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Abstract
Age estimation is a crucial element of forensic medicine to assess the chronological age of living individuals without
or lacking valid legal documentation. Methods used in practice are labor-intensive, subjective, and frequently comprise
radiation exposure. Recently, also non-invasive methods using magnetic resonance imaging (MRI) have evaluated and
confirmed a correlation between growth plate ossification in long bones and the chronological age of young subjects.
However, automated and user-independent approaches are required to perform reliable assessments on large datasets. The
aim of this study was to develop a fully automated and computer-based method for age estimation based on 3D knee MRIs
using machine learning. The proposed solution is based on three parts: image-preprocessing, bone segmentation, and age
estimation. A total of 185 coronal and 404 sagittal MR volumes from Caucasian male subjects in the age range of 13 and 21
years were available. The best result of the fivefold cross-validation was a mean absolute error of 0.67 ± 0.49 years in age
regression and an accuracy of 90.9%, a sensitivity of 88.6%, and a specificity of 94.2% in classification (18-year age limit)
using a combination of convolutional neural networks and tree-based machine learning algorithms. The potential of deep
learning for age estimation is reflected in the results and can be further improved if it is trained on even larger and more
diverse datasets.
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Introduction

The determination of certain age limits plays a crucial role
in asylum applications, criminal proceedings, and profes-
sional youth sport. It can have important consequences
for the persons in question. For example, special bene-
fits apply for underage refugees [1, 2], specific laws are
enforced to accused subjects [3], or exclusion from tourna-
ments can occur for young athletes [4–6]. The retrieval of
the chronological age is required whenever there is a lack of
documentation or doubt about the alleged age [7–9].

The European Asylum Support Office (EASO) has
presented guidelines on age estimation methods [10].
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The recommendation is to perform the assessment of the
chronological age using first non-medical and then medical
methods. However, the results from non-medical methods,
such as personal interviews or psychological assessments,
are often inconclusive [11]. Hence, medical methods are
necessary. These are based on the visual inspection of
growth plate ossification of multiple long bones in medical
images. The results from the inspection are then compared
with reference data, e.g., Greulich and Pyle [12] or Tanner-
Whitehouse 2 [13] hand/wrist atlases, to estimate the age of
the subject. Other anatomical sites used for age estimation
are the teeth [14], the clavicle [15], and the knee [16].
X-rays are frequently used for image acquisition as they
offer a fast and inexpensive examination. But radiation
exposure is considered “harm to the body” and should be
used as a last option [10]. Moreover, the visual inspection
is labor-intensive and subjective to the radiologist or expert
conducting the analysis.

To overcome the disadvantages of X-ray-based age
estimation, non-invasive, automated, and unbiased methods
are required. In recent years, artificial intelligence (AI)
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has developed rapidly and gained popularity by enabling
automated workflows and setting state of the art results
in many medical applications [17, 18]. In age estimation,
artificial neural networks (ANNs) seem to be particularly
useful because they have the ability to independently extract
and learn relevant information from data for a specific task
[19]. Recent studies have delivered encouraging outcomes
[20–30].

Goal of this work

The purpose of the current work was to develop a
method based on machine learning (ML) for the automated,
computer-based, and non-invasive age estimation of male
adolescents and young adults using three-dimensional (3D)
magnetic resonance images (MRIs) of the knee.

In addition, the current work is dedicated to validating
the results of a previous work [26] from 2018, but on a
larger database, and then to developing a new robust and
automated framework for age assessment based on knee
MRIs. Furthermore, it can serve as a good comparison to
a similar study by Dallora et al. [30] published in 2019,
which also used deep learning and knee MRIs. Finally, the
motivation to show that the promising results of Stern et
al. [27]—who used deep learning for age estimation on the
hand, collarbone, and teeth—are also suitable for another
anatomical site, namely the knee.

