray eccentricity, with the experimental value
being overestimated by 18%. Finally, the in-plane shear modulus ḠRT depicted in Fig. 9d shows to be strongly
dependent on the ray eccentricity, especially at a higher wood density, where the stiffness value related to an
ideally staggered configuration is almost two times the value found for a regular configuration.

It can be further confirmed that the curves in Fig. 9 for the configurations with regular ray cells (e = 0)
and ideally staggered ray cells (e = 1) are similar to the numerical modeling results presented in Figures 5, 6
and 7 of [28], as computed with a different numerical homogenization approach.
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Fig. 10 Effective macro-scale hygro-expansive properties for hardwood (balsa) with different ray eccentricities e, as a function
of the density ρ. a Effective hygro-expansion coefficient β̄R in the radial direction; b effective hygro-expansion coefficient β̄T in
the tangential direction

Figure 10 illustrates that the effective hygro-expansion coefficients β̄R and β̄T increase as a function of
the wood density ρ. Note further that the effective hygro-expansion coefficient in the radial direction β̄R is
essentially unaffected by the eccentricity of ray cells, irrespective of the wood density, as shown in Fig. 10a.
In contrast, the transverse hygro-expansion coefficient β̄T shown in Fig. 10b increases with increasing ray
eccentricity. Despite that the hygroscopic coefficients of softwood spruce and hardwood balsa at the cell wall
level are assumed to be the same, the macro-scale hygroscopic coefficients β̄R and β̄T obtained for a specific
density turn out to be different—compare Figs. 10 and 8, which obviously results from the geometrical
differences and the different stiffness properties at the cell wall level.

5.3 Influence of interface between fiber and ray regions on effective properties

The influence of the type of interface between the fiber region and ray region on the effective hygro-elastic
properties of hardwood is sketched in Fig. 9. The effective properties are computed based on three meso-
structural configurations, characterized by (i) a regular interface between the fiber and the ray region and
regular ray cells, as shown in Fig. 3c and f, (ii) a regular interface between the fiber and the ray region and an
ideally staggered ray arrangement, as shown in Fig. 3f and 3e, and (iii) a staggered interface between the fiber
and the ray region and a regular ray cell arrangement, as shown in Fig. 3c and g. These three configurations are
abbreviated as RI+RR (solid black line), RI+SR (dashed blue line), and SI+RR (dotted red line), respectively.
Note that cases (i) and (ii) coincide with the configurations considered in Sect. 5.2 that correspond to a ray
cell eccentricity of e = 0 and e = 1. The numerical simulations indicate that the effective properties along the
radial direction are almost not affected by the type of interface configuration. The corresponding plots thus
closely relate to the curves depicted in Fig. 9a for the radial elastic modulus ĒR and in Fig. 10a for the radial
hygro-expansion coefficient β̄R, and therefore are not shown here. In contrast, the effective properties along the
transverse direction are much more sensitive to the interface configuration; this is illustrated in Fig. 11a and b,
which, respectively, depict the transverse elastic modulus ĒT and the transverse hygro-expansion coefficient
β̄T as a function of the density for the three selected interface geometries. When comparing cases (i) and
(iii) that are both characterized by a regular ray cell arrangement, it can be observed that the presence of
a staggered interface (SI+RR) results in a much lower transverse stiffness modulus compared to a regular
interface (RI+RR). In addition, the configuration related to case (ii), whereby the interface is staggered and
the rays are regular (SI+RR), clearly results in the lowest transverse elastic modulus. The experimental data,
which have been taken from [50,55], are in good agreement with the response of ameso-structure characterized
by a staggered interface and a regular ray structure and show a comparable growth when the density increases.
When comparing Fig. 11a and b with Fig. 9a and 10b, respectively, it can be concluded that the presence of a
staggered interface has a similar effect on the macro-scale effective properties as a ray cell configuration with
a regular interface and a ray eccentricity in the range 0.25 ≤ e ≤ 0.5. Finally, the in-plane shear modulus ḠRT
for case (iii) with a staggered interface and a regular ray structure reveals a trend that virtually coincides with
that for case i) with a regular interface and a regular ray structure, as depicted in Fig. 9d for e = 0, respectively.
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Fig. 11 Effective macro-scale hygro-expansive properties for hardwood (balsa) with different interfaces between the fiber and ray
regions, as a function of the density ρ. a Effective stiffness modulus ĒT in the tangential direction; b effective hygro-expansion
coefficient β̄T in the tangential direction. RI+RR refers to a regular interface between the fiber and the ray region and regular ray
cells, as shown in Fig. 3f and c, RI+SR refers to a regular interface between the fiber region and the ray region and an ideally
staggered ray arrangement, as shown in Fig. 3f and e, and SI+RR refers to a staggered interface between the fiber and the ray
region and a regular ray cell arrangement, as shown in Fig. 3g and c. The experimental data for ĒT have been taken from [50,55]

