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lymphvasculogenic cellular differentiation program. The 
data are discussed in the context of embryonic and inflam-
mation-induced lymphangiogenesis.
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Introduction

The embryonic origin of the lymphatic vascular system has 
been studied for more than a hundred years, but controver-
sies still exist. Florence Sabin was among the first to study 
embryonic lymphangiogenesis, and stated that, in pigs, 
lymphatic vessel formation takes place via sprouting from 
specific segments of deep embryonic veins (Sabin 1909). 
In contrast, Kampmeier postulated an additional mesenchy-
mal origin of lymphatics (Kampmeier 1912). Our insight 
into the mechanisms regulating lymphatic vessel formation 
has greatly increased by the imaging of labeled cell lines 
in living animals, predominantly supporting Kampmeier’s 
hypothesis. For instance, in zebrafish embryos, precursor 
cells were found to migrate from the cardinal vein to the 
horizontal myoseptum to generate parachordal lymphang-
ioblasts in this area (Küchler et al. 2006; Yaniv et al. 2006; 
Hogan et al. 2009; Isogai et al. 2009). These parachordal 
lymphangioblasts could be pursued to migrate along arter-
ies and to remodel into major trunk lymphatic vessels thus 
forming the thoracic duct (Yaniv et al. 2006; Bussmann 
et al. 2010; Cha et al. 2012). The data provided evidence for 
an intermediate mesenchymal phase of lymphangiogenesis 
in fish. Although a strong conservation of genes controlling 
lymphangiogenesis could be detected between zebrafish 

Abstract The embryonic origin of lymphatic endothelial 
cells (LECs) has been a matter of controversy since more 
than a century. However, recent studies in mice have sup-
ported the concept that embryonic lymphangiogenesis is a 
complex process consisting of growth of lymphatics from 
specific venous segments as well as the integration of 
lymphangioblasts into the lymphatic networks. Similarly, 
the mechanisms of adult lymphangiogenesis are poorly 
understood and have rarely been studied. We have recently 
shown that endothelial progenitor cells isolated from the 
lung of adult mice have the capacity to form both blood 
vessels and lymphatics when grafted with Matrigel plugs 
into the skin of syngeneic mice. Here, we followed up on 
these experiments and studied the behavior of host leuko-
cytes during lymphangiogenesis in the Matrigel plugs. We 
observed a striking co-localization of CD45+ leukocytes 
with the developing lymphatics. Numerous CD45+ cells 
expressed the LEC marker podoplanin and were obviously 
integrated into the lining of lymphatic capillaries. This 
indicates that, similar to inflammation-induced lymphangi-
ogenesis in man, circulating CD45+ cells of adult mice are 
capable of initiating lymphangiogenesis and of adopting a 

Electronic supplementary material The online version of this 
article (doi:10.1007/s00418-015-1399-y) contains supplementary 
material, which is available to authorized users.

 * J. Wilting 
 joerg.wilting@med.uni-goettingen.de

1 Department of Anatomy and Cell Biology, University 
Medical School Göttingen, Göttingen, Germany

2 Department of Gene Regulation, Helmholtz Centre 
for Infection Research, Brunswick, Germany

3 Department of Chemical Biology, Helmholtz Centre 
for Infection Research, Brunswick, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00418-015-1399-y&domain=pdf
http://dx.doi.org/10.1007/s00418-015-1399-y


630 Histochem Cell Biol (2016) 145:629–636

1 3

and mammals (Schulte-Merker et al. 2011; Koltowska et al. 
2013), in higher vertebrates the lymphatic vascular system 
is more complex than in fish, which hardly possess any epi-
fascial, dermal lymphatics. Moreover, organ-specific lym-
phatic vascular patterns can be seen in higher vertebrates, 
but the cellular origins of embryonic lymphatics in diverse 
compartments of the body are still subject of controversial 
discussions.

