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Abstract The problem of dynamic structural response dependent on random variations of design parameters is
presented in the paper.Avariational formulation of theFEMequations ofmotion and the probability distribution
of time instant stochastic sensitivity are described. The suggested perturbation technique is completely second-
order accurate, unlike in conventional approach. For instance, three different structural systems, excited by
a Heaviside impact, are implemented and discussed. Numerical results for the first two probabilistic moments
of displacement sensitivity gradients are obtained by the mode superposition method. Concluding remarks
show that dynamic sensitivity analysis in the stochastic context better describes the real structural response
and allows us to find the appropriate design point.
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1 Introduction

Nowadays, buildings are often characterized by complicated forms and slenderness. Therefore, an appropriate
computational technique, such as the finite element method (FEM), which is implemented in most structural
analysis computer codes [1–3] is needed. Since designers are required to make the optimal use of building
materials, structures must inevitably be lightweight and strong, and this is exactly why design sensitivity
analysis [4,5] may be necessary. Sensitivity analysis can be carried out with respect to global [6,7] or local
design variables [8–12]. Global design variables are, e.g., the overall geometry, overall shape and topology.
Local design variables, such as cross-sectional area, element thickness, Young modulus, Poisson’s ratio, yield
stress, mass and loading, are considered in this paper. Besides static design sensitivity, dynamic sensitivity is
worth analyzing especially for structures exposed to wind or sea waves.

Uncertainty of design variables is included so far in building standards by empirical safety factors. For
more complex or less typical cases, however, standardized recommendations may not be sufficient. Making a
stochastic analysis is thus essential. It can be carried out by the spectral approach [13] or by the perturbational
approach [14–19], where all the functions of random variables are expanded exponentially. The stochastic and
sensitive formulations can be considered jointly for the same or different design variables, [18–21].

In the conventional perturbational approach, by using the first two probabilistic moments for random
variables on input, the first two probabilistic moments of the structural response are obtained on output,
wherein only the expectations are with second-order accuracy, and the cross-covariances are with first-order
accuracy [18,19]. In this paper, a modified version of these perturbation schemes for dynamic sensitivity is
presented, in which both probabilistic moments on output are second-order accurate, as for the static sensitivity
given in [22].
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After the introduction, in the second section the equations of motion are obtained in the context of FEM.
The third section describes the stochastic dynamic sensitivity for a time instant. In the next section, numerical
results of stochastic dynamic sensitivity analysis are shown for three different structural systems, with truss,
shell and beam elements. Summary remarks finish the paper.

2 Finite element model of dynamics

The variational Hamilton’s principle states that the real displacement field, among all permissible, satisfying
boundary and initial conditions at times t1, t2 in the volume Ω , makes stationary the functional of the total
energy. The total energy is the sum of kinetic energy T , potential energy V and external forces work W ,
leading to

δ

∫ t2

t1
(T − V )dt + δ

∫ t2

t1
Wdt = 0 (1)

with

T =
∫

Ω

1

2
ρ u̇Tu̇ dΩ (2)

V =
∫

Ω

1

2
T dΩ (3)

W =
∫

∂Ω

t̂ Tu d(∂Ω) (4)

where ρ is the mass density, and = {ε11, ε22, ε33,
√
2ε12,

√
2ε13,

√
2ε23}, u = {ui }, u̇ = {u̇i }, =

{σ11, σ22, σ22,
√
2σ12,

√
2σ13,

√
2σ23} and t̂ = {̂ti }, i = 1, 2, 3, are the strain, displacement, velocity, stress

and the boundary force vectors, respectively. By the engineering character of the paper, in Eq. (4) the body
forces are neglected.

