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Abstract
The rodent chloride channel regulatory proteins mCLCA2 and its porcine and human homologues pCLCA2 and hCLCA2 
are expressed in keratinocytes but their localization and significance in the epidermis have remained elusive. hCLCA2 regu-
lates cancer cell migration, invasion and apoptosis, and its loss predicts poor prognosis in many tumors. Here, we studied 
the influences of epidermal maturation and UV-irradiation (UVR) on rCLCA2 (previous rCLCA5) expression in cultured 
rat epidermal keratinocytes (REK) and correlated the results with mCLCA2 expression in mouse skin in vivo. Furthermore, 
we explored the influence of rCLCA2 silencing on UVR-induced apoptosis. rClca2 mRNA was strongly expressed in REK 
cells, and its level in organotypic cultures remained unchanged during the epidermal maturation process from a single cell 
layer to fully differentiated, stratified cultures. Immunostaining confirmed its uniform localization throughout the epidermal 
layers in REK cultures and in rat skin. A single dose of UVR modestly downregulated rClca2 expression in organotypic 
REK cultures. The immunohistochemical staining showed that CLCA2 localized in basal and spinous layers also in mouse 
skin, and repeated UVR induced its partial loss. Interestingly, silencing of rCLCA2 reduced the number of apoptotic cells 
induced by UVR, suggesting that by facilitating apoptosis, CLCA2 may protect keratinocytes against the risk of malignancy 
posed by UVB-induced corrupt DNA.
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Introduction

Skin and particularly its most superficial part, epidermis, 
form the barrier around our body, protecting from harm-
ful insults. To fulfill this task, the epidermal cells continu-
ously proliferate and differentiate, regenerating the barrier 
in a tightly regulated manner. When an insult damages the 

barrier, mechanisms are needed to correct the situation 
as soon as possible. Among the multitude of mechanisms 
involved in this response, chloride channels including Clc-2 
and -3, and CFTR have recently gained interest (Chen et al. 
2016; Dong et al. 2015; Guo et al. 2016). They may be 
involved in the regulation of keratinocyte migration, prolifer-
ation, and differentiation (Dong et al. 2015; Guo et al. 2016; 
Pan et al. 2015) and tumor suppression (Zhang et al. 2013). 
Chloride channel accessory proteins (CLCA) may regulate 
the activity of chloride channels (reviewed in Patel et al. 
2009; Walia et al. 2012; Yurtsever et al. 2012). hCLCA2 
and its porcine (pCLCA2) and mouse (mCLCA2, former 
mCLCA5) homologues are expressed by epidermal keratino-
cytes (Braun et al. 2010; Connon et al. 2004; Plog et al. 
2012). Also, the other CLCA family members mCLCA3A1 
(former mCLCA1), mCLCA3A2 (former mCLCA2) and 
rCLCA5 (former rCLCA2) are expressed in epidermis (Bart 
et al. 2014; Elble and Pauli 2001; Leverkoehne et al. 2002; 
Yamazaki et al. 2013)
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CLCA proteins are transmembrane molecules proteolyti-
cally cleaved into a ~ 35-kDa C-terminal fragment associ-
ated with the plasma membrane, and a ~ 90-kDa N-termi-
nal, secreted fragment (reviewed in (Patel et al. 2009)). 
Via regulating chloride channels, the CLCA proteins can 
modulate cell proliferation and apoptosis (reviewed in Patel 
et al. 2009). They also contain integrin-binding domains via 
which they can promote cell adhesion and control cell migra-
tion and invasion (Abdel-Ghany et al. 2003; Sasaki et al. 
2012; Walia et al. 2012). More recently, it has been shown 
that CLCA proteins regulate intracellular Ca-signaling by 
complexing with the ER and cell surface Ca channels STIM1 
and Orai1. This possibly enables control of diverse cellular 
processes such as differentiation (Sharma et al. 2018).

