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Abstract
Background Dysregulation of the complement system has
been shown to play a major role in the pathogenesis of age-
related macular degeneration (AMD).
Methods The current evidence from human studies derives
from immunohistochemical and proteomic studies in donor
eyes, genetic association studies, and studies of blood
complement protein levels. These lines of evidence are
corroborated by in vitro and animal studies.
Results In AMDdonor eyes, detection of complement proteins
in drusen suggested local inflammatory processes involving the
complement system. Moreover, higher levels of complement
proteins in the Bruch’s membrane/choroid complex could be
detected in AMD donor eyes compared to controls. A large
number of independent genetic studies have consistently
confirmed the association of AMD with risk or protective
variants in genes coding for complement proteins, including
complement factor H (CFH), CFH-related proteins 1 and 3,
factor B/C2, C3 and factor I. Another set of independent studies
detected increased levels of complement activation products in
plasma of AMD patients, suggesting that AMD may be a
systemic disease and the macula a vulnerable anatomic site of

minimal resistance to complement activation. Genotype–pheno-
type correlations, including the impact of genetic variants on
disease progression, gene–environment and pharmacogenetic
interactions, have been investigated. There is evidence that
complement gene variants may be associated with the progres-
sion fromearly to late formsofAMD,whereas theydonot appear
to play a significant role when late atrophic AMD has already
developed. There are indications for an interaction between
genetic variants and supplementation and dietary factors. Also,
there is some evidence that variants in the CFH gene influence
treatment effects in patients with neovascular AMD.
Conclusions Such data suggest that the complement system
may have a significant role for developing new prophylactic
and therapeutic interventions in AMD. In fact, several
compounds acting on the complement pathway are currently
in clinical trials. Therapeutics that modulate the complement
system need to balance inhibitionwith preservation of sufficient
functional activity in order to maintain adequate immune
responses and tissue homeostasis. Specifically, targeting the
dysfunction appears more adequate than a global suppression
of complement activation in chronic diseases such as AMD.
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Age-related macular degeneration (AMD), the leading
cause of blindness in western societies, is a complex
disease with genetic, environmental and demographic risk
factors [1–4]. In recent years, there has been growing
evidence that inflammatory processes, including dysregu-
lation of the complement system, play a major role in the
pathogenesis of AMD. The discovery of genetic poly-
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morphisms in genes coding for complement proteins that
affect patients’ susceptibility to AMD propelled research
into establishing the complement system as a key component
in the pathogenesis of AMD [1–5].

However, translation from the bench to the bedside is a
complex process, and our understanding of the role of the
complement system in AMD is still at a distance from the
bedside. This review aims to discuss the significance of the
complement system for the pathogenesis of AMD, and the
resulting implications for current and future clinical application.

First, a brief overview of the complement system is
provided, along with evidence of its role in AMD
pathogenesis. Second, the clinical relevance of polymor-
phisms of the complement genes is addressed. This
includes associations of the genetic variants with alterations
of complement activation or with certain AMD subtypes, as
well as their possible influence on AMD progression,
response to treatment (pharmacogenetics), or interference
with known modifiable risk factors for AMD (gene-
environment interaction). Third, we summarize approaches
that might provide us with future treatment options.

The complement system and its role in AMD
pathogenesis

Based on specificity and immediacy, immune processes
have been discerned into two main effector systems. Both,
the adaptive and the innate immune system are tightly
interconnected. The adaptive immune system is built
around B- and T-lymphocytes which allow antigen-specific
recognition and immunological memory. In contrast, the
innate immune system acts less specifically but more
instantaneously. One of its main effectors is the complement
system, which encompasses more than 30 plasma proteins
with a combined concentration of more than 3 g/l [6, 7]. The
evolutionary preservation of this ancient immune system is a
reflection of its biological importance for the integrity of the
organism [6].

The complement system can be activated via three
different pathways: the classic, lectin or alternative pathway.

In each, a proteolytic cascade is amplified and eventually
leads to the activation of a central protein, C3. Downstream
from C3 activation, the effectors of the complement system
may be classified as anaphylatoxins (C3a, C5a; leading to
inflammation), the membrane attack complex (MAC; leading
to cell lysis), and opsonins (leading to opsonization).

