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Abstract The application of multiaxial high-cycle fatigue criteria to the analysis of the subsurface rolling
contact fatigue of structures working in contact conditions is discussed. In such objects, an increase in com-
pressive and shear stresses is strongly non-proportional. Therefore, the first part of the paper is devoted to the
comparison of the results of six recently used high-cycle fatigue criteria estimating the effort for both different
multiaxial proportional and non-proportional loads. In the second part of the paper, the issue of frictionless and
tractive rolling contact fatigue is discussed. The fatigue load capacity of a crane wheel has been estimated using
recently popular criteria. The orientation of critical planes and location of dangerous points are determined and
discussed in detail. It has been found that the Dang Van criterion, which is often proposed in rolling contact
fatigue analysis, underestimates the equivalent fatigue stress for such type of loads. Comparison of the results
obtained using different multiaxial criteria with the results of the experimental tests enables a selection of
criteria suitable for fatigue assessment of machine parts working in cycling rolling contact conditions.

Keywords Multiaxial high-cycle fatigue · Non-proportional loading · Numerical simulation · Rolling
contact fatigue (RCF)

List of symbols

a Semiaxis of the contact ellipse in the direction of rolling
aC, aDV, aP2 Constants of MHCF criteria
Dw, Rw Diameter and radii of the wheel, respectively
E Young modulus
F Normal force
f−1 Alternate bending fatigue strength
FRd,f Limit design contact force
Fu Minimum contact force
k Material coefficient in energy criterion
M Torque moment
MHCF Multiaxial high-cycle fatigue
N Number of hoisting cycles
Nf Number of cycles to failure
P–L Palmgren–Lundberg
po Maximal contact pressure
Qn Nominal load
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r Radius
RCF Rolling contact fatigue
Rk Railhead radius
t Time
t−1 Alternate torsion fatigue strength
<Ta> Resolved shear stress amplitude
Ta(ϕ, θ) Generalized shear stress amplitude
Waf Limit of strain energy density parameter
Wn Normal strain energy density parameter
Wns Strain energy density parameter
xz Safety factor
β Material coefficient in energy criterion
δ Shift in-phase between normal and tangent stresses
δ� Step in numerical calculations
� = �(ϕ, θ) Material plane with orientation defined by two angles: ϕ and θ ; angle χ defines

direction of versor s in plane �
ε Strain
θrφ Angular location of material plane in relation to local coordinate system r−φ.
μ Friction coefficient
ν Poisson’s ratio
σ1, σ2, σ3 Principal stresses
σI, σII, σIII Algebraically ordered principal stresses
σH Hydrostatic stress
σy Yield limit
σu Tensile strength
σvM,a Amplitude of the second stress invariant
σH,max Maximal value of hydrostatic stress
τ Macroscopic shear stress
τeqv = {τC, τDV, τDVmod,
τDV2mod, τP1, τP2 , τE} Equivalent fatigue stress
τns Shear stress on plane �
χ Direction of the scalar value of the resolved shear stress τ = n · σ · s on plane �,

Subscripts

a Amplitude
eqv Equivalent
m Mean value
t Time
C Crossland criterion
DV Dang Van criterion
DVmod Modified Dang Van criterion
E Lagoda criterion
max Maximum
P1 Papadopoulos criterion based on the integral formulation
P2 Papadopoulos criterion based on the critical plane approach
PL Palmgren–Lundberg points
TG Tresca-Guest
x, y, z Geometric coordinates

1 Introduction

Machine elements and mechanisms are often exposed to variable loading conditions (cyclic, random) which
induce variable fatigue stresses and deformations. In consequence, when a certain level of fatigue effort and
a certain number of equivalent cycles (corresponding to the threshold of respective fatigue endurance) are
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Fig. 1 Surface cracks on crane wheel tread surface

exceeded, fatigue failure may follow. Crane wheels are elements subjected to fatigue damage. Fatigue cracks
(Fig. 1) are initiated beneath the surface and on reaching a certain size, they propagate fast. This dangerous
phenomenon considerably decreases safety and durability of the structure. The fatigue of both free (frictionless)
and tractive rolling contact of a typical cylindrical cranewheelφ710made of 30CrNiMo8with rail A120 [1] are
investigated. The rail A120 (with railhead radius Rk = 600mm), which is used in the analysis, is recommended
for the investigated cylindrical crane wheel. The fatigue analyses are made using the multiaxial high-cycle
fatigue (MHCF) hypotheses which were recently investigated in [2,3]. Such MHCF criteria are described in
Sect. 3 of the paper.

In the case of a complex stress state different MHCF hypotheses are used [4]. Such criteria allow for
estimation of equivalent fatigue stress for complex or multiaxial loadings.

The various theories which have been proposed so far:

• existence of a critical or damage plane in which fatigue failure is caused by stresses [5,6],
• based on deformation or stress invariants [7],
• energy formulations [8],
• integral approach [9],
• generalized extensions of empirical results [4],

have much smaller areas of application than the criteria of static endurance. Most of the hypotheses are limited
to certain loading conditions or particular materials. Therefore, if there is no certainty which hypothesis will
provide proper estimation, it is reasonable to apply a few popular criteria (e.g. [5–9]) and to compare obtained
results.

TheMHCF hypotheses presented in the paper have been selected for application to a rolling contact fatigue
problem (RCF). This problem is especially important in the analysis of elements working in contact conditions,
as for example, railway wheels and rails, gears, ball and roller bearings and cams. RCF is an example of a
phenomenon in which a complex and multiaxial stress state (three normal compressive and three shear stresses
may occur) with components changing non-proportionally appears. An in-phase shift between tangent and
normal stresses is in the RCF particularly significant and large compressive effects in places of potential
initiation of fatigue cracks complicate the situation.

Generally for rolling contact problems, three contact failure mechanisms can be distinguished (using an
example of a railway wheel) [10]:

1. Surface cracks initiated by surface plasticity (ratchetting) caused by contact stresses. Crack growth process
can be promoted by other causes—corrosion, insufficient lubrication, surface defects and asperities or
thermal loads. This type of failure affects components subjected to cycling loading with high friction
components such as curving, braking, traction.