The loss of hCLCA2 correlates with the development of 
many tumors (Bustin et al. 2001; Elble and Pauli 2001; Gru-
ber and Pauli 1999a; Qiang et al. 2018; Riker et al. 2008; 
Shinmura et al. 2014; Tanikawa et al. 2012; Walia et al. 
2009; Zhao et al. 2011), yet the role of CLCA proteins in the 
epidermis is unsettled. hCLCA2 may protect keratinocytes 
from hyperosmotic stress (Seltmann et al. 2018). rCLCA5 
appears to be associated with epidermal differentiation (Bart 
et al. 2014; Yamazaki et al. 2013). mCLCA2 and pCLCA2 
proteins have been localized in the uppermost vital cell lay-
ers in the epidermis and suggested to be involved in differen-
tiation (Braun et al. 2010; Plog et al. 2012). However, when 
mouse keratinocytes are induced to differentiate with high 
calcium medium, no change in mClca2 mRNA and protein 
expression is observed (Hiromatsu et al. 2015). Because of 
the CLCA family differences between human, mouse and 
rat, it is possible that the functions of CLCA2 orthologues 
in the epidermis are not equal in different species. Support-
ing this hypothesis, Seltman and colleagues showed that 
mClca3A2 (former mClca2), rather than mClca2, shows 
similar responses to dehydration and hyperosmotic stress 
as hCLCA2 (Seltmann et al. 2018). Unlike the homologs 
in the human, pig and mouse, the expression or functions 
of rCLCA2 in the epidermis have not been studied before.

Here, we show that rCLCA2 has relatively high and stable 
mRNA and protein expression level throughout the different 
stages of epidermal maturation. In addition, we show that 
rCLCA2 facilitates UV-induced apoptosis in keratinocytes, 
and it may also itself be a UVR target gene.

Materials and methods

Keratinocyte culture

REKs (Baden and Kubilus 1983) were maintained as mon-
olayer cultures in MEM (Thermo Fisher Scientific/Gibco, 
Waltham, MA) containing 10% FBS (HyClone, Thermo), 
4 mM L-glutamine, 50 μg/ml streptomycin and 50 U/ml 

penicillin. For immunostainings, the cells were grown on 
chamber slides (Nalge Nunc, Thermo Fisher Scientific Inc., 
Waltham, MA).

Maturation assay

The maturation assay was performed as described before 
(Hämäläinen et al. 2018). REKs were seeded on polycar-
bonate culture inserts in 12-well plates (0.4 µm pore size, 
Thermo Fisher Scientific/Gibco) in MEM containing 10% 
FBS. After lifting to the air–liquid interface on day 3, the 
cultures were incubated in DMEM (Invitrogen/Gibco) with 
10% FBS, L-glutamine, and antibiotics.

UVB irradiation

For the UVB and sham treatments, the REK organotypic 
cultures were transferred to Dulbecco’s PBS (Euroclone). 
A portable UV-lamp (UVM-57; UVP, Upland, CA) emit-
ting mid-range UV at a nominal wavelength of 302 nm was 
used for the UVB treatments as described previously (Bart 
et al. 2014). The peak radiation of the lamp at 312–313 nm 
was verified by spectroradiometry as described previously 
(Bart et al. 2014).

Immunostainings

The UVR-treated mouse samples were fixed in neutral 
buffered formalin, while the other specimens were fixed in 
Histochoice (Amresco, Solon, OH). Rehydrated paraffin 
sections were sequentially incubated in 1% H2O2 and 1% 
bovine serum albumin in 0.1 M phosphate buffer, pH 7.4. An 
overnight incubation with the anti-CLCA2 antibody (M-60, 
Santa Cruz Biotechnology, Santa Cruz, CA; 1:200–1:2000) 
was followed by incubations with biotinylated anti-rabbit 
IgG (1:500) and avidin–biotin peroxidase (both from Vector 
Laboratories, Burlingame, CA). The color was developed 
with 0.05% 3,3′-diaminobenzidine (Sigma-Aldrich) con-
taining 0.03% H2O2. The nuclei were stained with Mayer’s 
hematoxylin. Imaging was performed using Zeiss AxioIm-
ager M2 (Carl Zeiss AG, Oberkochen, Germany, Plan-Neo-
fluar 40 × 0.75 NA objective) with AxioCam MRc camera.