The classic pathway is activated when the complement
protein C1q binds to antibodies attached to antigen. In
contrast, the lectin pathway uses pattern recognition
receptors (PRRs) such as mannose-binding lectin (MBL)
to recognize pathogen-associated molecular patterns
(PAMPs). The alternative pathway of complement (APC)
will be described in greater detail, as current evidence
suggests that it is the most important in relation to the
pathogenesis of AMD. For more in-depth information on
the complement system, the reader is referred to excellent
reviews [6, 7].

The APC (Fig. 1) is initially activated by a constant
low-level spontaneous hydrolysis of C3. Binding of C3 to
factor B allows factor D to cleave factor B into Ba and Bb.
One of the resulting products, C3bBb, is a C3 convertase
that initiates an amplification loop, producing more C3b
and C3a from C3. Uncontrolled activation of the APC
would lead to self-tissue damage. Therefore, regulators are
necessary to prevent the inappropriate activation and
action of the APC [6]. Such regulators may accelerate
the decay of preformed C3 convertases, e.g., decay-
accelerating factor (DAF; CD55), complement receptor 1
(CR1), complement factor H (CFH), or prevent conver-
tases to form by degrading their constituents such as C3b
[6]. The latter is a function of factor I, which requires
other complement regulators (CR1, CFH, membrane
cofactor protein [MCP; CD46]) as cofactors. Both pro-
cesses ultimately limit further complement activation.
Other regulators may inhibit MAC-mediated cell lysis
(CD59, vitronectin, S protein) or may cleave anaphylatoxins
(carboxypeptidase N, B and R). The regulators of
complement may further be classified as cell-bound
(e.g., MCP, CR1, DAF, CD59) or as being located in
the fluid phase (CFH, vitronectin, S protein). CFH is the
most important regulator of the latter group.

Fig. 1 Proteins of the alternative
complement cascade are typed in
black (see text). In red font are
therapeutic agents currently in
clinical trials. For further
explanation of the therapeutic
agents, see main text

164 Graefes Arch Clin Exp Ophthalmol (2011) 249:163–174



Evidence for involvement of the complement system
in AMD pathogenesis

There are currently three separate lines of evidence from
human studies that support the involvement of the
complement system in AMD pathogenesis (Fig. 2):

& Immunohistochemical and proteomic studies in donor eyes
& Genetic association studies
& Studies of complement protein levels in peripheral blood

The first line of evidence derives from immunohisto-
chemical detection of proteins of the complement
cascade, its regulators and other inflammatory markers.
These were increased in donor eyes from AMD patients
compared to controls and characteristically localized in
drusen, the hallmark clinical finding of early AMD [5,
8–13]. Further supporting evidence came from a quanti-
tative proteomics analysis of the macular Bruch’s mem-
brane/choroid complex. In AMD donor eyes, many
complement proteins were elevated compared to control
eyes [14]. Complement proteins such as CFH are also
present in normal eyes [15], and may therefore have a
physiological function. The disease-associated variant of
CFH was shown to have a lower affinity to Bruch’s
membrane [16], which might lead to an uncontrolled and
thus increased local activation of the alternative comple-
ment cascade.

Evidence for a genetic component of AMD susceptibility
arises from twin and family studies that have consistently
shown increased susceptibility in individuals with positive
family history [17–23]. In 2005, genetic association studies
revealed significant associations of polymorphisms in the
complement factor H (CFH) gene with an increased or
decreased risk for AMD [15, 24–26]. The significance of

the complement system was further substantiated by the
identification of additional genes coding for proteins of the
complement system and their association with an increased
or decreased risk to develop AMD. These include genes
coding for complement factor B/C2 (CFB) [27–29], C3
[30–32], factor I (FI) [33, 34], and CFH-related proteins 1
and 3 [35, 36]. The associations between these variants and
AMD, however, appear to be substantially weaker than for
variants in CFH. A large number of independent studies
have since consistently confirmed the association of AMD
with risk-modifying complement gene polymorphisms. For
a more in-depth discussion of genetic AMD susceptibility,
the reader is referred to other recent thorough reviews [1,
37–40].

The third line of evidence derives from studies of blood
complement protein levels. The data show that AMD
patients have increased systemic complement activation as
measured in peripheral blood (see next section) [41–43].