As a result of the transformation described in [23,24], the FEM equation system of motion is obtained as

Mq̈ + C q̇ + Kq = Q (5)

where M = [Mαβ ], C = [Cαβ ] and K = [Kαβ ], q = {qα}, q̇ = {q̇α}, q̈ = {q̈α} and Q = {Qα}, α =
1, 2, . . . , N , are the mass, damping and stiffness matrices, nodal displacement, velocity, acceleration and load
vectors, respectively, with N being the system number of degrees of freedom. The explicit forms of the stiffness
and nodal load matrices for specific types of the finite elements can be found in [1–3], for instance.

For the sake of presentation transparency, the indicial notation will be used from now on. Equations (5)
are rewritten in the residual form, where twice repeated indices implying summation as

Qα − Kαβ qβ − Cαβ q̇β − Mαβ q̈β = 0 (6)

3 Time instant stochastic sensitivity

For the multi-degree-of-freedom (MDOF) system, at the time instant τ = t , the structural response can be
defined by the function

Φ = G
∫ t

0
[qα(h,b; τ),h] δ(t − τ)dτ, t ∈ [0, T ] (7)
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where t denotes the running terminal time and δ(t − τ) is the Dirac delta distribution. The function (7) is
satisfying the equations of motion (5) and being an explicit and implicit function of the vector of design
variables h = {hd}, d = 1, 2, . . . , D, and the vector of random variables b = {br }, r = 1, 2, . . . , R, i.e.,

Qα(h,b; τ) − Kαβ(h,b) qβ(h,b; τ) − Cαβ(h,b) q̇β(h,b; τ)

−Mαβ(h,b) q̈β(h,b; τ) = 0, α, β = 1, 2, . . . , N

qα(h,b; 0) = 0, q̇α(h,b; 0) = 0 (8)

The first two probabilistic moments—expectations b
r
and cross-covariances Cov(br , bs) of the random

variables br are defined as

b
r = E

[
br

] =
∫ +∞

−∞
br p (br )dbr (9)

Cov(br , bs) = E
[
(br − br0)(b

s − bs0)
] = R(br , bs)

√
Var(br )Var(bs) (10)

with

R (br , bs) =
∫ +∞

−∞

∫ +∞

−∞
brbs p(br , bs)dbrdbs (11)

Var = α2E2[br ] (12)

whereR(br , bs), Var(br , bs), p(br , bs) andα denote functions of correlation, variance, joint probability density
and the coefficient of variation, respectively.

The functions of random variables Kαβ , Cαβ , Mαβ , qα and Qα will be handled by the perturbation scheme.
Assume that Kαβ , Cαβ , Mαβ , qβ and Qα are twice differentiable with respect to the design variables hd and
the random variables br . Using the chain rule of differentiation, and since the running terminal time t takes
on some a priori selected value in the time interval [0, T ], leads to the expression for the derivative of Φ with
respect to hd in the form

Φ;d(t) =
∫ t

0

[
G .d(τ ) δ(t − τ) + G.α(τ ) q;d

α (τ ) δ(t − τ)
]
dτ

= G .d(t) +
∫ t

0
G.α(τ ) q;d

α (τ ) δ(t − τ)dτ (13)

where (·);d is the first ordinary derivativewith respect to the dth design variable, (·).d and (·).α are the first partial
derivatives with respect to the dth design variable and αth nodal displacement, respectively. The components
G .d and G .α in Eq. (13) are known, because G is an explicit function of its arguments. While qα are implicit
with respect to hd , the derivatives q;d

α must be determined. Differentiating the equation of motion (8) with
respect to the design variables hd yields

Mαβ q̈
;d
β (τ ) + Cαβ q̇

;d
β (τ ) + Kαβq

;d
β (τ ) − Rd

α(τ ) = 0 (14)

where

Rd
α(τ ) = Q.d

α (τ ) − M .d
αβ q̈β(τ ) − C .d

αβ q̇β(τ ) − K .d
αβqβ(τ ) (15)

To eliminate q;d
α from (13), the adjoint system method is employed. Pre-multiplying (14) by the transpose of

an adjoint vector λα(τ), which is initially independent of random design variables, integrating by parts with
respect to τ and equating the coefficients at q;d