For colocalization analysis, the anti-CLCA2 antibody 
(1:500) was mixed with anti-TGN46 antibody (1:1000, PA5-
23,068, Invitrogen). At the secondary step, Texas Red (TR)- 
and FITC-labeled anti-rabbit and mouse IgG were mixed 
(1:500, Vector). To label endocytic vesicles, TR-labelled 
transferrin (25 µg/ml, T2875, Molecular Probes) was added 
to the cultures for 30 min. After fixation, the cells were 
stained for CLCA2 using FITC-labelled anti-rabbit IgG. 
Confocal images were taken with a 40 × NA 1.3 oil objec-
tive on a Zeiss Axio Observer inverted microscope with a 
Zeiss LSM 700 confocal module.
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The r/mCLCA2 antibody is directed against amino acids 
601–660 of mCLCA2, which show 93% sequence homology 
between these species. This site is localized at the N-ter-
minal side of the postulated cleavage site of the full-length 
pro-form of the molecule (Patel et al. 2009). The specificity 
of the antibody was controlled: (1) Using non-immune rabbit 
IgG instead of the primary antibody (Fig. 1f). (2) By silenc-
ing rClca2 expression in REK cells with specific siRNAs 
(Fig. 1b). (3) By staining mouse kidney and rat subman-
dibular and parotid glands. The observed staining patterns 
did not correspond to those published for mCLCA3A1 and 
mCLCA3A2 in the kidney (Roussa et al. 2010) or rCLCA5 
in the salivary glands (Yamazaki et  al. 2005) (data not 
shown) excluding the cross reactivity of the anti-m/rCLCA2 
antibody with these CLCAs.

Mouse skin exposed to chronic UVR

Archived specimens of UVR-treated mouse skin were used 
for CLCA2 immunostainings (Kumlin et al. 1998). The 
back skin of the mice was exposed to UVR three times a 
week for 10.5 months with a lamp simulating solar spec-
trum (280–400 nm) (Philips HP3136, Eindhoven, The Neth-
erlands). Each single UVR dose corresponded to one human 
minimum erythema dose (Kumlin et al. 1998).

CLCA2 staining pattern was evaluated using a 40 × objec-
tive. Each consecutive field was classified as either regu-
lar, uniformly stained or irregular, containing focal weakly 
stained or negative area among the intensely stained cells. 
The morphological type of the epidermis (normal/mild 
hyperplasia, moderate/strong hyperplasia, dysplasia) and the 
presence of SCC were also recorded. Some of the specimens 
contained areas of 2 or 3 epidermal morphological types 
and/or SCC. Irregular staining was classified into four levels 
scored from 1 to 4. Score 1 was given when 0–25% of the 
fields contained focally reduced staining; while scores 2, 3 
and 4 were assigned to samples containing reduced staining 
in 26–50%, 51–75% and 76–100% of fields, respectively. 
Samples with poor tissue preservation or size too small for 
representative analysis were omitted from the analyses.

SiRNA transfections, apoptosis, cytotoxicity 
and migration assays

RNAiMAX was used to transfect REK cells with control 
siRNA (Origene, Rockville, Maryland, USA) or rClca2 
siRNA (Eurogentech, Liège, Belgium). 30 nM final con-
centrations were used for the immunostainings, apoptosis 
and cytotoxicity assays and 50 nM for the migration assays. 
24 h after transfection, the cells were fixed for the immu-
nostainings. For the caspase 3/7 activation assay and for the 
cytotoxicity assay, the cells were trypsinized and seeded 
in 96-well plates from Greiner (Bio-One, Frickenhausen, 

Germany) and Perkin Elmer (Waltham, MA), respectively. 
For migration assays, the cells were seeded on 24-well plates 
(Greiner).

A day after plating, the media in 96-well plates were 
replaced with PBS and the cells were exposed to 10 mJ/cm2 
of UVB, or sham treated. Thereafter, fresh culture medium 
was added. To study caspase 3/7 activation, IncuCyte® Cas-
pase-3/7 Red -dye (Sartorius, Ann Arbor, MI) was added to 
the medium at 0.25 μM final concentration, and the cells 
were incubated for 24 h in IncuCyte S3 live cell imaging sys-
tem (Sartorius). Imaging of the cells were done hourly. Data 
analysis was performed using IncuCyte Software (Sartorius), 
normalizing the caspase 3/7 signals to cell confluence.

For the cytotoxicity assay (Promega, Madison, WI), 24 h 
after the UVB and sham exposures, AAF-Glo™ substrate 
(Promega) was added to the wells. After 15-min incubation 
at room temperature, the luminescence was measured using 
Luminoskan™ Ascent (Thermo Fisher Scientific) com-
bined with Ascent Software. To measure the total cytotox-
icity, lysis reagent containing digitonin was added, and the 
incubation and luminescence scan steps were repeated. As 
a positive control, some unexposed wells received 200 μM 
H2O2, and for a background control, we had medium-only 
(no cells) wells.