2. Subsurface fatigue (load cases with moderate surface friction μ ≤ 0.3) that is initiated a few millimetres
(typically 4 ÷ 5 millimetres) below the surface. The location of subsurface crack origination can change
due to material hardening, residual stresses or material defects.

3. Deep defect initiated fatigue—these forms of cracks can propagate in the area of low stresses (to 20mm
below the surface).
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The subsurface cracks are themost dangerous formof fatigue failure. Such problem (subsurface fatigue) is often
investigated by applyingMHCF hypotheses such as proposed by Crossland [11–13], Dang Van, Papadopoulos
[11], Liu–Mahadevan [14–16], Liu–Zenner (this model requires four fatigue limits) [17]. The Dang Van model
has been frequently used in RCF analysis of railway wheels and rails [5,18–22], rolling bearings [23,24] and
other mechanical parts working in RCF loading condition [25]. However, significant critical remarks about
the application of this criterion to RCF can be found in certain papers [11,17,26–28].

The fatigue criteria used in the study done by the author of the present paper are based on different
approaches. The oldest one uses stress tensor invariants [7]. The Crossland criterion is a certain modification
of the Sines formula [4], in which the mean value of the first invariant is replaced by its maximal value.
The Crossland modification makes the model more compatible with experimental tests. The other considered
hypotheses [5,6] are based on the critical plane assumption, or the use of the mean values of stresses [9].
The last one, but not the least important, is the energy formulation [8,29] in which different combinations of
energy-type fatigue effort estimators were proposed.

The high number of the MHCF criteria makes selection of a suitable hypothesis difficult. Moreover, the
results obtained using different criteria show significant differences [2,3]. The application of an inadequate
criterion may result in fatigue failure during operation. For this reason, one of the most important aims of the
paper is to compare the most popular criteria and select of the most appropriate criterion for the rolling contact
fatigue problems. The other main aims are to identify the critical points at which cracking may initiate and
determine the critical loading for the investigated crane wheel.

In Sect. 2 of the paper, the problem of free and tractive rolling contact is discussed. The determination of
the critical planes and points at which fatigue cracks may occur is illustrated by the case of a cylindrical crane
wheel φ710. In Sect. 3 the MHCF criteria, which are the most often used in the RCF analyses are described.
The detailed procedure of the criteria programming algorithms can be found in [30]. In Sect. 4 a comparative
analysis for all the above hypotheses is performed for basic loading cases showing the scale of discrepancies
between them. In Sect. 5, the numerical FEM analyses of the crane wheel φ710 made of 30CrNiMo8 are
presented. The analyses are made for two cases—free and tractive rolling contact. In Sect. 6, the application
of the MHCF criteria for the analysis of the crane wheel is shown and the obtained results are discussed.
Conclusions are given in the final paragraph.

2 Free and tractive rolling contact phenomena

The rolling contact fatigue is an example of the phenomenon in which complex state with non-proportional
stresses appears (Fig. 2). In-phase shift between normal and tangent stresses (see. Fig. 2) is particularly
important in this case. Additionally, large compressive effects in places of potential initiation of fatigue cracks
have a strong influence.

In free rolling, friction effects are negligibly small and can be omitted during analysis. This problem can
be approximately solved using the Hertz theory. However, the use of the finite element method (FEM) can
take into account complex geometry of the investigated structure. Using this method, it is also possible to
include some additional factors such as surface roughness and material nonlinearity, which are disregarded in
the simplified analytical methods [30]. Furthermore, the problem of tractive rolling contact requires including
strong friction effects [31].

The amplitudes of stresses play a main role in the process of fatigue failure. Therefore, three characteristic
points can be distinguished in the case of free rolling contact. One of them is the Bielajev point, in which,
under the wheel tread surface the equivalent stresses (Tresca-Guest or von Mises σvM) are the largest. The
other Palmgren–Lundberg (P–L) points seem to be the most dangerous in the case of free rolling. It is justified
by the fact that on the radius of P–L points the amplitude of shear stress τyz is the largest.

The time function can be considered as parametric rotation of the wheel φ (Fig. 3) and the stresses
distribution on a chosen radius can be used in the fatigue calculations. In Fig. 3 characteristic orientations of
particles (for maximal shear stress in the Bielajev point and the maximal shear stresses in both P–L points)
are indicated. The angle θrφ means angular location of the investigated material plane in relation to the r−φ
local coordinate system.

As it was mentioned in introduction and discussed above the crack initiate a few millimetres below the
surface of two compressed bodies. In such situation, the influence of out-of-phase loading on the fatigue
strength is probably similar to the material behaviour during the experimental tests of un-notched samples
[32]. There is also three dimensional pulsating compression, which should have rather a positive effect on the
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Fig. 2 Subsurface stress distribution for the investigated crane wheel: a on radius of Palmgren–Lundberg points, load F =
294, 3 kN, b hydrostatic σH and shear stress τr
 (for θr
 = 0◦) and τr
 (for θr
 = 45◦) distributions on radius rB of Bielayev
point, a—semiaxis of contact ellipse

Fig. 3 The r − 
 local coordinate system and methodology of determination of stresses in the function of time in corresponding
material planes. Angle θr
 denotes angular location of investigated material plane in relation to local coordinate system r − 


fatigue (Fig. 2a). It can be observed that the subsurface stress state in rolling contact differs from the above in
test samples. In the author’s opinion, this loading case should be analysed in a separate experimental fatigue
study.

Characteristic anti-symmetrical distribution of shear stress for points on rPL radius and θrφ = 0 is presented
in Fig. 2a. It can be observed that the shear stress on rPL radius is a shift in phase relative to hydrostatic stress. It
should be noted that the maximal shear stresses in P–L points occur for different θrφ = {8.5◦;−8.5◦} (Figs. 3,
4). However, for both orientations (θrφ) the amplitude of shear stress is reduced in relation to θrφ = 0◦. So it
seems to be reasonable to define the critical plane for angle θrφ = 0◦.