The evidence from human studies is supported by a large
number of in vitro and animal studies. Notably, subsequent
functional in vitro analysis provided evidence for a
biological relevance of CFH variants. The altered protein
structure of the CFH Y402H “at risk” variant results in a
decreased binding affinity to target molecules such as C-
reactive protein and heparin to cell surfaces and Bruch’s
membrane [16, 44–50]. In contrast, the protective CFH
V62I variant has been found to be a stronger inhibitor of C3
convertase formation [51]. Furthermore, it has been shown
that constituents of lipofuscin, the accumulation of which is
part of the disease process in AMD, may activate
complement [52]. Also, smoking as well as a low-grade
immunoresponse against carboxyethylpyrrole (CEP)
adducts that accumulate in the subretinal space may result
in complement activation at the ocular fundus in mouse
models [53, 54]. The transcriptional profiles of the RPE/

Fig. 2 Three lines of evidence
from human studies supporting
involvement of the complement
system in the pathogenesis of
age-related macular degeneration.
An increased local (demonstrated
by immunohistochemical) and
systemic (demonstrated by
plasma protein studies) comple-
ment activation may be due to a
genetic risk profile, and is
possibly affected by various
additional factors
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choroid complex in aged (compared to young) mice
showed a marked increase in proteins of the complement
pathway [55]. Thus, major risk-conferring factors for AMD
development, such as oxidative stress, ageing and smoking,
have been linked to an activation of the complement
system. Moreover, the RPE physiology is affected by
complement activation, and the RPE is also capable of
modulating its own complement protein production, suggest-
ing that RPE cells may play an important role in regulating
complement activation in the retina [56–59]. A CFH-/- mouse
model has been described which develops a retinal phenotype
in old age [60].

Clinical relevance of variations of complement genes

Systemic complement activation in AMD patients

Immunohistochemical studies on AMD donor eyes and data
from genetic studies suggest that AMD pathogenesis
involves mainly the APC. This led to the hypothesis that
the relevant genetic polymorphisms, if biologically mean-
ingful for AMD pathogenesis, would result in measurable
differences in the activation status of the complement
cascade. Indeed, the first study that comprehensively assessed
plasma concentrations of APC proteins in AMD patients and
controls found higher levels of activation products in the AMD
cohort [41]. Specifically, all tested activation products (Ba,
C3d, MAC, C3a, C5a), especially the markers of chronic

complement activation (Ba and C3d; p<0.001), were signif-
icantly elevated. Similar alterations were observed in the
activating regulator factor D, but not in C3, C4 or CFH. The
increased concentration of protein markers of the APC
correlated with CFH haplotypes in patients and controls,
suggesting a genetically controlled activation of the APC. A
subsequent study in a larger independent cohort of patients
and controls essentially confirmed these results, showing that
both plasma protein levels and genetic markers were
individually predictive of having AMD [43]. A one standard
deviation change in levels of complement substrate (factor B),
regulator (factor D), and activation products (Ba and C3d)
was associated with an approximately 5-fold increase in
AMD risk (Fig. 3).

Support for these observations comes from biochemical
in vitro studies already mentioned, which may explain the
variable concentration of activation products downstream
from CFH due to a difference in biological activity related
to the CFH variant. The study by Hecker et al. furthermore
revealed an association of complement activation with
genetic polymorphisms in CFB, and suggested that activa-
tion of the APC in blood increases with age [43]. A trend
was observed for greater increases in plasma protein levels
of factor D, factor B, Ba and C3d in advanced subtypes of
AMD, suggesting that complement activation in the blood
could be associated with progression of AMD. A third
study focussing on patients with advanced AMD also found
an increased complement activation in AMD patients:
studying a slightly different set of complement proteins,

Fig. 3 Prediction of AMD and
impact of plasma complement
levels on AMD risk. Shown are
the odds ratios for each combina-
tion of a one standard deviation
change in plasma levels of factor
D, factor B, C3d, and Ba on the
risk to develop AMD relative to a
reference group (R) having mean
levels of all four proteins.
Numbers on the x and y axes
represent standard deviation
changes above (1), changes
below (−1), and at the mean (0)
of the corrected and standardized
plasma levels for each protein.
From Hecker et al. [43]; by
permission of Oxford University
Press
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Reynolds and co-workers found an increased plasma
concentration of C5a and Bb, independent of genotype.
The group had also found decreased CFH plasma concen-
tration in patients with geographic atrophy, a finding not
reported by the two other studies. Furthermore, the study
provided evidence for an association of increased body
mass index with complement activation fragments [42].