In addition, the trend for the in-plane Poisson’s ratio ν̄RT of case (iii) is very close to that of case (ii) with a
regular interface and an ideally staggered ray configuration, shown in Fig. 9d for e = 1.

5.4 Influence of vessel volume fraction on effective properties

The experimental measurements of balsa wood discussed in [3] reveal that the vessel volume fraction typically
varies in the range vves = [0.028, 0.088]. For this interval, the asymptotic homogenization simulations have
shown that an increasing vessel volume fraction only results in a minor decrease of both the elastic and
hygro-expansive properties. In specific, the maximum difference appears for the elastic modulus ĒT of high
density balsa wood with ρ = 369 kg/m3, whereby the value for the meso-structure with the largest vessel
volume fraction of vves = 0.088 is only 5.6% lower compared to the value for a hardwood meso-structure
without a vessel. It is noted that in the multi-scale analyses presented in [28] the presence of a vessel led
to a more significant decrease of the effective elastic properties. However, this is due to the fact that in [28]
the modeling approach is different: The effective properties of a unit cell consisting of only fibers were
calculated first and were subsequently used as input for the analysis of a separate unit cell, consisting of
a homogenized, continuous fiber matrix in which a hollow ellipse—representing a vessel—was embedded.
Since the homogenized continuum model smears out the local load transfer around a vessel over a larger
area, a change in vessel volume increases the influence on the effective properties calculated for the overall
meso-scale unit cell. This can be easily understood by considering the limit case of a hypothetical, idealized
meso-structure, in which the load transfer occurs via a single, local force trajectory; for this meso-structure, the
effective properties will remain unaffected by the presence of a vessel (assuming the vessel does not traverse
the force trajectory), unless the local load transfer is distributed over a finite area bymeans of a homogenization
procedure.

6 Conclusions

A multi-scale approach is presented for the prediction of the effective elastic and hygro-expansive properties
of the softwood spruce and hardwood balsa. The particular focus hereby aims at examining the sensitivity
of the effective macroscopic properties to morphological variations in the underlying, mesoscopic cellular
structure. The multi-scale framework adopted for this purpose is based on the asymptotic homogenization
method. Detailed two-dimensional meso-structural unit cells are generated for both softwood and hardwood.
The softwood cell is constructed by a repetition of irregular hexagonal cells representative of the tracheids.
The hardwood meso-structure consists of a fiber region containing hexagonal cellular fibers with a large vessel
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embedded, which is connected to a ray region that includes ray cells. Rays are modeled as quadrilateral cells,
characterized either by a regular or a staggered configuration. In addition, the interfacial connection between
the fiber and ray regions can also be regular or staggered.

The numerical analyses illustrate that the homogenization procedure allows to realistically estimate the
effective hygro-elastic properties of softwood and hardwood. Moreover, the geometrical irregularity of soft-
wood cells appears to have a limited effect on the elastic moduli and in-plane shear modulus, while it has
a substantial effect on the in-plane Poisson’s ratio and hygro-expansion coefficients. The simulations reveal
that the type of arrangement of the ray cells (staggered or regular) has a significant influence on the in-plane
shear modulus and the hygro-elastic properties along the tangential material direction. The type of interface
between the fiber and ray regions also shows to have a considerable impact on these parameters; in specific,
the in-plane shear modulus experiences a strong drop in value in the transition from a regular to a staggered
interface, while the hygro-expansion coefficient in the transverse direction significantly increases under these
circumstances. The effect of the vessel volume fraction on the effective hygro-elastic properties is minor.

The multi-scale simulation results strongly depend on the geometrical and material properties used as input
at the cell wall level. More systematic research is needed to improve the correspondence between modeling
and experimental results, for example, by simultaneously characterizing the properties at the mesoscopic
and macroscopic scales for various types of wood. Through the application of scanning electron microscopy
techniques, the unit cell configurations used in this study may be further refined toward more realistic meso-
scale representations of softwood and hardwood.
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