Skip to main content

Advertisement

Log in

Cervical and ocular vestibular-evoked myogenic potentials in vestibular neuritis: comparison between air- and bone-conducted stimulation

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

To clarify the changes of cervical (cVEMP) and ocular (oVEMP) vestibular evoked myogenic potentials induced by air-conducted sound (ACS) and bone-conducted vibration (BCV) in patients with vestibular neuritis (VN), patients with VN (n = 30) and normal controls (n = 45) underwent recording of cVEMP and oVEMP in response to ACS (1,000 Hz, 5 ms, tone bursts) and BCV (500 Hz, short tone burst). Patients with VN showed a high proportion of oVEMP abnormalities in response to both ACS (80.0 %) and BCV at the forehead (Fz, 73.3 %) or the mastoid (76.7 %). In contrast, cVEMPs were mostly normal with both ACS and BCV in the patients. The dissociations in the abnormalities of cVEMP and oVEMP induced by ACS and BCV at the mastoids and at the forehead in patients with VN suggest that oVEMP reflects functions of the superior vestibular nerve and most likely the utricular function. The results of our study suggest that oVEMP induced by either ACS or BCV appears to depend on integrity of the superior vestibular nerve, possibly due to the utricular afferents travelling in it. In contrast, cVEMP elicited by either ACS or BCV may reflect function of the saccular afferents running in the inferior vestibular nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Welgampola MS (2008) Evoked potential testing in neuro-otology. Curr Opin Neurol 21:29–35

    Article  PubMed  Google Scholar 

  2. Colebatch JG, Halmagyi GM, Skuse NF (1994) Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 57:190–197

    Article  PubMed  CAS  Google Scholar 

  3. Curthoys IS (2010) A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Clin Neurophysiol 121:132–144

    Article  PubMed  Google Scholar 

  4. Kim S, Lee HS, Kim JS (2010) Medial vestibulospinal tract lesions impair sacculo-collic reflexes. J Neurol 257:825–832

    Article  PubMed  Google Scholar 

  5. Curthoys IS (1987) Eye movements produced by utricular and saccular stimulation. Aviat Space Environ Med 58:192–197

    Google Scholar 

  6. Shin BS, Oh SY, Kim JS et al (2012) Cervical and ocular vestibular-evoked myogenic potentials in acute vestibular neuritis. Clin Neurophysiol 123:369–375

    Article  PubMed  Google Scholar 

  7. Iwasaki S, McGarvie LA, Halmagyi GM et al (2007) Head taps evoke a crossed vestibulo-ocular reflex. Neurology 68:1227–1229

    Article  PubMed  CAS  Google Scholar 

  8. Iwasaki S, Smulders YE, Burgess AM et al (2008) Ocular vestibular evoked myogenic potentials to bone conducted vibration of the midline forehead at Fz in healthy subjects. Clin Neurophysiol 119:2135–2147

    Article  PubMed  CAS  Google Scholar 

  9. Oh SY, Kim JS, Lee JM et al (2013) Ocular vestibular evoked myogenic potentials induced by air-conducted sound in patients with acute brainstem lesions. Clin Neurophysiol 124:770–778

    Article  PubMed  Google Scholar 

  10. Murofushi T, Curthoys IS (1997) Physiological and anatomical study of click-sensitive primary vestibular afferents in the guinea pig. Acta Otolaryngol 117:66–72

    Article  PubMed  CAS  Google Scholar 

  11. Murofushi T, Curthoys IS, Gilchrist DP (1996) Response of guinea pig vestibular nucleus neurons to clicks. Exp Brain Res 111:149–152

    Article  PubMed  CAS  Google Scholar 

  12. Murofushi T, Curthoys IS, Topple AN et al (1995) Responses of guinea pig primary vestibular neurons to clicks. Exp Brain Res 103:174–178

    Article  PubMed  CAS  Google Scholar 

  13. Iwasaki S, Chihara Y, Smulders YE et al (2009) The role of the superior vestibular nerve in generating ocular vestibular-evoked myogenic potentials to bone conducted vibration at Fz. Clin Neurophysiol 120:588–593

    Article  PubMed  CAS  Google Scholar 

  14. Curthoys IS, Iwasaki S, Chihara Y et al (2010) The ocular vestibular-evoked myogenic potential to air-conducted sound; probable superior vestibular nerve origin. Clin Neurophysiol 122:611–616

    Article  PubMed  Google Scholar 

  15. de Burlet HM (1929) Zur vergleichenden Anatomie der Labyrinth innervations. J Comp Neurol 47:155–169

    Article  Google Scholar 

  16. Curthoys IS, Vulovic V (2011) Vestibular primary afferent responses to sound and vibration in the guinea pig. Exp Brain Res 210:347–352