Further support for the suggested association between
abnormal complement activation and AMD came from a
large case control study that revealed an association of
AMD with diseases known to be associated with systemic
complement activation [61]. AMD patients were found to
have systemic lupus erythematosus (confounder adjusted
OR=1.83) and glomerulonephritis (adjusted OR=1.46)
more often than controls. Moreover, patients with mem-
branoproliferative glomerulonephritis (MPGN) type 2, a
disease with uncontrolled complement activation [62], may
show a phenocopy of the retinal findings, such as drusen,
that are usually observed in patients with AMD [63–66].

Notably, these studies provide a rationale for future
clinical trials that aim at a systemic modulation of
complement activation in order to prevent AMD. However,
evidence available so far relates to the link between
complement activation and the risk to develop the disease.
Currently, there is no evidence from human studies that
complement activation is still pivotal when late forms of
AMD have already developed.

Complement gene variants and AMD subtypes

To date, none of the associated complement gene variants
have shown a clear pattern of preference for the development
of either choroidal neovascularisation (CNV) or geographic
atrophy [67–71]. This may suggest that complement variants
are equally important for the development of both forms of
late AMD, and additional genetic and/or environmental
factors may be required to determine if either geographic
atrophy or CNV develops. It remains conceivable that all
previous studies have not been sufficiently powered in order
to detect an effect, in that most studies are biased towards
CNV patients. Further studies have analyzed a potential
correlation between the CFH-risk allele Y402H and specific
subtypes of neovascular AMD [72–75]. Due to the hetero-
geneous results in those studies, clear conclusions with
regard to a preferential occurrence of classic or occult
neovascular membranes can currently not be drawn. Possi-
bly, severity and age of onset of neovascular membranes in
AMD patients may be influenced by the genetic background,
as suggested by Leveziel et al. [76]. Shuler et al. analyzed
phenotypic characteristics in a cohort of 956 AMD patients,
and identified only peripheral reticular pigmentary change as
a phenotypic feature associated with the common Y402H
risk variant [71].

The phenotype of basal laminar drusen (“cuticular drusen”)
is similar to, yet distinct from AMD. Basal laminar drusen
have also been shown to be associatedwith CFH variants [66].
The Y402H variant may be present in up to 70% of patients
with basal laminar drusen [77], which is higher than usually
observed in populations with typical AMD. Early-onset basal
laminar drusen were reported to be associated with hetero-
zygous nonsense, missense or splice-variants of CFH in
combination with the Y402H variant [78].

Polypoidal choroidal vasculopathy (PCV) has been de-
scribed as a separate clinical entity differing from neovascular
AMD and other diseases associated with subretinal neo-
vascularization [79], and it remains controversial as to
whether or not PCV represents a sub-type of neovascular
AMD [80]. Patients with PCV tend to be younger, the
disease is more prevalent in Oriental races, and eyes with
PCV lack drusen as a characteristic sign of early AMD. In a
comprehensive examination of the CFH gene, Kondo and
co-workers found a strong association with the I62V variant
in a cohort of 130 Japanese PCV patients [81]. Notably, they
found no significant association of the Y402H variant with
PCV, which contrasts with its marked effect on AMD
susceptibility in Caucasians. Similar conclusions were
derived from a study by Lee et al. in a Chinese population
[82]. However, a recent and better powered study (408
patients with typical AMD, 518 patients with PCV, 1,351
control samples) also identified an association of PCV with
the Y402H allele in addition to the association with the I62V
variant [83]. Gotoh et al. found no difference in incidence of
the CFH Y402H genotype between patients with exudative
AMD and PCV, and a recent study on a Caucasian
population with PCV and AMD also suggested that both
diseases are genetically similar on the CFH and CFB/C2
locus [84]. The latter study included the Y402H but not the
I62V variant. These genetic studies provide evidence for a
similar pathogenetic background of the two phenotypically
similar diseases, namely an involvement of the complement
system. Different polymorphisms may have different func-
tional consequences on the protein level, and might at least
in part account for the different phenotype. The eventual
disease phenotype may furthermore be determined by
additional genetic and/or environmental factors. Only few
data are available on the association of retinal angiomatous
proliferation (RAP) with polymorphisms in genes coding for
complement proteins. In a Japanese population, a correlation
with RAP was found for the CFH I62V variant but not for the
Y402H variant [83], while in an Austrian population, an
association of RAP was found for the Y402H variant [72].