α in the resulting equation and (13), we obtain the differential
equations of motion for the adjoint system in the form

Mαβλ̈β(τ ) − Cαβλ̇β(τ ) + Kαβλβ(τ ) = G.α(t) δ(t − τ)

λα(t) = 0, λ̇α(t) = 0, τ ∈ [0, t], t ∈ [0, T ] (16)

Substituting (16) into (13) and taking into account (14) we obtain

Φ;d(t) = G .d(t) +
∫ t

0
λα(τ) Rd

α(τ ) d(τ ) (17)
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Now, the functions of random variables Mαβ , Cαβ , Kαβ , Qα , G .α , qβ , λα , M .d
αβ , C

.d
αβ , K

.d
αβ , Q

.d
α and G .d are

expanded around the expectations b
r
via the second-order perturbation, with a small parameter θ , generally

expressed as

(·)(h,b) = (·)0 + θ(·);r�br + 1

2
θ2(·);rs�br�bs, r, s = 1, 2, . . . , R (18)

where�br is the perturbational increment of br with respect to br0, and (·)0, (·);r and (·);rs describe the zeroth,
first and second ordinary derivatives with respect to br .

The expansions of Mαβ , Cαβ , Kαβ , Qα , G.α , qβ and λα are substituted into (8) and (16). Equating the
coefficients of the given parameter θ to zeroth, first and second power leads to

– 1 pair of the zero-order equations

M0
αβ q̈

0
β(τ ) + C0

αβ q̇
0
β(τ ) + K 0

αβq
0
β(τ ) = Q0

α(τ )

q0α(0) = 0; q̇0α(0) = 0; τ ∈ [0, t]; t ∈ [0, T ]
M0

αβλ̈0β(τ ) − C0
αβλ̇0β(τ ) + K 0

αβλ0β(τ ) = G0
.α(t)δ(t − τ)

λ0α(t) = 0; λ̇0α(t) = 0; τ ∈ [0, t]; t ∈ [0, T ] (19)

– r pairs of the first-order equations

M0
αβ q̈

;r
β (τ ) + C0

αβ q̇
;r
β (τ ) + K 0

αβq
;r
β (τ ) = Qr

α(τ )

q;r
α (0) = 0; q̇;r

α (0) = 0; τ ∈ [0, t]; t ∈ [0, T ]
M0

αβλ̈
;r
β (τ ) − C0

αβλ̇
;r
β (τ ) + K 0

αβλ
;r
β (τ ) = Gr

α(τ, t)

λ;r
α (t) = 0; λ̇;r

α (t) = 0; τ ∈ [0, t]; t ∈ [0, T ]
r = 1, 2, . . . , R (20)

– 1 pair of the second-order equations

M0
αβ q̈

(2)
β (τ ) + C0

αβ q̇
(2)
β (τ ) + K 0

αβq
(2)
β (τ ) = Q(2)

α (τ )

q(2)
α (0) = 0; q̇(2)

α (0) = 0; τ ∈ [0, t]; t ∈ [0, T ]
M0

αβλ̈
(2)
β (τ ) − C0

αβλ̇
(2)
β (τ ) + K 0

αβλ
(2)
β (τ ) = G(2)

α (τ, t)

λ(2)
α (t) = 0; λ̇(2)

α (t) = 0; τ ∈ [0, t]; t ∈ [0, T ] (21)

where

q(2)
α = 1

2 q
;rs
α Cov(br , bs)

λ
(2)
α = 1

2 λ;rs
α Cov(br , bs)

, r, s = 1, 2, . . . , R (22)

while the first- and second-order primary and adjoint generalized load vectors are defined by

Qr
α(τ ) = Q;r

α (τ ) − M ;r
αβ q̈

0
β(τ ) − C ;r

αβ q̇
0
β(τ ) − K ;r

αβq
0
β(τ )