The second interpretation ofDVcriterion requires calculation of Tresca-Guest shear stress τTG.An example
of distribution of this stress on rPL and rB radii with planes rotation for maximal values for a 2D cylinder flat
plane contact is presented in Fig. 4. It can be observed that the maximal shear stress in the vicinity of P–L
points is almost the same on both rPL and rB radii, but for φ = 0 the difference is noticeable. However, slight
changes of shear stress in the vicinity of P–L points are accompanied by a considerable reduction of hydrostatic
stress, which is unfavourable to the fatigue life in the sense of DV hypothesis. Maximal hydrostatic stress on
different radii occurs for φ = 0.
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Fig. 4 The maximal shear stress in points on rPL and rB radii (θr
 is various)

As already mentioned, the maximal vonMises stress σvMmax occurs below the tread surface in the Bielajew
point for θrφ = 45◦. During rolling the amplitude of shear stress in this point is smaller than the amplitude on
rPL radius (Fig. 2). Consequently, the maximal shear stress amplitude is closer to the surface and occurs in the
Palmgren–Lundberg points. The region of these points (their radius rPL) proved to be the most dangerous. A
more thorough analysis of this phenomenon can be found in [30].

The problem of subsurface crack initiation has often been investigated using the different multiaxial high-
cycle fatigue hypotheses [6,7,9,11,14,17,26,33]. These criteria are based on different approaches (see Sec. 3).
The characteristic difference between them is the approach to the impact of phase shift on fatigue life. The
criteria based on the integral approach (e.g. P1) neglect this effect on fatigue strength. The hypotheses based
on the critical plane theory assume that 90◦ phase shift increases fatigue life of a loaded component. This fact
is important in the rolling contact fatigue, because the subsurface stresses are complex. Six components of the
stress tensor may appear and the shear stress is out-of-phase in relation to the negative normal stresses. Hence,
the principal stresses change their directions during each cycle.

3 Multiaxial high-cycle fatigue criteria

3.1 Crossland criterion (C)

In his criterion Crossland assumes [7], in the local measure of fatigue effort, a linear relationship between the
admissible amplitude of the second stress invariant (σvM,a) and the maximal value of hydrostatic stress σH,max
(first stress invariant):

τC = σvM,a/
√
3 + aC · σH,max ≤ t−1 (1)

where

aC =
{
0 for 3t−1/ f−1 ≤ √

3(
3t−1
f−1

− √
3
)

for 3t−1/ f−1 >
√
3

(2)

σH,max = max
t

σH (t) = max
t

{[σ1 (t) + σ2 (t) + σ3 (t)]/3} (3)

f−1, t−1 are alternating bending and torsion fatigue limits, respectively.
The amplitude of the second stress invariant for arbitrary, non-proportional loading, as in rolling contact

problems, σvM,a can be calculated from the formula:

σvM,a =

max
t

[
1√
2

√(
σ t
x,a − σ t

y,a

)2 +
(
σ t
y,a − σ t

z,a

)2 + (
σ t
z,a − σ t

x,a

)2 + 6

[(
τ txy,a

)2 +
(
τ tyz,a

)2 + (
τ tzx,a

)2]]

(4)
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where σ t
x,a; σ t

y,a; . . . ; τ tzx,a− amplitude function of stresses, varying in time:

σ t
x,a = σx (t) − σx,m (5)

σx,m; σy,m;. . .; τzx,m—mean value of stresses:

σx,m = maxt {σx (t)} + mint {σx (t)}
2

(6)

For any proportional load the amplitude (4) is:

σvM,a = 1√
2

√(
σx,a − σy,a

)2 + (
σy,a − σz,a

)2 + (
σz,a − σx,a

)2 + 6
(
τ 2xy,a + τ 2yz,a + τ 2zx,a

)
(7)

and
σH,max = max

t
σH (t) = σH,m + σH,a (8)

where σH,m and σH,a are the first stress invariants for the steady and amplitudal stress states, respectively.

3.2 Dang Van’s criteria (DV)

3.2.1 DV1 criterion

The basic Dang Van model (DV) [5,33] requires determination of a critical plane in which equivalent DV
fatigue stress achieves maximal value. The original DV formula (9) takes into account macroscopic shear τ(t)
and hydrostatic σH(t) stresses). It is assumed that fatigue failure occur when the equivalent DV stress τDV (9)
goes beyond the admissible area, which is determined by inequality:

τMAX
DV = max

t
[τ(t) + aDV · σH(t)] ≤ t−1 (9)

where:

τ(t)—fatigue shear stress

σH(t) = 1

3
(σ1(t) + σ2(t) + σ3(t)) (10)

σ1, σ2, σ3—principal stresses

aDV =
{
0 for 3t−1

f−1
≤ 1.5(

3t−1
f−1

− 1.5
)

for 3t−1
f−1

> 1.5
. (11)

The main idea of this hypothesis is that cracks are initiated inside material grains. It may happen when the
sum of external shear stress and internal residual stresses, exceeds locally the yield point in the direction of
the easiest slip plane. It should be noted, however, that the macroscopic τ(t) can then be purely elastic.

The fatigue stress τ(t) in (9) is usually understood as a shear stress amplitude function:

τ(t) = τ ta = ∣∣τns (t) − τns,m
∣∣ (12)

where:

τns(t) = τ(ϕ, θ, χ, t)
∣∣
�,χ=const is a shear stress on plane �,

� = �(ϕ, θ) is a material plane (see Fig. 5),

and

τns,m is a mean value of shear stress in that plane.

Methods of determining the mean value of stress acting in a material plane can be found in Ref. [34]. Hence
to find τDV all the material planes (all possible ϕ and θ ) should be searched out.
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Fig. 5 Graphic representation of orientation of material plane � (CDF) crossing point O (points O and P overlap); orientation is
defined by two angles: �(ϕ, θ) and direction of vector s in plane � is defined by angle X

3.2.2 DV2 criterion

Sometimes the amplitude of stresses is difficult to define. Then, it is reasonable to use τ(t) = τmax(t) in the
Tresca-Guest form [18]:

τ(t) = τTG(t) = σI(t) − σIII(t)

2
(13)

where σI, σII, σIII are algebraically ordered principal stresses.
This form can be easily implemented into ANSYS�, which may be useful in investigations of large 3D

objects or analysis of components in which it is difficult to clearly identify the amplitude andmid-value of shear
stress. Criterion DV2 gives more conservative results than DV1 hypothesis, however, one should remember
that the method based on the critical plane interpretation is more accurate (better agrees with experiments
[18,30]).