Complement gene variants and progression of AMD

In two independent cohorts, Magnusson and co-workers
showed that the Y402H variant conferred a similar risk of
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early and late AMD [68]. Also, Farwick and colleagues
reported the CFH variants to be significantly related to the
development of early but not with progression to late AMD
[85]. This suggested that additional factors may be required
to explain disease progression. However, data from the
population-based Rotterdam study revealed an increasing
odds ratio with more progressed disease stages [86], and
two further studies found an increased risk to progress from
early to later disease stages in patients with the CFH [87–
89] and C3 [89, 90] risk genotypes. Results for the C2/CFB
locus were inconsistent, possibly due to different single
nucleotide polymorphisms (SNPs) tested [89, 90].

It should be noted, however, that none of these studies
has addressed the question of whether genetic variants are
associated with disease progression once late AMD has
developed. Nevertheless, it is the progression of the two
late forms, geographic atrophy and choroidal neovascular-
isation, which are probably the most important with regard
future therapeutic intervention. This issue was recently
addressed in a longitudinal association study investigating
variants in CFH, C3 and ARMS2, and progression of
geographic atrophy in a large cohort of AMD patients with
pure bilateral geographic atrophy [91]. It was found that all
genetic risk variants were strongly associated with the risk
of developing geographic atrophy, whereas there was no
association with disease progression once geographic
atrophy had already developed. It is suggestive that other
susceptibility factors may influence disease progression in
geographic atrophy [91]. This was very recently confirmed
in a study of Klein et al. where — at least for variants in the
complement genes — there was no association with the
progression of geographic atrophy [92].

Gene-environment interaction: nutrition, supplementation
and smoking

The only protective factor for AMD known to date are
antioxidants. The randomized clinical Age-Related Eye
Disease Study (AREDS) showed that a combination of
zinc, β-carotene, vitamin C, and vitamin E reduced the risk
of progression from intermediate to advanced AMD by
25% [93]. There is also preliminary evidence of a protective
effect of omega-3 fatty acids [94–96].

Data on the interaction between nutrition or supplementation
and genetic variants in regard to the risk to develop AMD has
been limited, but recently two large studies, the Age-Related
Eye Disease Study (AREDS), being clinic-based, and the
Rotterdam study, being population-based, provided evidence
for an interaction.

In the AREDS, Klein and co-workers studied a subset
of 876 participants who were considered at high risk of
progressing to advanced AMD [97]. They found a
treatment interaction of the CFH Y402H polymorphism

with the AREDS medication. Interestingly, supplementa-
tion resulted in a 68% reduction in the rate of progression
in the subgroup with the homozygous non-risk genotype,
compared to a reduction of only 11% in the subgroup with
the homozygous risk genotype. Thus, the data suggest
reduced benefit of AREDS supplementation for patients
with the CFH Y402H risk genotype. Further sub-analysis
found the genotype–treatment interaction to be explained
by the zinc component, since an interaction was observed
in the groups taking zinc versus those taking no zinc, but
not for groups taking antioxidants compared with groups
taking no antioxidants. No significant CFH genotype–
treatment interaction effects on progression were observed
when the analysis additionally included patients with an
earlier disease stage (AREDS category 2) [87].

Conflicting results were recently reported by Ho et al.
investigating 2,167 individuals from the Rotterdam Study
at risk of AMD [98]. They assessed biological interaction
with genetic variants by calculating the synergy indices. In
a mean follow-up period of 8.6 years, 517 participants
developed early AMD. Significance of the synergy index
supported the possibility of biological interaction between
CFH Y402H and zinc, β-carotene, lutein/zeaxanthin, and
eicosapentanoic/docosahexaenoic acid (EPA/DHA).
Homozygotes for CFH Y402H with dietary intake of zinc
in the highest tertile reduced their hazard ratio of
developing early AMD from 2.25 to 1.27. For intakes of
β-carotene, lutein/zeaxanthin, and EPA/DHA, these risk
reductions were from 2.54 to 1.47, 2.63 to 1.72, and 1.97
to 1.30, respectively [98].