Gr
α(τ, t) = G;r

.α(t)δ(t − τ) − M ;r
αβλ̈0β(τ ) + C ;r

αβλ̇0β(τ ) − K ;r
αβλ0β(τ ) (23)

Q(2)
α (τ ) =

[1
2
Q;rs

α (τ ) − M ;r
αβ q̈

;s
β (τ ) − C ;r

αβ q̇
;s
β (τ ) − K ;r

αβq
;s
β (τ )

−1

2
M ;rs

αβ q̈
0
β (τ ) − 1

2
C ;rs

αβ q̇
0
β(τ ) − 1

2
K ;rs

αβ q
0
β(τ )

]
Cov(br , bs)

G(2)
α (τ, t) =

[1
2
G;rs

.α (t)δ(t − τ) − M ;r
αβλ̈

;s
β (τ ) + C ;r

αβλ̇
;s
β (τ ) − K ;r

αβλ
;s
β (τ )

−1

2
M ;rs

αβ λ̈ 0
β (τ ) + 1

2
C ;rs

αβ λ̇0β(τ ) − 1

2
K ;rs

αβ λ0β(τ )
]
Cov(br , bs) (24)
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Having solved the initial-terminal systems (19)–(21) for the zero-, first- and second-order primary and
adjoint displacements, velocities and accelerations, the solution to the time instant stochastic sensitivity problem
can be received by setting θ = 1 in the expansions of Mαβ , Cαβ , Kαβ , Qα , G.α , qβ , q̇β , q̈β , λα , λ̇α and λ̈α via
the second-order perturbation. In this way, the dynamic case of the second-order accurate expectations and
cross-covariances for the time instant sensitivity gradient are written, respectively, as

E
[
Φ.d(t)

]
= G0.d(t) +

∫ t

0

{
Ad

α(τ )
[
λ0α(τ ) + λ(2)

α (τ )
] − Dd(2)

α (τ )λ0α(τ )
}
dτ

+
{
1

2
G .d;rs(t) +

∫ t

0

[Bdr
α (τ )λ;s

α (τ ) + Cdrsα (τ )λ0α(τ )
]
dτ

}
Cov(br , bs) (25)

Cov(Φ.d(t1), Φ
.e(t2)) =

(
G .d;r (t1)G .e;s(t2)

+G .d;r (t1)
∫ t2

0

[Ae
α(τ )λ;s

α (τ ) + Bes
α (τ )λ0α(τ )

]
dτ

+G .e;r (t2)
∫ t1

0

[Ad
α(τ )λ;s

α (τ ) + Bds
α (τ )λ0α(τ )

]
dτ

+
∫ t1

0

∫ t2

0

{
Ad

α(τ )Ae
β(ν)λ;r

α (τ )λ
;s
β (ν)

+ [Ad
α(τ )Ber

β (ν) + Ae
β(ν)Bdr

α (τ )
]
λ;s

α (τ )λ0β(ν)

+Bdr
α (τ )Bes

β (ν)λ0α(τ )λ0β(ν)
}
dτdν

− Φ
.d

(t1)

{
1

2
G .e;rs(t2) +

∫ t2

0

[Ber
α (τ )λ;s

α (τ )

+ Cersα (τ )λ0α(τ )
]
dτ

}
− Φ

.e
(t2)

{
1

2
G .d;rs(τ )

+
∫ t1

0

[Bdr
α (τ )λ;s

α (τ ) + Cdrsα (τ )λ0α(τ )
]
dτ

})
Cov(br , bs)

+ Φ
.d

(t1)
∫ t2

0

[De(2)
α (τ )λ0α(τ ) − Ae

α(τ )λ(2)
α (τ )

]
dτ

+ Φ
.e
(t2)

∫ t1

0

[Dd(2)
α (τ )λ0α(τ ) − Ad

α(τ )λ(2)
α (τ )