Apart from the embryo, lymphangiogenesis takes place 
under pathological conditions (Wilting et al. 2009; Tam-
mela and Alitalo 2010). In murine experimental mod-
els employing the lung and the skin, it could be shown 
that acute inflammation is able to induce lymphangi-
ogenesis effectively (Pullinger and Florey 1937; Baluk 
et al. 2005). Thereby, pro-inflammatory factors such as 
interleukin-1 and tumor necrosis factor-α induce the up-
regulation of the lymphangiogenic vascular endothelial 
growth factor-C (VEGF-C; Cha et al. 2007). But also in 
man, acute inflammation is a strong pro-lymphangiogenic 
stimulus (Kerjaschki et al. 2006), whereas chronic inflam-
mation obviously has a deleterious effect on the lymphat-
ics. After repeated inflammation collectors seem to loose 
their contractility, lymph then coagulates and the vessels 
subsequently obliterate (Földi and Földi 2003). During 
inflammation-induced kidney transplant rejection in man, 
massive lymphangiogenesis into the parenchyma of the 
rejected kidneys has been observed; additionally, there was 
evidence for the integration of circulating cells into the lin-
ing of the newly developing lymphatics (Kerjaschki et al. 
2006). However, it is still a matter of debate, if the mech-
anisms of lymphangiogenesis in the mouse recapitulate 
those in man.

We have recently shown that endothelial progenitor 
cells (EPCs) isolated from the lungs of adult mice have 
the capacity to form both blood vessels and lymphatics, 
when grafted into the skin of mice using Matrigel® plugs. 
Thereby, hem- and lymphangiogenesis were initiated via 
stimulation of the EPCs either by direct application of 
growth factors such as VEGF-A and basic fibroblast growth 
factor (FGF; Schniedermann et al. 2010), or by co-injection 
of mesenchymal stem cells (MSCs), which secrete a variety 
of angiogenic factors. Thereby, we observed no participa-
tion of MSCs in the formation of the vascular wall (But-
tler et al. 2014). Here, we followed up on these experiments 
and studied the behavior of host leukocytes during lym-
phangiogenesis in the Matrigel® plugs. We found a signifi-
cant co-localization of CD45+ leukocytes with the develop-
ing lymphatics, and a considerable number of these cells 
were obviously integrated into the lining of newly formed 
lymphatics. This led us to the conclusion that, similar to the 
mechanisms of inflammation-induced lymphangiogenesis 
in man, circulating CD45+ cells of adult mice are capable 
of initiating a lymphvasculogenic program.

Materials and methods

Animals

Lung-derived EPCs and bone marrow-derived mesenchy-
mal stem cells (MSCs) were isolated from C57/Bl.6 mice, 
and the cells were grafted into adult C57/Bl.6 mice. For 
the transplantation experiments, we used 8–12 weeks-old 
female mice. All experiments were approved by our local 
institutional animal care committee and the Lower Saxony 
state council on animal care (LAVES). The experiments 
corresponded to the requirements of the American Physi-
ological Society.

Isolation and culture of EPCs and MSCs

All cells were isolated from C57/Bl.6 mice. EPCs were 
isolated from mouse lungs using a magnetic cell separation 
method that has already been described by Schniedermann 
et al. (2010). Briefly, the lungs of adult mice were dissected 
after perfusion, minced and digested using collagenase A. 
A single cell suspension of the collected cells was pro-
duced with a 40 μm cell strainer, and CD31+ cells were 
cultivated after magnetic activated cell sorting using anti-
CD31-coated Dynabeads® (Thermo Fischer Scientific). 
After 8–10 days, cells were separated again using FACS 
sorting with anti-CD31 antibodies.