In the migration assay, cultures incubated for 24 h after 
the plating were wounded with a pipet tip. The cultures were 
photographed immediately after the scratching and 6 h later 
using an Olympus CK2 inverted phase contrast microscope 
(Olympus Optical Co. Ltd., Tokyo, Japan, 4 × objective) with 
a Nikon Digital Sight DS-L1 camera system. The cell-free 
areas were measured using NIH ImageJ software (National 
Institutes of Health, USA; http://image​j.nih.gov/ij).

Extraction of total RNA

The epidermis was lyzed, and RNA was extracted with TRI 
Reagent® (Molecular Research Center, Cincinnati, OH, 
U.S.A.). The purity and quantity of total RNA were meas-
ured with a NanoDrop ND-1000 spectrophotometer (Thermo 
Fisher Scientific).

cDNA synthesis and quantitative RT‑PCR

1 µg of total RNA was used as a template for cDNA syn-
thesis with Verso™ cDNA synthesis Kit (Thermo Fisher 
Scientific). qRT-PCR analyses were done on Stratagene 
Mx3000P cycler (Agilent Technologies, Inc.) using Fast-
Start Universal SYBR Green Master with ROX (Roche). 
Gene-specific primer pairs and cycling conditions are listed 
in Supplemental Table 1. Fold changes were calculated as 
described (Livak and Schmittgen 2001).

http://imagej.nih.gov/ij
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Statistical methods

qRT-PCR data were analyzed with one-way ANOVA with 
Dunnett’s Multiple Comparisons Test (for organotypic time 
series) or two-way ANOVA with Bonferroni post-test (for 
UVB-treated samples) using GraphPad Prism 5.03 for Win-
dows (GraphPad Software, La Jolla, CA). The apoptosis data 
were analyzed using a linear mixed model with the Sidak 
pairwise comparisons between UVB-exposed control and 
Clca2-siRNA-transfected cultures with SPSS Statistics 27 
(IBM®). Evaluation of the CLCA2 staining patterns in 
mouse specimens was done using Mann–Whitney U test 
and the migration data using paired t test.

Results and discussion

rClca2 expression is not changed during epidermal 
maturation

According to the qRT-PCR data, Clca2 is expressed in 
cultured rat keratinocytes (REK) at a relatively high level 
(mean ΔCt-value: 6.7 and 7.0 in monolayer and in organo-
typic cultures, respectively). rClca2 mRNA expression level 
remained rather stable throughout the maturation period in 
the organotypic cultures, originating from a single cell layer 
(day 4) up to fully stratified and cornified epidermis (day 
12) (Fig. 1a).

The anti-m/rCLCA2 antibody gave a strong signal in 
REK monolayers with a grossly granular or vesicular 
intracellular pattern (Fig.  1b). Knockdown of rClca2 
with specific siRNAs resulted in a clear reduction of the 
rCLCA2 immunostaining (Fig. 1b, c). The efficacy of the 
mRNA knockdown was about 80% (Supplemental Fig. 1). 
Immunofluorescence staining with confocal microscopy 
confirmed that the CLCA2 antibody stained intracellular 
granular and vesicular structures close to the nucleus and 
further off in the cytoplasm but failed to show any plasma 
membrane staining (Fig. 2). In dual stainings with the 
endosomal marker transferrin, it showed just an occasional 
colocalization (Fig. 2a–c); while, it colocalized more sub-
stantially with an antibody recognizing the trans-Golgi 

network (TGN, Fig. 2d–f). However, only a part of the 
TGN vesicles were CLCA2 positive.

In REK organotypic cultures, the r/mCLCA2 antibody 
stained keratinocytes throughout their different stages of 
maturation (Fig. 1d, e). As in the monolayers, the stain-
ing was intracellular, while plasma membranes were not 
stained. All vital cell layers were positive although the 
intensity was somewhat lower in the granular layer com-
pared to the basal and spinous cells (Fig. 1e, arrow). The 
distribution of the CLCA2 immunostaining was similar in 
skin (Fig. 1g) and other stratified epithelial tissues of the 
rat, such as tongue and stomach (data not shown). Non-
immune rabbit IgG used as a negative control gave no 
signal in the vital parts of the epidermis, while stratum 
corneum showed non-specific staining (Fig. 1f).