]
dτ (26)

where

Ad
α(τ ) = Q0.d

α (τ ) − K 0.d
αβ q0β(τ ) − C0.d

αβ q̇0β(τ ) − M0.d
αβ q̈0β(τ )

Bdr
α (τ ) = Q.d;r

α (τ ) − K 0.d
αβ q;r

β (τ ) − K .d;r
αβ q0β(τ ) − C0.d

αβ q̇;r
β (τ )

− C .d;r
αβ (τ )q̇0β(τ ) − M0.d

αβ q̈;r
β (τ ) − M .d;r

αβ q̈0β(τ )

Cdrsα (τ ) = 1

2
Q.d;rs

α (τ ) − K .d;r
αβ q;s

β (τ ) − 1

2
K .d;rs

αβ q0β(τ ) − C .d;r
αβ q̇;s

β (τ )

− 1

2
C .d;rs

αβ q̇0β(τ ) − M .d;r
αβ q̈;s

β (τ ) − 1

2
M .d;rs

αβ q̈0β(τ )

Dd(2)
α (τ ) = K 0.d

αβ q(2)
β (τ ) + C0.d

αβ q̇(2)
β (τ ) + M0.d

αβ q̈(2)
β (τ ) (27)

with t, t1, t2 ∈ [0, T ]; d, e = 1, 2, . . . , D; r, s = 1, 2, . . . , R; α, β = 1, 2, . . . , N .
It should be noted that the obtained cross-covariance matrix (26) is second-order accurate, and not the

first-order one as in [18].



1918 A. Jablonka

4 Numerical results

For illustration purposes, the dynamic sensitivity of displacement to random change of design parameters
for three different structural systems is considered. First, the example of simple structure is considered for
comparison the first- and second-order accuracy for the cross-covariance matrix. Next, the example known
from [18] and discussed earlier for static sensitivity in [22] is analyzed. The numerical results given below are
completely second-order accurate for the expectation vector and cross-covariance matrix, other than in [18].
Random design variables are defined by the thicknesses of shell elements and the cross-sectional areas of beam
elements. Expectations and standard deviations, being the square root of variances, of dynamic sensitivity are
presented in the graphs below. The stochastic sensitivity analysis is implemented by using a modified version
of the computer code POLSAP, [25].

Fig. 1 Truss structure—FEM model

Fig. 2 Dynamic displacement sensitivity of: a element No. 1, b element No. 2—cross-sectional areas as a random design variables
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Fig. 3 Cross-covariances for dynamic displacement sensitivity of: a element No. 1, b elements No. 1 and No. 2

Fig. 4 Cylindrical shell—FEM model

4.1 Example 1: Two-element truss structure

The first example is only academic and is intended to show the difference between the first- and second-order
accurate cross-covariances of dynamic displacement sensitivity. The structure consisting of two truss elements
with a length L = 5m was analyzed, Fig. 1. The nodes A and B are locked on moving. The elements are
designed with material characterized by Young’s modulus e = 200GPa and density ρ = 7.85 g/cm3. Random
design variables are defined as cross-sectional areas ar , r = 1, 2, with the means ar0 = E

[
ar

] = 5× 10−3 m2.
The correlation function is of the form
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Table 1 Shell: eigenproblem—numerical results

Vibration form 1 2 3 4 5 6 7 8 …

Frequency f (Hz) 2.38 7.49 11.19 15.40 16.96 22.12 24.63 25.73 …

Fig. 5 Displacements at the node A

R(ar , as) = exp

(−|xr − xs |
λ

)
exp

(−|yr − ys |
λ

)
(28)

where λ = 0.5 and the coefficient of variation α = 0.02 are applied. The truss is loaded at the point C by the
constant force Q(τ ) = 1000 kN, Fig. 1. The response function is described as

Φ = |q|
qall

− 1 < 0 (29)

where the allowable vertical displacement qall = 0.05 at the node C is assumed.
A dynamic stochastic sensitivity analysis was carried out by the mode superposition technique using the

programMATHEMATICA, [26]. The periods for the first and second vibration formswere: T1 = 8.87×10−3 s,
T2 = 5.07 × 10−3 s. Maximum vertical displacements at the node C were approx. 0.02m.