3.2.3 Modified Dang Van’s criterion (DVmod)

In the original DV model (DV1) [5,33] compressive stresses have profitable influence on fatigue effort. It can
be observed in reduction of equivalent DV stress τDV for machine elements working in large compression
conditions. Such a problem is very important for parts made of hard materials in which constant aDV achieve
larger values. Because of this, the DV model has recently been criticized [11,17,26–28]. One of the proposed
modifications of theDV’s criterion is to neglect the hydrostatic stress influence by adopting coefficient aDV = 0
for negative values of σH (Fig. 6):

τMAX
DVmod = max

t

{
[τ(t) + aDV · σH(t)]
τ(t)

for σH ≥ 0
for σH < 0

}
≤ t−1 (14)

3.2.4 DV2mod criterion

In the DV2mod criterion proposed by the present author shear stress is used in the Tresca-Guest form (13).
It is also assumed that compressive stress has no positive effect on fatigue strength (coefficient aDV = 0 for
negative values of σH is assumed, see Eq. (14)).

3.3 Papadopoulos criteria

3.3.1 Papadopoulos P1 criterion

In both presented Papadopoulos’s criteria the hydrostatic stresses σH are represented by their maximal values
σH,max, similarly to the Crossland hypothesis. On the other hand, in both Papadopoulos criteria, the first
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Fig. 6 Modification of Dang Van’s criterion (DVmod): neglecting compressive effects in DV formula, (example for steel 30CrN-
iMo8)

component of the fatigue effort measure is associated with the amplitude τa of resolved shear stress specified
for fixed material plane � (determined by ϕ and θ—Fig. 5). For determined material plane � (ϕ, θ ) the
amplitude of resolved shear stress τa is a function of χ :

τa (ϕ, θ, χ) = 0.5

[
max
t∈T τ (ϕ, θ, χ, t) − min

t∈T τ (ϕ, θ, χ, t)

]
(15)

where T is a close time period considered.
Angle χ describes the direction of the scalar value of the resolved shear stress τ = n · σ · s on plane �,

where n and s are vectors defined in Fig. 5 and σ is a stress tensor in point P.
In the first version of Papadopoulos’s hypothesis [9] proposed for hard materials (0.577 < t−1/ f−1 < 0.8),

the following volumetric root-mean-square of resolved shear stress amplitude <Ta> is used:

τMAX
P1 =

√
(〈Ta〉)2 + aC · σH,max ≤ t−1 (16)

√
(〈Ta〉)2 =

√√√√√√ 5

8π2

2π∫
ϕ=0

π∫
θ=0

2π∫
χ=0

τ 2a (ϕ, θ, χ) dχ · sin θ d θ dϕ (17)

where aC and σH,max are defined by expressions (2, 3).
This Papadopoulos criterion is based on the average value of plastic strains accumulated in all the flowing

crystals in the representative volume element (RVE). RVE is the smallest part of material which can be
considered as homogeneous. This value of accumulated plastic strain along the slip direction in an easy-glide
plane in a high-cycle regime is, according to P1, almost proportional to the resolved shear stress amplitude
(17). Additionally, this measure is independent of the mean resolved shear stress.

For out-of-phase torsion and bending equation (17) takes the following simple form [9]:

√
(〈Ta〉)2 =

√
σ 2
x,a

3
+ τ 2xy,a (18)

and
σH,max = (

σx,a + σx,m
)
/3 (19)

where σx,a, σx,m is an amplitude and mean value of normal stress by bending, respectively, and τxy,a is an
amplitude of the shear stress of torsion. The characteristic feature of the P1 hypothesis is that the phase
difference is not taken into account in the above formulas. Because of this, in the criterion P1, based on integral
approach, the shift in phase between stresses does not have any influence on the fatigue strength. This is why
P1 criterion is criticized [35].
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3.3.2 Papadopoulos P2 criterion

The second MHCF model proposed by Papadopoulos in 2001 [6] for analysis of structures made of ferritic
steels takes into account generalized shear stress amplitude Ta and the maximal hydrostatic stress:

τMAX
P2 = max

ϕ,θ
(Ta) + aP2 · σH,max ≤ t−1 (20)

where

aP2 =
{
0 for 3t−1/ f−1 ≤ 1.5(
3t−1
f−1

− 1.5
)

for 3t−1/ f−1 > 1.5
(21)

which is equal to aDV [see (11)].
The coefficients in formula P2 (fatigue limit t−1 and aP2) are designated using the fatigue limits for fully

reversed bending f−1 and fully reversed torsion t−1 which follow from typical fatigue experiments. However,
both parameters can also be calculated using the other two fatigue limits, i.e. a tension-compression and a
pulsating tension [6]. It should be noted, that this model takes into account shift in phase between stresses. The
introduced quantity denoted as Ta(ϕ, θ) is a function of the material plane orientation (angles ϕ and θ—Fig. 5)
and can be determined for each plane � using the relationship:

Ta (ϕ, θ) =

√√√√√√ 1

π

2π∫
χ=0

τ 2a (ϕ, θ, χ) dχ (22)

where τa is the amplitude (15) of the resolved shear stress, acting in � along the direction defined by χ .
The P2 criterion requires determination of the critical plane in which Ta achieves their maximal value. This
maximal value of generalized shear stress amplitude Ta is inserted to P2 formula. The specific algorithm for
both Papadopoulos criteria can be found in [30].