The discrepancies between the two studies may be
explained by the different design: AREDS is clinic-based,
and thus the study population is affected by early or late
AMD at baseline, whereas the cohort of the Rotterdam
study consisted of participants without any sign of AMD.
Consequently, the outcome event was different: for AREDS
it was the progression from early to late AMD or from
unilateral to bilateral late AMD, whereas in the study of Ho
et al. it was incident early AMD.

Smoking is by far the strongest environmental risk
factor of AMD susceptibility. Smoking increased the risk
of AMD additive to the genetic predisposition due to
variants in the CFH gene [86, 99–101]. Smoking as well
as an increased body mass index (BMI) were indepen-
dently related to advanced AMD, controlling for the
genotype [70]. Smoking and having the CFH 402H variant
independently increase risk of neovascular AMD [102,
103]. Smoking increased the odds of disease progression
due to the CFH [87, 89] and other genetic risk variants
[89]. Smoking was independently related to AMD, with a
multiplicative joint effect with genotype on AMD risk
[89]. Therefore, there appears to be no interaction between
smoking and CFH genotypes.
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Variations of complement genes and response to treatment:
pharmacogenetics

Intravitreal injections of vascular endothelial growth factor
(VEGF)-A inhibitors have recently revolutionized the
therapy of neovascular AMD [104]. There are, however,
surprisingly few data on the interaction of treatment effect
and genetic variants. A retrospective analysis of 86 patients
treated with intravitreal bevacizumab revealed a signifi-
cantly worse visual acuity outcome in patients with the
CFH Y402H risk genotype (CC) compared with those with
the TC and TT genotypes [105]. The same researchers
retrospectively investigated the pharmacogenetic interaction
between CFH variants and the treatment effect of ranibizu-
mab [106]. In their cohort of 156 patients, there was no
effect for the primary outcome measure, visual acuity.
However, the data suggested that patients homozygous for
the Y402H risk allele may have a higher risk of requiring
more ranibizumab injections. The authors hypothesized that
the higher inflammatory activity found in genetically
predisposed patients could favor recurrence of neovascula-
rization or reduce its response to anti-VEGF treatment.
Obviously, further studies are needed to explore significant
interaction between genetic variants and anti-VEGF-A
treatment effects.

Several studies assessed a potential association between
the CFH Y402H genotype and response to photodynamic
therapy (PDT) [107–110]. The largest study included 273
patients treated with PDT and a median follow-up time of
19.8 months. There was no significant difference in
genotype distribution between a PDT-positive and a PDT-
negative response group (the latter being defined as visual
acuity of <6/60 or loss of 3 lines of vision at final visit)
[109]. Similar results were presented in a Finnish study
with 88 participants [111]. There was also no significant
difference in number of PDT treatments needed depending
on genotypes. Two smaller studies with shorter follow-up
times suggested either a worse [107] or a better [108]
outcome (visual acuity) in the patient group homozygous
for the CFH Y402H risk allele. A recent study from Japan
found an association of CFH variants with the mean time
interval from the initial treatment to the time of recurrence
[110]. These overall conflicting results may simply be due
to limitations in statistical power.

It is likely that pharmacogenetic studies will play a more
important role when testing compounds that target and
modulate the complement system. AMD patients with “at-
risk” genotypes might be more responsive to such interven-
tions and therefore, specific genetic markers will probably
impact on a meaningful allocation of specific treatments. As
an alternative to genetic testing, protein-based methods have
now been developed that make it possible to distinguish CFH
risk variants in plasma [112, 113].

Emerging pharmacological intervention

Since the link between complement activation and AMD
susceptibility has unequivocally been established, modula-
tion of the complement system appears to be a reasonable
strategy for reducing the risk of developing AMD, for
preventing progression from early to late forms of AMD,
for treating late AMD, or for optimizing currently available
treatments such as VEGF-A inhibition.

Several compounds are currently in phase 1 or 2 clinical
trials (see Fig. 1; clinicaltrials database accessed August 4,
2010).

POT-4 (Potentia Pharmaceuticals/Alcon) is an analogue
of the small cyclic synthetic peptide compstatin, an
inhibitor of the central complement protein C3. A sustained
release formulation aims at providing therapeutic drug
concentrations for several months after intravitreal injection.
A prospective, uncontrolled, non-randomized, dose-escalating,
pilot phase 1 safety study in AMD patients with subfoveal
CNV has been completed (ClinicalTrials.gov Identifier:
NCT00473928).