In its equal expression in all vital cell layers, Clca2 
differs from rClca5, the expression of which clearly 
increases with epidermal maturation. In fully differentiated 
REK cultures and in rat epidermis, the full-length rClca5 
localizes in upper spinous and granular layers; while, its 
truncated splicing isoform is mainly located in the undif-
ferentiated basal cell layer (Bart et al. 2014; Yamazaki 
et al. 2013).

Similar to rClca2, its mouse orthologue mClca2 is 
expressed in the epidermis and other stratified epithelia at 
relatively high copy numbers (Braun et al. 2010). No change 
in mClca2 mRNA or protein expression has been observed 
in mouse keratinocytes induced to differentiate with the 
switch to high calcium medium (Hiromatsu et al. 2015), sug-
gesting that its expression is similar to the rat orthologue 
and not dependent on the stage of differentiation. In line 
with this notion, the m/rCLCA2 antibody used here stained 
with equal intensity the basal and suprabasal cell layers in 
mouse epidermis (Fig. 4b). However, another study using 
a different antibody found mCLCA2 only in the granular 
cells (Braun et al. 2010). Epitopes used in immunization (in 
N-terminal, C-terminal, or membrane-associated parts) and 
their sensitivity to fixation could explain the differences in 
the findings. Moreover, the site of processing of the protein 
and the distribution of its fragments may also differ between 
cell types and species. Thus, the processing of mCLCA2 
occurs in Golgi (Braun et al. 2010), whereas that of hCLCA2 
takes place at cell surface, and the human N-terminal frag-
ment remains associated with the C-terminal part at plasma 
membrane (Elble et al. 2006).

The immunostaining of the porcine orthologue pCLCA2 
localizes in the spinous and granular cells (Plog et al. 2012) 
while the hCLCA2 was originally reported to localize in the 
basement membrane zone (Connon et al. 2004). However, 
a newer human antibody (Atlas antibodies, #HPA047192) 
appears to stain both basal and spinous cell layers in the 
skin, esophagus and cervix, which suggests a distribution 
similar to that in rat and mouse.

Fig. 1   Rat epidermal keratinocytes express CLCA2. REK cells were 
grown in organotypic cultures (ROC) where they stratify and differ-
entiate (a, d, e, f). a Samples were collected for qRT-PCR at the indi-
cated time points (3 independent experiments, each with duplicate 
cultures). d, e, f Immunostaining with an anti-CLCA2 antibody or 
non-immune IgG at day 4 (d) and day 12 (e, f) (3 independent experi-
ments). b, c REK cells grown as monolayers were transfected with 
control (b) and rClca2-specific siRNA (c) and stained for rCLCA2. 
The experiment was repeated 4 times. In all experiments, CLCA2 
immunostaining intensity was lower in cultures treated with Clca2 
siRNA as compared to those with control siRNA. g Adult rat skin 
skin of 3 animals was stained for rCLCA2

◂
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Although hCLCA2 is expressed also in some simple 
epithelia like breast epithelium (Gruber and Pauli 1999b), 
it is especially strongly expressed in stratified epithelia 
like tongue, esophagus, cervix uteri, and vagina (Beckley 
et al. 2004; Braun et al. 2010), and therefore considered a 
marker of stratification. Indeed, in tissue culture models of 
human and chicken corneal epithelium, CLCA2 expression 
is induced when undifferentiated embryonic and stem cells 
in monolayer are committed to stratification (Connon et al. 
2006). The REKs in our work were isolated from newborn 
rat, already committed to the epidermal lineage (Baden and 
Kubilus 1983), and, therefore, show high Clca2 expression 
also in monolayer.