3.4 Łagoda energy hypothesis (E)

The criterion formulated by Łagoda and Macha [8,29] takes into account normal Wn and shear Wns strain
energy density parameter in the critical plane:

WMAX
eqv = max

t
{βWns(t) + κWn(t)} ≤ Waf (23)

The limit (Waf ) has been adopted as Waf = f 2−1/ (2E), where E is the Young modulus.
The normal and shear strain energy density parameters can be calculated using given below expressions:

Wn(t) = 0.5σn(t) · [
εn(t) − εn,m

] · sgn [
σn(t),

(
εn(t) − εn,m

)]
(24)

Wns(t) = 0.5τns(t) · [
εns(t) − εns,m

] · sgn [
τns(t),

(
εns(t) − εns,m

)]
(25)

where:

sgn(x; y) = sgn(x) + sgn(y)

2
=

⎧⎨
⎩
1 if sgn(x) = sgn(y) = 1
0 if sgn(x) = −sgn(y)
−1 if sgn(x) = sgn(y) = −1

. (26)

The use of the function sgn(x; y) allows for distinguish compression and tension effects. The position of
the critical plane � (Fig. 5) is designated by the maximum value of shear strain energy density parameter(
WMAX

ns

)
(25). It is also assumed, that mean strains εn,m and εns,m have no effect on the fatigue strength. β and

κ are material coefficients can be determined using tension-compression tests or pure alternating bending and
torsion:

β = k

1 + ν
, k =

(
f−1

t−1

)2

, κ = 4 − k

1 − ν
(27)

where v is the Poisson ratio.
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The equivalent strain energy density parameter WMAX
eqv calculated using the presented hypothesis is

expressed in MJ/m3. The maximal value of this measure can be referenced to the admissible fatigue limit
Waf (23). One of the objectives of the presented study was to compare the described criteria for different kinds
of loadings. Consequently, the author introduced equivalent fatigue effort τE for energy criterion expressed in
MPa:

τE = t−1

√
WMAX

eqv

Waf
(28)

This measure can be related to the fatigue limit for fully reversed torsion (t−1) such as in the other presented
criteria.

4 Verification of selected MHCF criteria for 30CrNiMo8 steel

All the calculations of fatigue effort were performed numerically using the programs made by the author. The
numerical step of determining critical plane orientation (DV, EL, P2) δ� = 5◦ for each axis was adopted. The
same step value δ� was used in numerical integration procedures (P1 and P2). The results obtained by the
Crossland criterion are independent of the numerical step because the stress measures in the Crossland formula
are the stress invariants.

Generally,multiaxial high-cycle fatigue hypotheses are formulated for specificmaterials or types of loading.
The author did not find in literature any criterion which could be universally accepted. This fact requires
verification of selected hypothesis for particular loading and material by making experimental tests or using
different criteria and comparing their results. Recently, the hypotheses based on the concept of the critical
plane are very popular. They give more accurate results than the hypotheses based on other approaches. On
the other hand, the critical plane orientation generally depends on one or more stress tensor components. A
disadvantage of the critical plane based criteria is that the critical plane orientation can be changed for different
hypotheses.

In the presented study, all analytical computations of fatigue effort were performed for 30CrNiMo8 steel
(σu at least 900 MPa). The typical average chemical composition of this steel is given in Table 1. The fatigue
models described in the paper depend on two material parameters: t−1 and f−1. The values of these fatigue
limits (fully reversed torsion and fully reversed bending tests, respectively) are taken from the experimental
tests [36,37] and given in Table 1.

In all the investigated cases, the sinusoidal loadings of constant amplitudes are used. The distributions of
normal and shear stresses are calculated using equations:

τ(t) = τa · sin(ωt + δ), σ (t) = σm + σa · sin(ωt) (29)

where τa and σa are the amplitudes of shear and normal stress, respectively, and σm is the mean value of normal
stress and δ is the shift in phase between normal and shear stress.

Verification of the hypotheses presented in this paper is made for different loading conditions, including
non-proportional loading similar to the loads in the rolling contact problem (test no. 5 in Table 2). The selection
of the tests is made to the evaluate influence of particular effects (which are important in the RCF analysis) in
each selected criterion.The author’s investigation included a comparisonof fatigue effort analytically calculated
with different criteria for a simple case of loading such as fully reversed torsion (test no. 1 in Table 2), fully
reversed bending (test no. 2 in Table 2), bending plus in-phase and out-of-phase torsion (test no. 3 in Table 2

Table 1 Average composition of 30CrNiMo8 steel applied to crane wheels and material properties (steel 30CrNiMo8) obtained
from experimental tests [37]

Chemical properties of 30CrNiMo8

Element C Si (MAX) Mn P (MAX) S (MAX) Cr Mo Ni
Weight % 0.26–0.34 0.40 0.5–0.8 0.025 0.035 1.8–2.2 0.3–0.5 1.8–2.2

Material properties of 30CrNiMo8

Parameter f−1 t−1 σy (yield limit) σu (tensile strength) E
Value MPa 549 370 min. 900–max. 1050 1250 2.17 × 105
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Table 2 Equivalent fatigue effort referred to fatigue limit t−1 (with formula xz = t−1/τeqv) for simple loading cases, material—
steel 30CrNiMo8; δ—shift in phase between normal and shear stresses

Test description loading conditions * Safety factor xz = t−1/τeqv Remarks

τa (MPa) σa (MPa) σm (MPa) δ DV1 DV1mod DV2mod C P1 P2 E

Test no. 1 Fully
reversed
torsion

100 0 0 – 3.7 3.7 3.7 3.7 3.7 3.7 3.7 t−1/τa = 3.7

Test no. 2 Fully
reversed
bending

0 100 0 – 5.5 5.5 5.5 5.5 5.5 5.5 5.5 f−1/σa = 5.5

Test no. 3 Cyclic
in-phase
torsion plus
bending

100 100 0 0◦ 2.9 2.9 2.9 2.96 2.96 2.9 3.1 G-P (31) = 3.1

Test no. 4 Cyclic
out-of-phase
torsion plus
bending

100 100 0 90◦ 3.6 3.6 3.6 3.4 2.96 3.2 3.4

Test no. 5 Cyclic
out-of-phase
torsion plus
pulsating
compression

100 100 −100 90◦ 4.4 3.7 3.2 3.7 3.2 3.7 3.6

* τm = 0 (MPa)