Eculizumab (Soliris®, Alexion Pharmaceuticals) is a
monoclonal antibody inhibiting C5. The drug is approved
as systemic treatment for paroxysmal nocturnal hemoglo-
binuria (PNH), a disease characterized by the absence of
CD59 expression of erythrocytes. Eculizumab is currently
being investigated in a phase 2 trial (ClinicalTrials.gov
Identifier: NCT00935883) in patients with non-exudative
AMD (drusen or geographic atrophy). In the randomized,
double-arm, double-masked study, patients receive the drug
via an intravenous infusion. Primary outcome measures are
the growth of geographic atrophy and the change in drusen
volume, respectively.

ARC1905 (Ophthotech Corporation) is an anti-C5-
aptamer that is injected intravitreally with currently two
registered phase 1 clinical trials. ARC1905 is meant to bind
C5 to prevent its interaction during activation of the
complement cascade. In one clinical trial, ARC1905 is used
for neovascular AMD in combination therapy with either
multiple doses or with only one induction dose of intravitreal
ranibizumab in a non-randomized, open-label, uncontrolled,
safety study (ClinicalTrials.gov Identifier: NCT00709527). The
second trial (ClinicalTrials.gov Identifier: NCT00950638), a
randomized, open-label, dose comparison study, aims at
elucidating the safety profile of intravitreal ARC1905 applica-
tion in dry AMD (drusen and/or geographic atrophy).

FCFD4514S (Genentech / Roche) is an anti-complement
factor D antibody fragment that is injected intravitreally.
Similarly to ARC1905, its safety is currently in evaluation
in a phase 1 trial in patients with dry AMD (geographic
atrophy; ClinicalTrials.gov Identifier: NCT00973011).

Several other compounds are currently being tested in a
pre-clinical phase that aims either at inhibiting the effect of
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activated complement proteins or at normalizing an
increased activation of the complement cascade.

Conclusions

There is strong evidence from human immunohistochemi-
cal, genetic and proteomic studies supporting a major role
of the complement system in AMD pathogenesis, and this
is further supported by a large number of in vitro and
animal studies. Genetically controlled systemic complement
activation may have a major impact on the macula as a
“locus minoris resistentiae”. Moreover, altered complement
proteins may have specific local effects such as an impaired
control of complement activation at the level of the RPE
and Bruch’s membrane.

Therapeutics that aim at modulating processes of the
complement cascades will need to balance the beneficial
effects of inhibition with the preservation of sufficient
functional activity for immune responses and tissue
homeostasis [114]. This appears most important in chronic
diseases such as AMD where long-term treatment appears
essential to prevent vision loss due to conversion from early
into late disease stages. Ideally, the pharmacological effect
would act on the key dysregulated elements of AMD
pathophysiology, leaving the remaining complement system
largely unaffected.

There is still a lack of knowledge about the impact of
individual elements of the complement system on AMD
development, phenotypic variability and progression. It
would be desirable to target mechanisms that are involved
in disease progression and not merely in disease suscepti-
bility. Moreover, there is as yet insufficient evidence to
determine if dysregulation of either the systemic or the
local complement components or both are the major
contributors in AMD pathogenesis. Such knowledge would
probably affect the preferred route of drug administration.
A more detailed summary on potential and current
strategies of therapeutic complement inhibition is provided
elsewhere [114, 115].

Due to the rather low yearly progression rate from early
to late AMD stages, large patient cohorts may have to be
studied over many years to detect a prophylactic effect of
any intervention on conversion rates to late disease stages.
The AREDS has shown that early AMD patients with a
high risk of progression must be identified to provide
sufficient power to detect a prophylactic effect.

In emerging treatment trials, adequate disease monitoring
will be essential. Compounds targeting the complement
system might be most beneficial in early AMD stages where
treatment effects are likely to be subtle. Biomarkers such as
drusen volume have not been unequivocally qualified as
meaningful surrogate endpoints. Thus, high resolution multi-

modal functional and/or morphological assessment strategies
may be needed in order to identify and correctly interpret
possible treatment effects [116].
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