Materials

The proposed automated and computer-based method for
age estimation was applied and evaluated on two datasets:
ncor = 185 coronal and nsag = 404 sagittal 3D MRIs
of the knee. The coronal dataset DScor was acquired from
two prospective studies [16] and [31] and included MRIs
of 79 male Caucasian subjects in the age range of 14.41
and 21.66 years (mean ± sd: 17.60 ± 1.53 years; minors:

61.62%). The sagittal dataset DSsag was acquired from the
above-mentioned prospective studies and expanded with
retrospective data. It included MRIs of 297 male Caucasian
subjects in the age range of 13.00 and 21.83 years (mean ±
sd: 17.42 ± 2.28 years; minors: 57.92%). The chronological
age of the subjects was calculated as the difference between
the birth and MRI acquisition dates. The age distributions
for both datasets are shown in Fig. 1.

To attain a homogeneous study population, the following
criteria were established for the subject recruitment:
Caucasian, male, middle to high socio-economic status,
raised in Hamburg (Germany) or surroundings, between 13
and 21 years of age, and no chronic diseases or severe bone
injuries.

MRI protocol

MR images were retrieved with six different MRI scanners,
four with 3.0T and two with 1.5T field strength, and
included sequences in both coronal and sagittal orientation.
The protocols used were T1-weighted TSE (Turbo Spin
Echo) and T1-weighted SENSE (SENSitivity Encoding).
The coronal sequences had the following specifications: TR
600–850 ms, TE 10–20 ms, flip angle 90◦. The sagittal
sequences were executed with the parameters: TR 590–5000
ms, TE 10–70 ms, flip angle 90–150◦.

The acquired coronal MRIs had a resolution in voxels
which ranged between 512 × 512 × 24 and 800 × 800 × 41
and a voxel size in mm3 extending from 0.19 × 0.19 × 2.2
until 0.49 × 0.49 × 4.9. The sagittal images had resolutions
of 512 × 512 × 24 voxels–1050 × 1050 × 50 voxels and the
voxel sizes were in the range of 0.17 × 0.17 × 2.2 mm3 to
0.49 × 0.49 × 5.2 mm3.

Additional subject-related data

In addition to the MRI data, additional subject-related
data were collected for subjects in DScor. This data was
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Fig. 1 Age distribution for datasets DScor (left) and DSsag (right). The imbalance in number of individuals per age group was mitigated by data
augmentation (Section “Age estimation”)
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composed of anthropometric measurements (AM) and the
ossification stages (OS) of the growths plates of the knee.
AM included the weight, standing and sitting height, and
lower leg length (LLL). The weight was measured with a
standard body scale device, the standing and sitting height
were acquired with an anthropometer corresponding to the
standardized measuring length [32, 33], and the LLL was
measured using an anthropometric device [34, 35].

For the OS, the three-stage system by Jopp et al. [16]
was selected and applied to the epiphyses of the distal
femur (DF), proximal tibia (PT), and proximal fibula (PF).
The stages of the individual bones were also summed to
generate the score of the knee joint (SKJ), similar to Galić
et al. [36]. A statistical analysis of the classification system
on a sub-sample of DScor can be found in a previous study
[31].

Methods

The proposed approach of the current work for auto-
mated age estimation is presented in Fig. 2. The work-
flow is composed of three major parts: Pre-processing
(Section “Pre-processing”) of the 3D knee MRIs, Extract-
ing age-relevant structures (Section “Extracting age-rele-
vant structures”) in the images, and finally, Age estimation
(Section “Age estimation”) based on the pre-processed
images and subject-related data acquired from the study
participants.

The approach resembles the method presented in a pre-
vious work [26] but introduces the following important
novelties regarding data, pre-processing, and age estima-
tion:

– Larger DScor and a newly acquired DSsag

– A more robust automated cropping approach as part of
the pre-processing, capable of cropping both coronal
and sagittal knee MRIs

– Improved selection of the most informative images
from the MRI volumes

– Age-stratified image augmentation to account for
imbalance in the age distribution

– New and robust deep learning model architecture for
age estimation on knee MRI

– Classification of minors and adults
– A repeated stratified fivefold cross-validation to

account for the stochastic nature of deep learning

More details can be found in the following sub-
sections of this manuscript. For a complete and thorough
presentation of all developed and tested methods, especially
the design and testing of various machine learning
algorithms and deep learning network architectures for age
estimation, see [37].
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Pre-processing

Bias field correction (BFC) was a necessary step to
correct low-frequency intensity non-uniformities in the
MRIs caused by inhomogeneities in the magnetic field
(Fig. 2—salmon-colored box). N4ITK [38], the de facto
standard in the medical image processing field, was used for
this purpose. Before the application of N4ITK, all images
were downsampled to a common in-plane resolution of
448 × 448 pixels. This step was essential to address the
issue of different image resolutions—caused by the use of
different MRI scanners and sequences—and to accelerate
the processing time of the N4ITK algorithm.