The expectations of displacement sensitivity of the node C to the change of cross-sectional areas were
differed by 4% from deterministic values, Fig. 2. The results of variance for dynamic displacement sensitivity
of element No. 1 and cross-covariance for sensitivity of elements No. 1 and No. 2 are shown in Fig. 3. The
calculations were done with first- and second-order accuracy. The covariances obtained with second-order
accuracy are characterized by more constant increase in the time than covariances with first-order accuracy.

4.2 Example 2: Cylindrical thin shell structure

In Example 2, the time distributions of the sensitivity gradient for a thin shell structure, which is a quarter of a
cylinder of radius R = 4.0m and length L = 4.8m, are considered, Fig. 4. The following boundary conditions
are adopted: along the bound AB the x-displacements, and y- and z-rotations are zero, BC is entirely free, CD
is fixed, along the boundDA the y-displacements, and x- and z-rotations are zero. The material is characterized
by Young’s modulus e = 10GPa and Poisson’s ratio ν = 0.3. The finite element mesh of the shell consists
of 60 equally rectangular elements. The shell thicknesses tr , r = 1, 2, . . . , 60, are random design variables
with the means tr0 = E

[
tr

] = 0.1m. The correlation function is described as

R(tr , t s) = exp

(−|xr − xs |
R λ

)
exp

(−|yr − ys |
L λ

)
(30)

where λ = 0.25 and the coefficient of variation α = 0.08. The shell is loaded by constant force Q(τ ) = 10 kN
at the point A, Fig. 4, as a Heaviside step function, on the time interval T = 5 s divided into 2500 equal
steps.
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Fig. 6 Dynamic displacement sensitivity of: a el. No. 1, b el. No. 40, c el. No. 60—shell thicknesses as a random design variables

The response function takes the form

Φ = 1

t

∫ t

0

∫
Ω

δ(x − x∗) q2(x, τ ) dΩ dτ, t ∈ [0, T ] (31)

where δ is the Dirac delta function andΩ is the structure volume. The terminal conditions of the adjoint system
are λ(t) = 0, λ̇(t) = 0. We assume that the allowable displacement qz at the node A is 0.03.

A dynamic sensitivity analysis was carried out using the mode superposition technique with 10 lowest
eigensystems. First, solving eigenproblem, eigenvalues and eigenvectors were received. The frequency for
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(a)

(b)

Fig. 7 Frame structure: a nodes of FEM model, b beam elements

Table 2 Frame: eigenproblem—numerical results

Vibration form 1 2 3 4 5 6 7 8 …

Frequency f (Hz) 2.84 2.91 3.31 3.80 4.57 4.72 4.76 5.42 …

the first form of vibration was 2.38Hz, Table 1. The 60 correlated random variables were transformed into
uncorrelated variables using 10 highest modes in the calculation.

The maximum displacements at the node A did not exceed 0.03m, Fig. 5. The differences between the
expected and deterministic values were about 2%. The numerical results of displacement sensitivity of the
node A to the change of element thicknesses for selected elements are shown in Fig. 6. The most sensitive
results were obtainedwith the shell element No. 1 being around nodeC. The standard deviation of displacement
sensitivity was about 30% of the expectations.