    Article  PubMed  Google Scholar 

  17. Curthoys IS (2008) The scientific basis of new clinical tests of otoliths function. In: XXV Barany Society Meeting, Kyoto

  18. Curthoys IS, Vulovic V, Sokolic L et al (2012) Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound. Brain Res Bull 89:16–21

    Article  PubMed  Google Scholar 

  19. Rosengren SM, Welgampola MS, Colebatch JG (2010) Vestibular evoked myogenic potentials: past, present and future. Clin Neurophysiol 121:636–651

    Article  PubMed  CAS  Google Scholar 

  20. Todd NP, Rosengren SM, Aw ST et al (2007) Ocular vestibular evoked Myogenic potentials (OVEMPs) produced by air- and bone-conducted sound. Clin Neurophysiol 118:381–390

    Article  PubMed  Google Scholar 

  21. Welgampola MS, Carey JP (2010) Waiting for the evidence: VEMP testing and the ability to differentiate utricular versus saccular function. Otolaryngol Head Neck Surg 143:281–283

    Article  PubMed  Google Scholar 

  22. Rosengren SM, McAngus Todd NP, Colebatch JG (2005) Vestibular-evoked extraocular potentials produced by stimulation with bone-conducted sound. Clin Neurophysiol 116:1938–1948

    Article  PubMed  CAS  Google Scholar 

  23. Honrubia V (1994) Quantitative vestibular function tests and the clinical examination. Vestibular Rehabilitation. FA Davis Co, Philadelphia, pp 116–119

  24. Suzuki JI, Tokumasu K, Goto K (1969) Eye movements from single utricular nerve stimulation in the cat. Acta Otolaryngol 68:350–362

    Article  PubMed  CAS  Google Scholar 

  25. Manzari L, Tedesco A, Burgess AM, Curthoys IS (2010) Ocular vestibular-evoked myogenic potentials to bone-conducted vibration in superior vestibular neuritis show utricular function. Otolaryngol Head Neck Surg 143:274–280

    Article  PubMed  Google Scholar 

  26. Curthoys IS, Kim J, McPhedran SK et al (2006) Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig. Exp Brain Res 175:256–267

    Article  PubMed  Google Scholar 

  27. Iwasaki S, Smulders YE, Burgess AM et al (2008) Ocular vestibular evoked myogenic potentials in response to bone conducted vibration of the midline forehead at Fz—a new indicator of unilateral otolithic loss. Audiol Neurotol 13:396–404

    Article  CAS  Google Scholar 

  28. Govender S, Rosengren SM, Colebatch JG (2012) Vestibular neuritis has selective effects on air- and bone-conducted cervical and ocular vestibular evoked myogenic potentials. Clin Neurophysiol 122:1246–1255

    Article  Google Scholar 

  29. Uchino Y, Sasaki M, Sato H et al (2005) Otolith and canal integration on single vestibular neurons in cats. Exp Brain Res 164:271–285

    Article  PubMed  CAS  Google Scholar 

  30. Kushiro K, Zakir M, Ogawa Y et al (1999) Saccular and utricular inputs to sternocleidomastoid motoneurons of decerebrate cats. Exp Brain Res 126:410–416

    Article  PubMed  CAS  Google Scholar 

  31. Fukushima K, Peterson BW, Wilson VJ (1979) Vestibulospinal, reticulospinal and interstitiospinal pathways in the cat. Prog Brain Res 50:121–136

    Article  PubMed  CAS  Google Scholar 

  32. Uchino Y, Kushiro K (2011) Differences between otolith- and semicircular canal-activated neural circuitry in the vestibular system. Neurosci Res 71:315–327

    Article  PubMed  Google Scholar 

  33. Rosengren SM, Todd NP, Colebatch JG (2009) Vestibular evoked myogenic potentials evoked by brief interaural head acceleration: properties and possible Origin. J Appl Physiol 107:841–852

    Article  PubMed  Google Scholar 

  34. Lindeman HH (1973) Anatomy of the otolith organs. Adv Otorhinolaryngol 20:405–433

    PubMed  CAS  Google Scholar 

  35. Tribukait A, Rosenhall U (2001) Directional sensitivity of the human macula utriculi based on morphological characteristics. Audiol Neurotol 6:98–107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. S.-Y. Oh is supported by Fund of Biomedical Research Institute, Chonbuk National University Hospital and by research funds of Chonbuk National University in 2012. Dr. J.S. Kim, T.-H. Yang, B.-S. Shin, S.-K. Jeong report no disclosures.

Conflicts of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Young Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, SY., Kim, JS., Yang, TH. et al. Cervical and ocular vestibular-evoked myogenic potentials in vestibular neuritis: comparison between air- and bone-conducted stimulation. J Neurol 260, 2102–2109 (2013). https://doi.org/10.1007/s00415-013-6953-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-013-6953-8

Keywords

Navigation