Fig. 7 Fully reversed bending with amplitude σq,a (left-hand side) and fully reversed torsion with amplitude τs,a (right-hand side)
experimental data of 30CrNiMo8 in the S-N form

and test no. 4 in Table 2, respectively). Experimental fully reversed bending and fully reversed torsion tests
(Fig. 7) were performed by Clemens Sanetra [36] and Alfons Esderts [37] and were carried out on samples
of alloy steel 30CrNiMo8. The results in table 2 are given in the form of safety factor xz . The value of xz is
calculated from the formula:

xz = t−1

τeqv
(30)

where τeqv is the equivalent fatigue stress estimated by particular criteria.
For fully reversed torsion and fully reversed bending all the analysed hypotheses give the same results. Two

first sets of the results for fully reversed torsion and bending are in obvious agreement, because the constants
of the criteria are derived from these two cases. The criteria in question have also shown convergence for cyclic
in-phase bending plus torsion (test no. 3). In addition, the results obtained for the presented loading conditions
are compatible with the values set to the corresponding fatigue limits (t−1/τa; f−1/σa). Traditionally, in the
case of in-phase bending plus torsion, the value of fatigue effort has been estimated on the basis of the elliptical
quadrant criterion formulated by Gough and Pollard [4]:

(
σa

f−1

)2

+
(

τa

t−1

)2

≤ 1. (31)
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The comparison of calculations performed for the in-phase (test no. 3) and out-of-phase bending plus tor-
sion test (with shift in phase δ = 90◦) (test no. 4) showed that hypothesis P1 based on the average value of
stress state does not include the in-phase shift between tangent and normal stresses at the equivalent fatigue
effort. This phenomenon can be observed in the comparison of the results obtained for test no. 3 and test
no. 4 for P1 criterion (in both cases the safety factor was 2.96; bold letters in Table 2). In other hypotheses,
the influence of the in-phase shift between stresses on fatigue effort is approached in different ways. This
is indicated by the reduction of equivalent fatigue effort and the increase in safety factor xz (compare the
results for test no. 3 and test no. 4) for out-of-phase bending plus torsion tests in comparison with in-phase
bending plus torsion test. The largest increase in the safety factor by about 25% (from 2.9 to 3.6) was observed
in the Dang Van’s criteria. A much smaller influence of the shift in-phase was observed in the remaining
criteria (Crossland—xz is increased by 15%, Papadopolus P2—9% and Lagoda E—9%). A similar charac-
ter of loading with the in-phase shift between hydrostatic and shear effects is found in the rolling contact
phenomena.

The experimental studies of the influence of the shift in-phase on the fatigue life can be found in Ref.
[32,38–43]. The obtained results for in-phase and out-of-phase torsion and bending differ significantly. For
brittle (cast iron, sintered steels, cast aluminium) or semiductile materials (cast steels, forged aluminium) the
phase shift is advantageous (18G2A, 10HNAP) [42] or has no effect [32,43] for the specimen. In contrast, for
ductile materials (structural steels) [44,45] the shift of the phase by 90◦ shortens the life limit.

Summarizing, the selection of the MHCF for non-proportional loading should be made on the basis of the
material ductility. The second important conclusion is that, criterion P1 is the most conservative. Application
of this P1 hypothesis will lead to an increase (which improves the safety) of the equivalent fatigue effort for
this kind of loads in relation to the other investigated criteria.

The largest differences are observed in the last 5th case. This example is similar to the rolling contact
load. The two characteristic phenomena can be distinguished for such loading condition. The first one is
the unfavourable influence of the compressive normal stress on the fatigue life [11,17,26–28]. The second
important effect is the shift in phase between pulsative compressive normal stress and fully reversed shear
stress. The information on experimental investigations of rolling contact fatigue effects (influence of tri-axial
compressive stresses and shift in-phase between normal and shear stresses), which the author has found in
the available literature does not seem to be precise enough. The closest to the real loading conditions was
experimental fatigue tests for cyclic torsion with compression shift by 90◦ performed by Bernasconi, et al.
[26]. The samples subjected to such loading conditions caused failure under loading at less than fully reversed
torsion limit. Moreover, an increase in the compressive stress results in a decrease in the critical torsion
amplitude.

The performed studies for this type of loading have revealed, that the original Dang Van criterion over-
estimates the effect of hydrostatic stress on decreasing the shear stress amplitude. A detailed study of this
problem is described in the Ref. [30]. It results in the underestimation of equivalent fatigue effort and overes-
timation of the safety factor in comparison with the other criteria. The results obtained using the DV are also
in contradiction with the experimental tests [26]. On the other hand, the equivalent fatigue effort for P2, C, and
modified DV1mod is equal to the shear stress amplitude (compare with the fully reversed torsion test—test no.
1). It is associated with the use of σH,MAX in these criteria, which in the case of cyclic torsion plus pulsating
compression is about 0. It means that in these criteria the influence of compressive stress on fatigue life is
omitted. This is also inconsistent with the experimental tests [26]. The unfavourable influence of out-of-phase
torsion-compression loading observed in the experimental test is only included in the criterion P1 based on the
integral formulation and the proposed DV2mod hypothesis.

Concluding, the criterion for rolling contact fatigue calculations should be selected on the basis of the
influence of the shift in phase between normal (compressive) and shear stresses. Generally, for such appli-
cation the ductile and high strength alloyed steels are used. For such materials, the introduction of shift in
phase between stresses leads to the reduction of fatigue life [44,45]. Moreover, the out-of-phase torsion—
compression fatigue tests performed by Bernasconi et al. [26] revealed harmful influence of compression
stress and shift in phase between normal and shear stresses on fatigue life. This adverse effect is taken into
account only in P1 and DV2mod criteria. Consequently, it is reasonable to use P1 or DV2mod criterion for RCF
analysis of the investigated 30CrNiMo8 steel. However, in order to compare the described MHCF hypothe-
ses for the rolling contact loading condition, the analysis of the crane wheel is made using all the presented
criteria.
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5 FEM modelling of a crane wheel and rail contact

The 3D numerical analyses of wheel-rail couplings are performed using the FEM. The geometry of the
investigated cylindrical crane wheel φ710 and rail A120 are given in Fig. 8. The research on other wheel-rail
coupling is presented in thesis [30]. The chemical composition and material properties of 30CrNiMo8 alloy
steel are given in Table 1. In fatigue calculations the maximal admissible design value of the investigated crane
wheel loading (F = 294.3 kN [46]) were adopted.