Automated cropping was used to generate standardized
volume of interests (VOI) from the bias-field-corrected
images due to differences in leg position and selection of
the field of view (FOV) during MR examination (Fig. 2—
salmon-colored box). For this purpose, an approach based
on template matching (e.g., [39, 40]) was developed.
It computed the best correlation between a predefined
characteristic region and equally sized regions in the image
in a sliding-window fashion. The characteristic region
defined for coronal MRIs was a small patch showing the
tubercles of intercondylar eminence and for sagittal MRIs, a
region around the posterior cruciate ligament (PCL) (Fig. 3).
Differences in in-plane resolution, resulting from data
acquisition with different MRI scanners, were taken into
account by resampling the pre-defined patches accordingly.
Finally, the standardized VOI was extracted using the point
of the highest correlation as the center and then extending
130 mm in x and y directions and along the entire depth of
the MRI volume.

Extracting age-relevant structures

After pre-processing the acquired images, there were two
options to train a deep learning network for age estimation:
(a) to feed the pre-processed and almost “raw” MRIs or
(b) to feed only age-relevant structures such as bones

and growth plates to simplify the age estimation problem
from appearance information. Both options were tested
using a convolutional neural network (CNN) described in
Section “Age estimation.” In option (a), the training for age
estimation led to an underperforming learning progression
(Fig. 5). The error of the network for unknown data (orange
line) did not improve significantly after hundreds of training
cycles, while the error on the data on which the network
learned (blue line), i.e., the training data, decreased steadily.
The differences between the error curves is known as a
generalization gap and indicates that the training data are
not representative and therefore the model cannot generalize
to new data.

To be able to test option (b), the bones and growth plates
had first to be extracted from the images. As in the previous
work [26], training a CNN to detect these age-relevant
structures proved to be an excellent choice (Fig. 2—blue
box).

For this purpose, ground truth structures had to be
labelled in the original MRIs in a first step. A sub-set of
100 coronal and 25 sagittal ground truth segmentation maps
of the bones were generated using semi-automatic region
growing and manual correction by a researcher (MAdM)
well experienced in the analysis of 3D knee MRIs and
subsequently approved by a radiologist (JH).

To solve the bone segmentation task, the standardized
VOIs from the pre-processing had to be further processed to
be suitable for the CNN. Each slice was first downsampled
to a size of 224 × 224 pixels and then normalized to
transform all pixel intensities to a similar range of values.
The standard score was used to normalize the input to zero
mean and a standard deviation of one.

The final input to the CNN was standardized, downsam-
pled, and normalized two-dimensional image slices of an
MRI volume. The architecture of the CNN resembled U-
Net [41] and was adapted for the bone segmentation in knee
MRIs. This network type is known as autoencoder. It first
compresses the input to learn features at different scales
and then restores the input to predict a segmentation map in

Fig. 3 Characteristic regions
defined in coronal (left) and
sagittal MRIs (right) for the
template matching algorithm of
the automated cropping
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the original size. The final architecture for the segmentation
task was identical to a previous work [26] (please refer to
the paper for further details).

For the CNN-based segmentation a total of 100 three-
dimensional coronal MRIs and their corresponding ground
truths were available. The data was randomly split into the
training set (70%), the validation set (15%), and the test set
(15%). To increase the robustness of the network, the size of
the training set was virtually increased via augmentation. In
contrast to the previous work [26], training images were not
only translated but additionally rotated, flipped, and cropped
using three different VOI sizes.

The training setup, i.e., optimizer, learning rate, loss
function, metrics, batch size, epochs, and early stopping,
matched the one in [26]. Differently, CNN-based segmen-
tation was not only applied to coronal but to sagittal MRIs
as well. To reduce the number of ground truths for training,
the CNN for sagittal data was initialized with the weights
learned from the coronal model and then retrained for 5
epochs.