rCLCA2 has a proapoptotic function in epidermis

Human and mouse homologs of rCLCA2 have been asso-
ciated with apoptosis in breast epithelial cells (Beckley 
et al. 2004; Walia et al. 2009). To see if rCLCA2 has a 
similar function in rat keratinocytes, we silenced rClca2 
expression and examined its influence on UVB-induced 

apoptosis by analyzing the appearance of cells positive for 
caspase 3/7. Under basal culture conditions the numbers of 
caspase 3/7 -positive cells were low and rClca2 silencing 
showed no effect on it (Fig. 3a). A 10 mJ/cm2 dose of UVB 
caused a clear increase in caspase 3/7 positive cells after 
24 h in cultures treated with control siRNA (Fig. 3a). This 
rate of apoptosis was reduced by 50% in Clca2-silenced 
cultures (Fig. 3a). The CytoTox-assay, which measures the 
damage of cellular membranes, showed a similar trend 
(Fig. 3b). The findings indicate that rCLCA2 has a proa-
poptotic role in keratinocytes subject to UVR-induced 
stress. This can be important for removing cells harbor-
ing damaged DNA. In line with the present data, overex-
pression of mCLCA2 and hCLCA2 enhances apoptosis 
in mammary epithelial cells (Beckley et al. 2004; Walia 
et al. 2009) and its silencing makes MCF10 cells more 
resistant to cytotoxic drugs (Walia et  al. 2009). How-
ever, in human keratinocytes, Clca2 silencing failed to 
significantly reduce UVB-induced cell death (Seltmann 
et al. 2018). On the other hand, keratinocytes exposed to 
hyperosmotic stress responded to hCLCA2 silencing with 

Fig. 2   CLCA2 shows a partial colocalization with trans-golgi net-
work (TGN). a–c Monolayer REK cell cultures were incubated with 
Texas Red-transferrin for 30  min, fixed and stained with an anti-
rCLCA2 antibody. In panels d–f REK cells were stained for TGN 

(green) and CLCA2 (red). The data represent 3 individual experi-
ments, each performed with duplicates. Magnification bar represents 
50 µm
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apoptosis (Seltmann et al. 2018). The data suggest that 
CLCA2 may exert opposite effects on different cell death 
signaling pathways activated by different stressors.

Human CLCA2 has been reported to inhibit breast and 
nasopharyngeal cancer cell motility (Qiang et al. 2018; 
Sasaki et al. 2012; Walia et al. 2012) and its knockdown 
leads to increased migration and invasion (Connon et al. 
2005; Qiang et  al. 2018). In the rat, however, siRNA 
silencing of rClca2 did not significantly influence REK 
cell migration in a scratch wound assay (Supplemental 
Fig. 2).

UVR downmodulates rCLCA2 expression

Since CLCA2 is involved in the regulation of apoptosis 
when keratinocytes are stressed with UVR, as shown 
above, we wanted to study whether the expression of 
CLCA2 itself is affected by UVR. The importance of this 
question is stressed by the fact that UVR is the main risk 
factor for skin cancers. A single 30 mJ/cm2 dose of UVB, 
effective but not strongly destructive (Bart et al. 2014), 
caused ~ 20% down-modulation of rClca2 mRNA in 
organotypic REK cultures 8 h after the exposure (Fig. 4a). 
Despite this relatively modest original effect, the inhibi-
tion of UVB on Clca2 expression was still detected 7 days 
after the irradiation (Fig. 4a). A change in the general 
immunostaining intensity of CLCA2 could not be distin-
guished after the single UVB exposure (not shown). Due 
to the high sensitivity of the REK cells to the UVB irradia-
tion, we could not test if raising the UVB dose or repeated 
doses would have resulted in a more substantial decrease 
in rClca2 expression.

The effects of UVR on the expression of Clca family 
members vary among different species. For example, in 
human keratinocytes, hCLCA2 does not respond to a sin-
gle UVB exposure (Seltmann et al. 2018); while in mouse 
embryonic fibroblasts, UVB upregulates mCLCA2 expres-
sion in a p53-dependent way (Sasaki et al. 2012). In rat 
keratinocytes, a strong downregulation of rClca5 was 
found (Bart et al. 2014). UVR induced an irregular signal 
also in mouse epidermis and SCC stained with an anti-
rCLCA5 antibody, likely detecting mCLCA3A2 (former 
mCLCA2) (Bart, Hämäläinen et al. 2014; Hiromatsu et al. 
2015), which is strongly expressed in mouse epidermis 
(Elble and Pauli 2001; Seltmann et al. 2018).