The numerical models and boundary conditions for frictionless and tractive rolling contact are presented
in figures (Figs, 9, 10, respectively). Due to a large vertical load and small contact area between the wheel
and rail, the stresses in contact zone reach high values, which requires high density finite element grid in the
stress concentrations. Also, using a high order contact element with mid-side nodes (CONTA174 in 3D and
CONTA172 in 2D analysis) and PLANE82 in 2D and SOLID95 in 3D associated with them are recommended.
The corresponding nodes of mesh at rail and wheel should overlap after deformation of the structure, which
permits to obtain faster convergence of the numerical solution. Therefore, the element mesh in the presented
models was irregular, with a strong concentration of regular hexahedron elements in the contact area.

Using submodelling technique (Fig. 11) the accuracy and efficiency of numerical solution was increased.
The Coulomb friction model, closing gaps with AutoCNOF function and the default Augmented Lagrangian

Fig. 8 Cross section and main dimensions of the cylindrical crane wheel 
710 and rail A120

Fig. 9 3D model of cylindrical crane wheel—rail free rolling contact
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Fig. 10 3Dmodel of rail A120 with divided ground used to calculate driving cylindrical crane wheel—rail tractive rolling contact

Fig. 11 3D model of cylindrical crane wheel and rail and sub model mesh

Fig. 12 Contact stress distribution for tractive rolling contact of the investigated cylindrical crane wheel (friction μ = 0.15) : a
contact normal stress distribution, p◦ = 1576 MPa, b traction contact stress distribution, pmax = 230 MPa

method [47] were also applied in the contact solution. Since the value of maximal equivalent stress (σvMmax =
981 [MPa]) is smaller than the yield limit for 30CrNiMo8 steel (σy = 1050 MPa), only purely elastic model
was used in the numerical calculations.

In the case of driving wheels the traction effect between the contacting surfaces should be included in the
numerical model. The traction stress distribution for tractive rolling is presented in Fig. 12b. The necessity
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Fig. 13 Contact stress distribution for free rolling contact (μ = 0.01) of the investigated cylindrical crane wheel: a mesh and
location of the contact area on the rail A120 (railhead radius R = 600 mm), b contact stress distribution, p◦ = 1565 MPa

Table 3 Results of numerical calculations for free and tractive rolling contact of cylindrical crane wheel φ710 and rail A120,
F = 294.3 kN, M = 14.4 kNm

Free rolling Tractive rolling

p◦ (MPa) 1565 1576

σMAX
vM (MPa) 981 986

τP−L
yz,MIN(MPa) −366 −423

τP−L
yz,MAX(MPa) 366 296

of including this rolling friction requires a modification of the model proposed for free rolling contact. Its
bottom part with small stiffness (E2 = 500MPa – details in Fig. 10) allows for including traction effects in the
numerical analysis. Torque moment M = 14.4 [kNm] driving the wheel is almost equal to its critical value
(full sliding; Mcrit = 15.7 [kNm] for friction coefficient μ = 0.15). The results presented in the paper are
related to the sub model solutions (Fig. 11). The contact stress distribution for tractive and free rolling contact
is presented in Figs. 12 and 13, respectively.

6 Results and discussion

The railhead radius has a significant effect on the shape of the contact area and contact stresses. Due to different
radii of the wheel (Rw = 355 mm) and the rail (Rk = 600mm) an elliptical contact zone is obtained. The
maximal contact stress is p◦ = 1565 (MPa) (see Table 3).

With an increase in friction stress (for high friction coefficient) the equivalent fatigue stress on the wheel
tread surface increases (Table 4). It can be explained by a characteristic tension effect which occurs in the
tractive rolling. After exceeding a certain value of friction coefficient, surface fatigue can occur. This effect
should also be investigated with respect to surface roughness. The maximal equivalent fatigue stresses for the
free and tractive rolling contact of the crane wheel and the criteria investigated in Sect. 3 of the paper are
presented in Table 4. The safety factor xz is calculated using formula (30). For all criteria, the alternate torsion
fatigue strength (t−1) is assumed as the fatigue limit.

For themaximal admissible load F = 294.3kNalmost all themultiaxial high-cycle fatigue criteria signalize
fatigue failure (the fatigue limit t−1 = 370 MPa). The original DV criterion overestimates the influence of
strong hydrostatic stresses on the equivalent shear stress amplitude, which results in a decrease in the estimated
fatigue effort in relation to the other criteria (see results in Table 4). The detailed explanation of this problem
is discussed in the Ref [30]. Similar critical remarks have been found in several papers [26,27].

The proposed DV2mod (the maximal value of the Tresca-Guest shear stress is used and the impact of
compressive hydrostatic stress is disregarded) and P1 hypotheses give the values of the equivalent fatigue
effort significantly different from the others. This variant of the DV formula and P1 hypotheses gives the most
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Table 4 The maximal value of the fatigue effort in cylindrical crane wheel in–free and tractive rolling contact for the maximal
admissible loading; material 30CrNiMo8 (xz = t−1/τeqv)

Criterion Free rolling* Tractive rolling** Remarks

τMAX
eqv MPa xz τMAX

eqv MPa xz

DV1 236 1.57 241 1.54 Overestimated impact of
compressive stressDV2 227 1.63 243 1.52