Finally, the segmentation maps predicted by the CNNs
were used to extract age-relevant structures from the
standardized VOIs, i.e., bones and growth joints, by
masking (Fig. 2—blue box). This step generated the desired
input for the age estimation part described next.

The extraction of age-relevant structures as in option
(b) led to better and more stable learning curves (Fig. 5)
than option (a), since the learned knowledge about bone
segmentation could be incorporated into the age estimation
network using transfer learning.

Age estimation

The proposed age estimation part of the current work was
composed of three parts (Fig. 2—green box): part one was
the data reduction of the masked MRIs, part two was the 2D
age prediction based on the reduced images using a CNN,
and part three was the ultimate age regression and majority
classification based on the CNN age predictions and the
subject-related data using machine learning algorithms. For
simplicity, the pipeline is explained for coronal images in
this sub-section but was performed for sagittal MRIs as
well.

Data reduction

Due to empty image slices in the masked MRIs and to
further simplify the age estimation problem, the image
volumes per subject were reduced in two phases. Reduction
1 removed image slices with no or sparse bone content, only
keeping slices with more than 2% bone information related
to the total size of the volume. In Reduction 2, all MRIs were
further reduced to a predefined minimum of 12 slices. This

final reduction ensured a balance of data per subject, similar
bone information per slice, and the possibility to train a
neural network based on the 3D context. Reduction 2 was
implemented by first computing a bone-amount-per-slice
distribution and then evenly selecting image slices along the
volume with a reference at the center of gravity (CoG) of
the distribution.

2D age prediction (AgeNet2D)

Prior to designing and training a neural network for age
estimation, the 185 coronal, masked, and reduced MRI
volumes (n2D = 185 × 12 = 2220) were split into three
new sub-sets: training (≈ 63%), validation (≈ 18%), and
test (≈ 19%) sets. This age-stratified random split ensured
that all sets had a similar age distribution. Moreover, it was
assured that the training set included the entire age range
(14–21 years) of the coronal data, such that the model could
effectively predict any age in that range.

Due to the imbalance of the age groups in DScor, 2D
image augmentation was applied only to the images of the
less represented age groups of the training set. The types
of augmentation included the generation of two additional
FOVs per image, horizontal translation, and rotation. This
increased the number of training samples from 1392 to 2412
two-dimensional images.

AgeNet2D is the CNN that was developed as part of the
age estimation task in the current work. It was created as
a variant of the contracting path, i.e., the encoder, of the
segmentation network designed in the previous work [26].
The encoder is the part of a CNN that compresses the input
images.

AgeNet2D included several different types of layers
such as Convolution (conv), Exponential Linear Unit (elu),
Batch-Normalization (bn), Dropout (do), Max-Pooling
(mp), Global Average Pooling (gap), Fully Connected (fc),
and Linear Activation (lin).

Convolution is the primary operation in CNNs, which
convolves a set of small learnable filters, i.e., kernels,
across the entire width and height of the image. The
outputs of a convolutional layer are known as feature
maps. ELU [42] is an activation function appended to a
convolution operation to introduce a non-linearity into the
network. Batch Normalization [43] is a popular technique
that standardizes the inputs of a layer which results in more
stable and faster training and reduced generalization error
due to its regularization effect [44]. Dropout [45] randomly
drops convolutional kernels and their connection to other
layers during training—controlled by the dropout rate p—
and enables the network to learn independent features
[45, 46]. Thus, Dropout acts as an effective regularization
measure against overfitting. Max-Pooling reduces the size
of features maps, allowing the network to effectively learn
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features at different scales. Furthermore, it has the benefit of
decreasing the amount of calculations and lowering the risk
of overfitting [47]. GAP [48, 49] and FC layers are often
used at the end of CNNs to reduce the dimensionality of the
feature maps before the output of the network is generated
via a final activation function, such as a Linear Activation.

The final architecture of AgeNet2D (Fig. 4) resulted from
a comprehensive grid search, which tested different number,
order, and combinations of layers as well as different values
of hyperparameters (e.g., dropout rate or kernels).