UVR activates several signaling routes, which differ 
between the experimental models and the UVR doses used 
(Syed et al. 2013). p53 activation by UVB was not seen 
in the REK organotypic model (Bart et al. 2014), a result 
that corresponds to that in human skin in vivo (Enk et al. 
2004). Among the known negative regulators of CLCA2 
expression is the transcription factor Fra1 (Zhao et al. 
2014), whose mRNA expression and protein stability is 
increased by UVB in keratinocytes (Hopper et al. 2009; 
Jung et al. 2016; Silvers and Bowden 2002). Accordingly, 
several other Fra1 targets, such as TGFβ and keratins 10 
and 16 (Benhadou et al. 2020; Zolotarenko et al. 2018), 
are affected by UVB in REK organotypic cultures (Bart 
et al. 2014; Rauhala et al. 2015). The long-lasting influ-
ence of UVB on CLCA2 expression may involve epige-
netic effects through methylation or microRNA, shown 
to regulate CLCA2 expression in breast, colorectal and 
prostate cancers (Li et al. 2004; Porretti et al. 2018; Tani-
kawa et al. 2012).

Fig. 3   Clca2 silencing reduces UVR-induced cell death in REKs. 
CLCA2 expression was silenced in REK cells in monolayer cul-
tures. 2 days after the silencing, the cells were either exposed to UVB 
(10 mJ/cm2) or sham exposed. a The cultures were analyzed for cas-
pase 3/7 expression using Incucyte imaging system (3 independent 
experiments, each with 4 replicate wells). The difference between 
Cntr siRNA + UVB and Clca2 siRNA + UVB was statistically sig-
nificant (p < 0.001, linear mixed model). b The membrane integrity 
of the cultures was analyzed using Cytotoxicity assay (2 independent 
experiments, each with 3 replicate wells) as described in “Materials 
and methods”
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CLCA2 in carcinogenesis

The suppression of apoptosis following Clca2 downregula-
tion in UVR-exposed keratinocytes can be physiologically 
significant since it can contribute to the maintenance of skin 
integrity by preventing excessive cell death. However, at the 
same time, it can also facilitate survival of damaged cells 
and thereby favors carcinogenesis. To get insight into the 
long-term influences of UV stress on CLCA2 expression, 
we immunostained CLCA2 in skin samples collected from 
mice exposed to chronic UVR. The normal epidermis in 
sham-exposed specimens was intensely stained with the anti-
CLCA2 antibody (Fig. 4b). In the UVR-treated specimens 
the CLCA2 staining was also mostly intense but contained 
spots of focally reduced CLCA2 signal (Fig. 4c–e). When 
the frequency of this irregular staining pattern was scored 
in an 1–4 scale, all 14 specimens in the sham-exposed group 
got the lowest score (1); while in the UVR-treated group, 
only 4 out of 14 specimens were assigned into this category 
(Supplementary Table 2, p < 0.001). The irregular staining in 
the UVR-treated group correlated with the epidermal mor-
phology. Areas with strong epidermal hyperplasia or dyspla-
sia showed more irregular staining than the epidermal areas 
where UVR caused no visible change (Fig. 4c, Supplemen-
tary Table 2). Irregular staining was found also throughout 
the UVR-induced SCCs (n = 5), but the cells in the invasive 
front showed no preference for the reduced CLCA2 signal 
(Fig. 4d–f, Supplementary Table 2).

The loss of hCLCA2 in colorectal, breast and ovarian 
cancers and melanoma correlates with increased tumori-
genicity (Bustin et al. 2001; Li et al. 2004; Riker et al. 2008; 
Zhao et al. 2011), and the expression is low also in lung 
adenocarcinoma (Shinmura et al. 2014), indicating a role 
as a tumor suppressor. Our data suggesting that mCLCA2 
is decreased in the UVR-induced SCC are in line with these 

findings. Moreover, among the lung SCCs with a generally 
strong signal, there were cases showing reduced or totally 
lost CLCA2 immunostaining and this pattern correlated with 
high tumor grade and poor prognosis among female patients 
(Shinmura et al. 2014).

Conclusions

rCLCA2 is strongly expressed throughout the vital epidermis 
with equal expression levels in proliferative and differentiating 
cells. Silencing of rCLCA2 reduces UVB-induced apoptosis 
and cytotoxicity, indicating that rCLCA2 has a proapoptotic 
role in the epidermis, important in preventing survival of dam-
aged cells. It appears also to be a UVR target gene, being 
downmodulated by irradiation in the epidermis, suggesting 
a role in UVR-induced cancers. Obviously, more studies are 
needed to reveal whether CLCA2 indeed influences SCC ini-
tiation or progression and what are the mechanisms involved.
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