MSCs were isolated from bone marrow as described by 
Soleimani and Nadri (2009). Shortly, mice were killed by 
cervical dislocation and the hind limbs were separated from 
the trunk after removal of the skin. Muscles and connec-
tive tissue was then removed from the tibia and the femur 
under sterile conditions. To harvest bone marrow, the dis-
tal ends of tibia and femur were cut off and bone marrow 
was flushed out with PBS by insertion of a needle into the 
cancellous bone. The cell suspension was then filtered, and 
bone marrow cells were transferred into culture dishes. The 
cells were used between passages 6–10 (MSCs) and 8–24 
(EPCs). As in our previous studies (Schniedermann et al. 
2010; Hoffmann et al. 2006), MSCs and EPCs were cul-
tured in DMEM enriched with FCS in 24- and 6-well plates 
(Nunc®). EPCs were cultured in gelatine-coated wells or 
cell culture flasks.

Assessment of vessel formation in vivo

For the in vivo experiments, MSCs and EPCs were trypsi-
nized and counted. For the experiments with each single 
cell type, 1 × 106 cells were used. When the two cell types 
were combined in a 1:1 mixture, 0.5–1 × 106 cells were 
used for each cell type. Cells were centrifuged and the pel-
lets were dissolved in 300 µl of cold Matrigel® (Corning, 
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Wiesbaden, Germany). The mice were shaved and mildly 
sedated by intraperitoneal injection of ketamine (100 mg/
kg body weight). Matrigel plugs with or without cells were 
injected subcutaneously into the left and right dorsal lum-
bar region (two injections per animal). After 7–9 days, the 
animals were killed, the skin was dissected, the Matrigel 
plugs photographed in situ, excised and fixed with 4 % par-
aformaldehyde (PFA). The specimens were rinsed in PBS, 
immersed with saccharose and embedded in tissue freeze 
medium (Neg-50, Richard-Allan Scientific, Mi). The num-
bers of experiments were: Matrigel without cells (n = 11), 
Matrigel with EPCs (5), Matrigel with MSCs (6), Matrigel 
with EPCs and MSCs (26).

Histology and immunohistology

Frozen specimens were sectioned at 16 µm, mounted on 
slides, and stained with hematoxylin and eosin (HE). For 
the immunofluorescence studies, non-specific binding was 
blocked by the incubation with 2 % bovine serum albu-
min (BSA) for 1 h prior to the incubation with the primary 
antibodies. Primary antibodies were anti-mouse CD31 (rat 
clone MEC13.3; 1:50, BD), anti-podoplanin (syrian hamster 
clone 8.1.1, 1:1000, Hybridoma Bank, Iowa), anti-Prox1 
(rabbit polyclonal, 1:500, Reliatech, Germany), and anti-
mouse CD45 (rat monoclonal, 1:50, BD). After incubation 
with the primary antibodies for 1 h, sections were rinsed 
and the secondary antibodies were applied: goat anti-rat 
Alexa594/or Alexa488, donkey anti-rabbit Alexa488, goat 
anti-hamster Alexa594/or Alexa488 (all from Invitrogen). 
Dapi was used to counter-stain all nuclei. The sections were 
mounted under coverslips using Fluoromount-G (Southern 
Biotechnology, US) and studied with Axio Imager Z1 with 
ApoTome device (Zeiss, Göttingen, Germany).

Results

In all experiments performed with Matrigel® plugs contain-
ing a 1:1 mixture of EPCs and MSCs, the stereomicroscopic 
inspection revealed the presence of blood vessels in the plugs 
already after 7–9 days. These vessels were obviously highly 
fragile since careful dissection of the skin always resulted in 
hemorrhage in the plug region. Matrigel® controls and plugs 
containing only each single cell type were macroscopically 
and microscopically free of vessels, as it was shown in detail 
recently (Buttler et al. 2014). The development of vessels 
in the EPC/MSC-containing plugs was verified by immu-
nofluorescence using antibodies against CD31/PECAM1. 
In normal tissues, blood vascular endothelial cells (BECs) 
are strongly CD31/PECAM1-positive, whereas lymphatic 
endothelial cells (LECs) are just weakly positive and charac-
terized by their nuclear expression of the Prox1 transcription 