It was composed of five “Down Blocks” with the
following sequence of layers: two sets of “3 × 3 conv →
elu → bn → do (p = 0.1 × d)” followed by one “2 × 2 mp
”. The mp-layer halved the feature maps’ dimension at each
network depth d , thus compressing the input image from
2242 to 72 pixels. The last part of the network contained
the layers sequence: “gap → do (p = 0.5) → fc → lin.”
The gap-layer was used to reduce the dimensionality of the
features maps from 7 ×7 ×256 to 1 ×1 ×256 by averaging
each feature map. Finally, a sequence of do (p = 0.5), f c,
and lin layers was used to regress the chronological age
from the last 256 features. The entire network contained a
total of 1.18 million trainable parameters.

Due to the complexity of the age regression problem, the
number of kernels per convolutional layer had to be doubled
with network depth, starting from 8 up to 256 kernels, in
order to find correlating features in the images. In addition,
the initial dropout rate of p = 0.1 in the Down Blocks
was multiplied with the network depth d to account for the
increasing number of parameters.

After defining the final architecture, the weights and
biases of the network layers, i.e., the trainable parameters,
had to be initialized. The options were either to assign
random values (the standard approach) or to initialize
the parameters with “pre-trained values” learned from a
different but similar problem. The latter was possible
because a neural network had already been trained on knee
MRIs, but for the segmentation problem. Both cases were

tested, but the use of transfer learning led to more stable
training processes and better results.

To enable this transfer of knowledge, the segmentation
network of the previous work [26] had to be slightly
modified to correspond to the layer sequences as shown in
Fig. 4, and retrained. Then the learned parameters from the
encoder were used to initialize the weights and biases of
AgeNet2D.

After initializing the network, the training process was
started to learn the best possible 1.18 million parameters
for age estimation from knee MRIs. To achieve this, an
optimization algorithm must iteratively change parameter
values to minimize the error or loss of the task. Using the
Adam optimizer [50] and the loss function of the mean
squared error (MSE) proved to be a good choice for solving
the given problem. MSE is defined as follows:

MSE = 1

n

n∑

i=1

(yi − ŷi )
2, (1)

where n are the number of samples, yi the true age of the ith
subject, and ŷi the predicted age by the network. To control
how much the optimizer modifies the parameters depending
on the loss after a certain number of training samples, i.e.,
batch, the learning rate had to be set. The default value
of Adam is 0.001, but due to initialization with pre-trained
parameters, the learning rate was reduced to 0.0001 to ”fine
tune” the CNN for the age estimation task. The optimal
batch size, after which a weight update of the network had
to be performed, was 16, and resulted from several test
runs. The last hyperparameter that was set was the number
of training cycles or epochs. Due to the complexity of the
problem and the low learning rate, AgeNet2D was trained
over 1000 epochs.

Finally, after CNN training, all pre-processed, masked,
and reduced 2D MRI could be fed into the network to
predict chronological age.
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Fig. 4 AgeNet2D—the CNN developed for age estimation—uses 2D
masked knee MR slices (only bone and growth plates) and predicts
the chronological age of a subject. The network compresses the input
from 2242 to 72 pixels using Convolution (conv) and Max-Pooling
(mp) operations to compute features at different scales. Exponential

Linear Unit (elu) is an activation function, Batch-Normalization (bn)
standardizes layer inputs, Dropout (do) randomly drops convolutional
kernels, Global Average Pooling (gap), and Fully Connected (f c) are
further layers that condense the features and finally, the Linear activation
(lin) layer regresses the chronological age (adapted from [37])
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Regession and classification

To regress the final age of a subject based on knee
MRIs, the 12 age predictions of AgeNet2D had to be
combined. Instead of taking the average or median or even
using the minimum-age concept [51], machine learning
algorithms (MLAs) were trained on the 12 age predictions
of AgeNet2D to finalize the age estimate per subject.
This approach not only led to more accurate results but
also enabled the integration of the subject-related data in
the age estimation process of DScor (Fig. 2—last part of
the green box). For DSsag, this additional data was not
available.

Classification between minors and adults is an essential
task in forensic age estimation. Consequently, this problem
was also investigated. The straightforward approach would
be to use the regression estimate for classification. However,
classification based on initial tests showed fewer errors
when an MLA based on 12-age predictions (+ subject-
related data) was trained to separate minors from adults. It
was particularly useful for more accurate classification of
subjects near the 18-year age limit.