4.3 Example 3: Frame structure

Example 3 concerns the time displacement response of a frame structure of length Lx = 30m, maximum
width Lmax

y = 24m, minimum height Hmin
z = 5m and maximum height Hmax

z = 10m, Fig. 7. The structure
was modeled with a FEM mesh with 124 beam elements. As for boundary conditions, nodes 1, 5, 15, 16, 30,
31, 49 and 115 are fixed. All the elements are designed with steel profiles characterized by Young’s modulus
e = 210GPa and Poisson’s ratio ν = 0.3. Random design variables are defined as cross-sectional areas ar ,
with expectations ar0 = E

[
ar

] = 7.49×10−3 m2. Moments of torsion and inertia are considered as a measure
of the cross-sectional areas squared, with Ix = 1.594 a2 and Iy = Iz = 0.797 a2. The correlation function is
described as
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Fig. 8 Displacements: a qx at the node 69, b qy at the node 97

R(ar , as) = exp

(−|xr − xs |
λ

)
exp

(−|yr − ys |
λ

)
exp

(−|zr − zs |
λ

)
(32)

where λ = 0.1 and the coefficient of variation α = 0.7 are adopted. The response function takes also the
form (31). The system is loaded at the point 93 by the constant force Qy(τ ) = 50 kN, Fig. 7, as a Heaviside
function, on the time interval T = 5 s divided into 2500 steps. The allowable displacement qy = 0.3 at the
node 93 is assumed.

A sensitivity analysis is also conducted using the mode superposition technique with 10 lowest eigensys-
tems. The frequency values for the first eight forms of vibration were presented in Table 2. It can be seen that
the differences between the following values are small. A set of 124 correlated random variables was converted
to a set of uncorrelated variables using 10 highest modes in the calculation.

The obtained displacements did not exceed the allowable limits. The results of displacements qx at the
node 69 and qy at the node 97 are shown in Fig. 8. The expected and deterministic values differ by about 3%.

Figures 9 and 10 give the expectations and standard deviations of dynamic displacement sensitivity of the
node 93 to the change of cross-sectional areas of some elements. Elements No. 1, 27, 124 are distinguished
by great sensitivity values. Some graphs, e.g., for element No. 114, are quite regular, others, e.g., for elements
No. 1, 27, 41, 124, have varying amplitudes. The waveform for element No. 1, Fig. 9a), is characteristic for
systems with beat phenomenon. The standard deviations of displacement sensitivity with respect to the beam
cross-sectional areas were about 30–40% of the expectations.

The numerical results of dynamic sensitivity analysis of the shell, Fig. 6, and of the frame, Figs. 9, 10,
show that the time-dependent sensitivities gain positive values periodically in time, except Fig. 9c). The graph
of sensitivity for element No. 1, Fig. 9a), particularly shows that positive values are higher than negative ones.
The fact suggests that to decrease displacements at the considered points, decreasing the thickness of shell
elements or the cross-sectional areas of beam elements may be appropriate. Such a proposition was already
discussed in terms of statics by Jablonka and Hien [22].
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Fig. 9 Dynamic displacement sensitivity of: a el. No. 1, b el. No. 27, c el. No. 41—cross-sectional areas as a random design
variables

5 Concluding remarks

A modified perturbation scheme for stochastic systems in a dynamic context, described in this paper, leads to
completely second-order accurate both the probabilisticmoments of time instant sensitivity. In a traditional per-
turbation scheme, only the expectations with second-order accuracy and first-order accurate cross-covariances
were formulated.
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Fig. 10 Dynamic displacement sensitivity of: a el. No. 55, b el. No. 102, c el. No. 114, d el. No. 124—cross-sectional areas as a
random design variables
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Presented results prove that stochastic sensitivity analysis of dynamic systems may be important for design
purposes. Randomness of design parameters reflects the reality, inaccuracies in construction, slight destruction
of building elements. Time instant sensitivity analysis shows how the response of a system is dependent on
design parameters and reveals negative dynamic phenomena, e.g., beat effect. Dynamic sensitivity results
obtained in the stochastic context provide more information about the response of the system and allow us to
specify the so-called design point.

In the discussed examples, damping effects were omitted. Selecting the appropriate damping factor even
more reflects the real structural response. Taking into account damping effects is the problemof further analysis.
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