factor (Wilting et al. 2002). Both types of expression pattern 
could be found in EPC/MSC-containing Matrigel® plugs, 
clearly documenting the development of blood vessels and 
lymphatic networks (Fig. 1). The newly formed vessels 
were made up of a mosaic containing grafted EPCs and host 
endothelial cells. We did not find any signs for the integra-
tion of MSC into these vessels (Buttler et al. 2014). Stud-
ies using antibodies against the pan-leukocyte marker CD45 
revealed massive infiltration of leukocytes into the experi-
mental plugs, indicating an inflammatory-type of lymphang-
iogenesis, although a syngeneic model was used in our graft-
ing experiment. We observed a significant co-localization 
of host leukocytes with the podoplanin–positive lymphatic 
capillary networks in the plugs (Fig. 2), indicating an active 
participation of the leukocytes in adult lymphangiogene-
sis. Interestingly, a subpopulation of CD45+ cells assumed 
endothelial-like morphology and was obviously integrated 
into the newly forming lymphatic networks (Fig. 3). In many 
cases, like those shown in Figs. 2 and 3, the new lymphat-
ics formed delicate capillary-like networks, but we also 
observed sinusoid-like lymphatics. Again, round CD45+ leu-
kocytes could clearly be distinguished from endothelial-like 
cells, which co-expressed CD45 and podoplanin (Fig. 4). In 
rare case we found lymphatics with a wide lumen. In such 
cases we observed cells that obviously lined the lumen of 
the vessel (Fig. 5; Suppl. Movie 1). Our data provide strong 
evidence for the existence of leukocytes with lymphvasculo-
genic potential in adult mice.

Discussion

Lymphangiogenic potential of endothelial progenitor 
cells

We have previously shown that the lung of mice contains 
EPCs that possess the potential to differentiate into both 
BECs and LECs (Schniedermann et al. 2010; Buttler et al. 
2014). Thereby, the EPCs exert their hem- and lymphangi-
ogenic program only after exogenous stimulation, either 
by direct application with VEGF-A and FGF, or after co-
transplantation with MSCs (Melero-Martin et al. 2008; 
Schniedermann et al. 2010; Lin et al. 2012; Buttler et al. 
2014). It has to be pointed out that rodents have the capac-
ity to regenerate lung tissue after resection, which has not 
been observed in the human. Regeneration of mouse lung is 
accompanied by the formation of new blood vessels (Kon-
erding et al. 2012); however, the development of lymphatics 
has not been studied in this model. In our experiments, the 
lymphatics in the Matrigel plugs are formed by a mosaic 
of grafted EPCs and host-derived LECs, which was shown 
by the use of GFP-labeled EPCs (Buttler et al. 2014). Since 
we used a syngeneic mouse model, it is admissible to 
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speculate that autologous patient-derived EPCs may behave 
in a similar way and integrate into newly developing lym-
phatic networks, which might provide a therapeutic option 
for the treatment of lymphedema.

Leukocytes in murine lymphangiogenesis

Here, we studied lymphangiogenesis in adult mice and 
observed a striking co-localization of new lymphatics with 
CD45+ leukocytes. In an embryonic mouse model of lym-
phangiogenesis, a population of myeloid cells, characterized 

by the expression of the tyrosine kinase Syk, was found to 
express the lymphangiogenic factors VEGF-C and -D, as well 
as various chemokines. The Syk+ cell population comprises 
M2-polarized mononuclear cells and regulates developmen-
tal lymphangiogenesis (Böhmer et al. 2010). The effect of 
the Syk+ cells could be inhibited in vivo by the application 
of soluble VEGFR-3, a specific inhibitor for VEGF-C and 
-D (Böhmer et al. 2010). An important function for VEGF-
C-secreting macrophages and neutrophils has been reported 
in various murine lymphangiogenesis models (Schoppmann 
et al. 2002; Baluk et al. 2005; Gordon et al. 2010).

Fig. 1  Verification of lymphatics in the Matrigel plugs with CD31 
(green) and Prox1 (red) antibodies. The pan-endothelial marker 
CD31 stains blood vessels (BV) strongly and lymphatics (LV) weakly. 