The MLAs trained for this work included Support-Vector
Machines (SVM), Linear Regression (LR), K-Nearest
Neighbors Classifier (KNC), and tree-based algorithms
such as Random Forests (RF) and Gradient Boosting (GB).

Model evaluation

The evaluation of the trained models was performed on
the test set, i.e., on the fraction of the data from which
the model did not learn. To obtain a robust and unbiased
estimate of model performance, a repeated stratified k-
fold cross-validation (CV) with k = 5 folds was
performed.

During the generation of the fivefold, it was ensured that
each test set was unique. The stratification also guaranteed
that the folds and sets had a similar age distribution. Finally,
due to the stochastic nature of depth learning and most
machine learning algorithms, the evaluation was repeated
ten times for each fold. This provided a more reliable
assessment of the performance of each model.

The mean absolute error (MAE) was the principal metric
used to evaluate the regression models:

MAE = 1

n

n∑

i=1

|(yi − ŷi )|, (2)

where yi is the true chronological age of the ith subject,
ŷi the prediction by the model, and n the total number of
subjects. Further metrics tracked during the evaluation were
the standard deviation of the absolute error, and the 95%
confidence interval of the mean (95% CI).

For the classification of the 18-year age limit, the
accuracy, the sensitivity, and the specificity were the main
evaluation metrics:

Accuracy = TP + TN

TP + TN + FP + FN
, (3)

Sensitivity = TP

TP + FN
, (4)

Specificity = TN

TN + FP
(5)

with TP as true positives, TN true negatives, FP false
positives, and FN false negatives. All minors, i.e., below
18 years of age, were defined as TPs. Thus, the accuracy
represents the number of correct predictions (whether minor
or adult) over the total samples of the test set. The sensitivity
corresponds to the number of minors that were correctly
classified as such, while specificity is the number of adults
that were correctly classified. The metrics range between 0
and 1, where values closer to 1 represent better performance.

Another metric used to compare the performance of
different models was the Area Under the Curve (AUC)
score. It represents the area under the Receiver Operating
Characteristic (ROC) curve and indicates the capacity of the
model to discriminate between minors and adults. The score
can take any value between 0 and 1. A perfect classifier has
a score of 1 while a “naive” classifier has 0.5. The latter one
would simply classify by chance.

Statistical reference

To confirm the added value of the rather complex age estima-
tion framework presented in the current work, the trained
models were compared with the best available guess [52].

For regression, the best available guess was defined as
the mean age of the training set distribution.

In contrast, the best available guess for classification was
to predict all subjects as minors, i.e., a “naive” classifier.
This resulted in a sensitivity of 1.0, a specificity of 0.0, and
an AUC score of 0.5.

Results

Simplifying the age estimation problem by extracting age-
relevant structures in knee MRIs was successful (Fig. 5).
The training progression improved and the model was able
to generalize on unseen data using masked knee MRIs
in comparison to using “raw” images. This was verified
quantitatively by evaluating the two scenarios—“raw” or
unsegmented vs. masked MRIs—on a single fold of DScor.
Age predictions with a CNN improved markedly from an
average MAE of 0.97 ± 0.84 years (“raw”) to 0.81 ± 0.65
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training progression and avoided the generalization gap created by
CNN training on “raw” images. This supports the assumption that the
age estimation problem could be simplified by extracting age-relevant
structures from knee MRIs (adapted from [37])

years (masked) on coronal knee MRIs when trained several
times on a single fold.

Model performance on regression

The results for age regression based on AgeNet2D—with
and without MLAs—using the underlying DScor and DSsag

datasets are enlisted in Table 1. The results for each
dataset are divided into three scenarios: best available guess,
repeated CV results (rep.), and the best CV results across
all five folds (best).

All regression models trained on DScor outperformed the
best available guess (1.63 ± 0.99 years) of the training
sets. In addition, the introduction of an MLA to finalize
the age prediction improved all metrics by more than 10%

compared to the use of AgeNet2D as the sole predictor.
The inclusion of the subject-related data did not boost
the performance of the models but rather hurt the MAE.
Overall, the best-performing regression model across all
folds for DScor combined AgeNet2D with an Extremely
Randomized Trees Regressor (ETR) as MLA and neglected
the subject-related data. It achieved a MAE of 0.67 ± 0.49
years and had a 95% CI of [0.62; 0.72]. The predicted
ages by the model over all folds are plotted over the true
chronological ages in Fig. 6.