DV2mod 480 0.77 504 0.73 Overestimated impact of shear
stress

DV1mod 364 1.02 360 1.03
P1 471 0.79 473 0.78 Neglected shift in phase between normal

and shear effects
P2 373 0.99 375 0.99
C 386 0.96 396 0.93
E 376 0.98 393 0.94

* Free rolling: F = 294.3 kN; Rk = 600 mm
** Tractive rolling : F = 294.3 kN; M = 14.4 kN · m; Rk = 600 mm

conservative results. The highest values of the fatigue stress in the DV2mod criterion can be explained by using
the maximal value of the Tresca-Guest shear stress, which is introduced instead of the amplitude in the critical
plane. On the other hand, P1 hypothesis based on the integral approach does not include in-phase shift between
stresses. Results obtained using P1 hypothesis agrees with the experimental studies of notched samples made
of hard steels (see Sect. 4). In rolling the concentration of stresses is not caused by a notch. Because of this,
application of MHCF models based on the integral approach may results in slight overestimation of fatigue
effort. However, both DV2mod and P1 are more conservative and it is suggested to use them if we do not have
confirmation of the fatigue effort estimation by experimental results.

The Crossland (C), energy (E), modified Dang Van (DV1mod) and Papadopoulos P2 hypotheses give almost
the same value of safety factor xz but larger than P1 and DV2mod criteria. One of the reasons is that the C, E,
DV1mod and P2 hypotheses take into account beneficial influence of out-of-phase stresses on fatigue effort. It is
in contradiction with the experimental tests for a material with high hardness (see Sect. 4). The results obtained
from the above-mentioned criteria (P2,C,EL) are in good agreement with the maximal fatigue loading for the
investigated crane wheel (xz ≈ 1 for free rolling contact with the maximum load given by the manufacturer).
However, it should be noted that the design maximum loads take into account different magnitudes of loads
during the operation of the crane (the calculations aremade for themaximal constant loading). In such situation,
a crane is designed for variable loading spectrum acting on it during the expected period of exploitation.
This has a significant impact on fatigue life and a load histogram should be included in the analysis.

According to Ref. [46] the limit design contact force FRd,f of a wheel and rail for point contact is estimated
using formula (32). The minimum contact force Fu (33) represents the fatigue strength at 6.4 million cycles
under a constant contact force and the probability of survival of 90%.

FRd,f = Fu
1.1

(32)

Fu [kN ] = (
1.6 fy

)3 ( π

1.5

)3 ⎡
⎣ 3

(
1 − ν2

)
E

(
2
DW

+ 1
Rk

)
⎤
⎦
2

(33)

where: fy—is the yield limit (Table 5), Dw = 710 mm—is the wheel diameter, Rk = 600 mm—is the radius
of the rail surface.

The yield limit σy has a strong impact on Fu (33). For the maximal σy the limit design contact force FRd,f
is close to the assumed loading (F = 30T = 294.3 kN). However, a reduction of σy by 10% results in a
reduction of FRd,f by 26% (Table 5). The real thickness of the wheel rim is about 40 mm, so the yield limit σy
is above 900 MPa. Comparing the results obtained for F = 294.3 kN with the limit design forces presented
in the table it seems that the results obtained with P2, C, E, DV1mod criteria are underestimated.

The maximal constant loading was also assessed by the author using P1 criterion which is based on
integral formulation. The obtained load capacity FP1MAX = 266 kN using P1 hypothesis is in good agreement
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Table 5 Minimum contact force Fu and limit design contact force FRd,f for investigated wheel and rail (point contact)

Flat product thickness σy (yield limit) Fu (kN) FRd,f (kN)

to 8mm >1050 343 312
8–20mm 1000 296 269

950 254 231
20–60mm >900 216 196

with the values Fu and FRd,f (32) for σy = 950−1000 MPa. It should be noted that the Papadopoulos P1
hypothesis is also implemented in the analysis of the fatigue load limits of the ball and roller bearings [2,3].
The obtained results for such rolling bearings are in good agreement with the fatigue load limits given by the
manufacturer. The above conclusions together with verification of different criteria for out-of-phase loading
permit to conclude that P1 and proposed DV2mod criteria (or other criteria based on integral formulation) are
the most suitable for rolling contact fatigue analysis.

7 Conclusions

In this paper, a detailed analysis of free and tractive RCF of a cylindrical crane wheel using MHCF hypotheses
is investigated. The orientations of the critical planes and location of the dangerous points in which subsurface
cracks may initiate have been determined and discussed.

It is observed that not allMHCF hypotheses are suitable for the application in RCF. In the original DangVan
formula, which is often proposed for rolling contact fatigue analysis, the shear stress amplitude is decreased
by large compressive stress. Therefore, application of the original Dang Van formula for assessment of rolling
contact fatigue may result in significant underestimation of the fatigue effort.

The criteria based on energy formulation, stress invariants or critical plane (P2,C,EL) assumes profitable
in-phase shift between stresses. This assumption is in contradiction with results of experimental tests for hard
materials.

On the other hand, results obtained using the hypotheses based on the integral formulation (P1) are in good
agreement with the experimental tests for notched samples made of hard materials. Moreover, the maximal
loading obtained with the use of P1 is corresponding with the estimated maximal constant loading using
Standard [47] for the investigated crane wheel. However, the subsurface stress state under the wheel tread
surface differs from the state in test specimens. This is why, neglecting shift in phase between stresses can
lead to excessive increase (which improves safety) of the equivalent fatigue stress value in RCF for particular
materials. This phenomenon requires a more detailed experimental study of samples working in the rolling
contact condition. Similar results are obtained using the proposed DV2mod criterion. The advantage of this
criterion is that it does not require time-consuming integral calculations and uses a simple form of Tresca-
Guest shear stress.

Summarizing the analysis of fatigue life, calculation of load capacity or estimation of the maximal fatigue
loadofmachine elementsmadeof hardmaterials andworking in rolling contact condition should be investigated
using multiaxial high-cycle fatigue hypotheses based on the integral approach.

On the basis of the above conclusions it can be stated that the design of the investigated wheel is not
conservative for F = 294.3 kN. The maximal admissible load for the investigated crane wheel, calculated
using P1 criterion with safety factor xz = 1, is F = 266 kN.
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creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
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