Prox1 marks the nuclei of LECs (arrowheads) as shown at higher 
magnification in the inset. Nuclei are counter-stained with Dapi 
(blue). Bar 30 µm

Fig. 2  Lymphatics in the Matrigel plugs are closely associated with 
leukocytes. Networks of lymphatic capillaries are demonstrated with 
the LEC marker podoplanin (red). Note that the distribution of leu-

kocytes, stained with anti-CD45 antibodies (green), closely follows 
the pattern of the lymphatics. Nuclei are counter-stained with Dapi 
(blue). Bar 50 µm
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Fig. 3  A subpopulation of cells in the lymphatic networks are posi-
tive for both podoplanin and CD45. a Podoplanin (red). b CD45 
(green). c Merged picture. Besides round CD45-positive cells, 
there are endothelial-like cells that co-express podoplanin and 
CD45 (arrows). Nuclei are counter-stained with Dapi (blue). Bar 

25 µm. (Modified from: Buttler et al. 2014; Springer license no.: 
3699330937457). d Higher magnification of (c) note endothelial-like 
cells that co-express podoplanin and CD45 (arrows), indicating inte-
gration of leukocytes into developing lymphatic networks. Bar 10 µm

Fig. 4  Endothelial-like cells in the lymphatic sinusoids are posi-
tive for both podoplanin and CD45. a Merged picture of a podopla-
nin+ (green) lymphatic sinus. CD45 is shown in red. Besides round 
CD45+ leukocytes (arrowheads), there are endothelial-like cells 

(yellow) that co-express the two markers. b–d Merged picture and 
separate channels showing the cell marked with an arrow in (a). Bar 
10 µm
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Inflammation‑induced lymphangiogenesis

Our studies revealed an obvious co-localization of CD45+ 
leukocytes with the newly forming lymphatic networks. 
The accumulation of leukocytes is known as a characteris-
tic feature of inflammation. Consistent with this, EPCs and 
MSCs secrete chemoattractants such as CXCL1, 10 and 16, 
as well as MCP1 (Buttler et al. 2014). Among others, these 
factors attract macrophages, which can release angiogenic 
proteins such as VEGF-A and VEGF-C (Schoppmann 
et al. 2002; Mantovani et al. 2006). The contribution of 
macrophages to inflammation-induced lymphangiogenesis 
could, among others, be demonstrated in a macrophage-
deficient mouse model (Kubota et al. 2009). Since we did 
neither observe any significant numbers of leukocytes in 
the Matrigel controls, nor in the experiments with EPCs, it 
is obvious that the attraction of leukocytes is induced by 
the grafted MSCs. As we have used a syngeneic C57/Bl.6 
mouse model, it is unlikely that leukocyte immigration is a 
sign for host-versus-graft reactions.

Human cornea and kidney transplant rejection shows 
most clearly that inflammation is a potent inducer of lym-
phangiogenesis. In the cornea, inflammation induces 
growth of lymphatics, which remain clinically invis-
ible. Lymphangiogenesis then facilitates trafficking of 

antigen-presenting cells from the cornea to draining lymph 
nodes, induction of hypersensitivity and corneal rejection 
(Chen et al. 2007). Similarly, in renal transplant rejection, 
inflammation is associated with a 50-fold increase in lym-
phatic vessel density and invasion of lymphatics into the 
tubulointerstitial stroma (Kerjaschki et al. 2004). Thereby, 
host cells, which obviously represent circulating lymphen-
dothelial progenitor cells, integrate into the endothelial lin-
ing and contribute to the newly developing lymphatic net-
works (Kerjaschki et al. 2006). In this respect, the mouse 
model presented in our study deeply reflects the mecha-
nisms of human inflammation-induced lymphangiogenesis.