The best available guess on DSsag yielded inferior
metrics compared to that on DScor due to a larger dataset,
a wider age range, and a more uniformly distributed
training set. Similar to the coronal results, the regressors
on sagittal MRIs outperformed the results using the best

Table 1 Age regression
performance on the test sets in
a (repeated) fivefold cross-
validation (CV) using masked
knee MRIs and subject-related
data (srd). Metrics are
presented in years and include
the mean absolute error
(MAE), the standard deviation
(SD), and the 95% confidence
interval of the mean (95% CI)

CV Model MAE ± SD 95% CI

DScor

- Best available guessa 1.63 ± 0.99 [1.59; 1.67]

rep.b AgeNet2D 0.81 ± 0.65 [0.80; 0.83]

AgeNet2D+MLAc 0.71 ± 0.55 [0.71; 0.72]

AgeNet2D+MLAsrd 0.73 ± 0.55 [0.71; 0.74]

bestd AgeNet2D 0.79 ± 0.62 [0.74; 0.83]

AgeNet2D+MLA 0.67 ± 0.49 [0.62; 0.72]

AgeNet2D+MLAsrd 0.69 ± 0.47 [0.63; 0.74]

DSsag

- Best available guess 1.93 ± 1.20 [1.90; 1.96]

rep. AgeNet2D 0.92 ± 0.73 [0.91; 0.94]

AgeNet2D+MLA 0.81 ± 0.62 [0.79; 0.83]

best AgeNet2D 0.89 ± 0.70 [0.82; 0.96]

AgeNet2D+MLA 0.79 ± 0.57 [0.67; 0.90]

aMean age of the training set
bRepeated cross-validation for all five folds
cMachine learning algorithm
dBest cross-validation for all five folds
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Fig. 6 Predicted vs. true chronological age of test subjects from all five
folds (n = 35 ∗ 5 = 175) using AgeNet2D followed by an Extremely
Randomized Trees Regressor (ETR) trained on masked coronal knee
MRIs. The green central line highlights a perfect prediction, while the
two parallel grey lines encompass 95% of the model predictions

available guess (1.93 ± 1.20 years) of the training set
significantly (p < 0.001). The introduction of MLAs
improved regression metrics by a large extent. The best-
performing model across all folds was AgeNet2D followed
by an ETR as MLA with a MAE of 0.79 ± 0.57 years and a
95% CI of [0.67; 0.90]. Although the metrics were inferior
compared to the ones on DScor, the sagittal models were
based on a broader and larger population.

Model performance on classification

All listed models achieved above 80% in accuracy,
sensitivity, specificity, and AUC on majority classification
(Table 2). The best-performing model on DScor surpassed
89% in accuracy and combined AgeNet2D and a Random
Forests Classifier (RFC) as MLA. The model using MLA
without subject-related data had a slightly higher average
sensitivity and AUC in comparison to the MLA using it.
This is the desired outcome to correctly classify more
minors.

Surprisingly, the models trained on DSsag had better
classification metrics although the regression results were
inferior in comparison to DScor. Once more, an RFC
delivered the best average metrics when trained on
AgeNet2D’s age predictions from sagittal MRIs. It attained
an accuracy of 90.9%, a sensitivity of 88.6%, a specificity of
94.2%, and an AUC of 94.4% over all folds. The ROC curve

of the model indicates that it has the potential to increase its
sensitivity, at the cost of specificity, to increase the amount
of correctly classified minors (Fig. 7).

Discussion

The proposed method enabled a non-invasive, computer-
based, and fully automated solution for age estimation
based on an actual and homogeneous population. In
contrast, current methods in practice rely on labor-
intensive and subjective visual assessments of the growth
plate ossification stages. This assumes that the stages
provide sufficient criteria to distinguish minors from adults.
Contradictory results can be observed in studies claiming
that the staging system used allows for separation between
minors and adults [53–55] while other studies claim
the opposite [16, 31, 56, 57]. Further information and
differences of studies using MRI for age estimation can be
found in the systematic review by De Tobel et al. [58].