Embryonic lymphangiogenesis

Regarding the embryonic development of the lymphovascu-
lar system, it is generally accepted that lymph sacs, the first 
histologically detectable structures of the lymphatic system, 
are formed by outgrowth of pre-lymphatic clusters from 
the cardinal veins (Sabin 1909; Pollmann et al. 2014). In 
recent years, the lymph sacs were proposed to represent the 
sole origin of the whole lymphatic system of mice (Srini-
vasan et al. 2007). However, an opposing theory claiming 
the existence of mesenchymal precursor cells, so-called 
lymphangioblasts, as a second source for the lymphatic 

Fig. 5  Cells lining newly formed lymphatics express podoplanin and 
CD45. a Merged picture of a lymphatic vessel (LV) in the Matrigel 
plug, stained for podoplanin (green) and CD45 (red). Nuclei are 
counter-stained with Dapi (blue). The vessels are lumenized and have 

two branches to the left. Bar 20 µm. b–e Merged picture and separate 
channels showing the cell marked with an arrow in (a). The cell lin-
ing the vessels expresses both podoplanin and CD45. Bar 8 µm
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vasculature is getting more and more conceivable. In 1910, 
Huntington and McClure were the first to speculate on the 
existence of mesenchymal precursor cells for LECs (Hun-
tington and McClure 1910). Further evidence was found 
by analyzing the expression patterns of the LEC marker 
Prox1 in mesenchymal cells of Xenopus, chicken and mouse 
embryos, revealing scattered cells of lymphatic character 
supposed to represent lymphangioblasts (Schneider et al. 
1999; Ny et al. 2005; Buttler et al. 2006). Evidence for lym-
phangioblasts in both the intra-embryonic and the extra-
embryonic mesoderm of avian embryos was provided with 
quail-chick-transplantation experiments. Mesodermal cells 
of 2- to 3-day-old quail embryos are able to integrate into 
the host’s lymph sacs, lymph hearts and allantoic lymphat-
ics when transplanted into corresponding regions of chick 
embryos (Papoutsi et al. 2001; Wilting et al. 2000, 2006; 
Valasek et al. 2007). As cells of the macrophage/monocyte 
lineage were found to contribute to lymphangiogenesis 
in inflammation, they were suggested to participate in the 
embryonic formation of the lymphatic system, too. Trans-
differentiation of macrophages to LECs was suggested, but, 
although Lyve-1-positive macrophages were found capable 
of integrating into the wall of developing lymphatics, Prox1 
expression was not detected. Hereby, trans-differentiation 
could be excluded (Gordon et al. 2010).

In mammals, the formation of embryonic blood ves-
sels in a bipartite way is generally accepted, meaning 
there is (1) de novo formation of vessels from angioblasts 
(vasculogenesis) and (2) growth of vessels from preexist-
ing ones by sprouting, splitting and intercalation (angio-
genesis; Risau 1997). The existence of lymphangioblasts 
in mammals has been negated by a number of research-
ers in the field. However, recently elegant studies on mice 
have shown that a significant part of the dermal lymphatic 
vasculature is formed independently of venous sprouts. 
Using lineage-tracing experiments they could depict a 
non-venous origin of LECs in the lumbar skin and along 
the dorsal midline. In a process referred to as lymphvascu-
logenesis, these cells were found to assemble into clusters, 
subsequently generating vessels (Martinez-Corral et al. 
2015). In a second study the same group could show that 
parts of the mesenteric lymphatic vasculature are formed 
from progenitors of hemogenic endothelial origin, thus 
representing further evidence for the lymphatic system 
being of multiple origin (Stanczuk et al. 2015). The hemo-
genic endothelium is the intra-embryonic source of blood 
cells. Together, the data show that murine lymphatics are 
derived from venous and non-venous origin, and the devel-
opment of blood cells and LECs is closely connected. As 
shown in our study, the mechanisms of adult lymphangi-
ogenesis recapitulate to a great extent those of the embryo. 
Lymphvasculogenic and lymphangiogenic mechanisms 
exist side by side. Thereby, adult lymphangioblasts like 

their embryonic counterparts may also be derived from 
hemogenic precursor cells.
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