Principal findings

The idea to use bone segmentation to simplify age
estimation based on appearance information was successful.
AgeNet2D was able to find correlating features with age
in the images in a more robust and generalizable manner
when using masked instead of “raw” knee MRIs. In [28],
the authors had similar findings when cropping age-relevant
structures from hand MRIs instead of using the whole image
volume as input of a CNN. The benefit of executing bone
segmentation prior to age estimation in the current work
was the possibility to transfer knowledge from one problem
to the next. Stern et al. [21] and Dallora et al. [30] were also
successful in improving age prediction by using transfer
learning.

Age predictions by AgeNet2D—based on 2D masked
knee images—were effectively combined to a final age
per subject using ML-based algorithms to enhance age
regression further. An alternative to avoid this two-step
age estimation would be to use 3D CNNs on the knee
MRI volumes. First tests on both datasets DScor and DSsag

showed inferior results in comparison to the combination of
CNNs and ML-based regressors. Nevertheless, a 3D-CNN
has the capacity to collect more contextual information from
the MRI volume and this potential should be evaluated in
future work.

When comparing the age regression methods of the
current work, the coronal MRI-based models were superior
to the models on sagittal MRI. The difference could be
related to a larger sagittal dataset with a broader age range
and a more uniform age distribution of DSsag, which could
have introduced a higher possibility of variance and outliers.
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Table 2 Performance on
majority classification (≥ 18
years) on the test sets in a
(repeated) fivefold
cross-validation (CV) using
masked knee MRIs and
subject-related data. Metrics
are presented in percentage and
include accuracy (Acc.),
sensitivity (Sens.), specificity
(Spec.), and area under the
receiver operating
characteristic curve (AUC)

CV Model Acc. Sens. Spec. AUC

DScor

- Best available guessa 49.3 100.0 0.0 50.0

rep.b AgeNet2D+MLAc 85.7 86.4 84.6 90.8

AgeNet2D+MLAsrd 83.5 81.4 87.1 89.6

bestd AgeNet2D+MLA 89.1 89.1 89.2 92.5

AgeNet2D+MLAsrd 89.7 88.2 92.3 92.0

DSsag

- Best available guess 52.3 100.0 0.0 50.0

rep. AgeNet2D+MLA 87.5 88.4 86.1 94.3

best AgeNet2D+MLA 90.9 88.6 94.2 94.4

aPredict minors for the entire training set
bRepeated cross-validation for all five folds
cMachine learning algorithm
dBest cross-validation for all five folds

Regarding the classification task on the 18-year age limit,
comparable results were attained using coronal or sagittal
knee MRIs. The high AUC of 0.94 for the classifiers on
sagittal data shows the capacity of this model to differentiate
between adults and minors. A change of threshold can
improve the amount of correctly classified minors which is
a more favorable outcome in practice.
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Fig. 7 Receiver operating characteristic (ROC) curve for the best-
performing model on majority classification (≥ 18 years). The
Random Forests Classifier (RFC) attained an accuracy of 90.9%, a
sensitivity of 88.6%, a specificity of 94.2%, and an area under the ROC
curve (AUC) of 94.4% averaged over five folds. The high mean AUC
indicates that a shift of the threshold can further improve the sensitivity
at the expense of the specificity (adapted from [37])

The inclusion of subject-related data, namely ossification
stages and anthropometrics data, in the ML-based regressors
and classifiers did not increase age estimation performance.
In the classification task, it even slightly hurt the outcome.
The limited contribution of anthropometric data when used
in conjunction with MR images was also observed in [52].
Contrary, the inclusion of ossification stages positively
contributed to the performance on age estimation in [21].
However, the data was not included in an MLA but used
to pre-train a CNN, to achieve a better initialization of the
network. Training a CNN on ossification stages rather than
segmentation could be a viable alternative to the method
developed in the current work.

Comparison to similar studies

Similar studies in the field of automated age estimation are
the works by Stern et al. [21, 27, 28, 59, 60] and Dallora et
al. [30]. Both research groups have developed and analyzed
methods for age estimation based on machine learning (incl.
deep learning) as well. Further resemblance to the current
work is the MRI modality, the number of samples, and the
population, which included males in similar age ranges from
13 to 25 years (Table 3). While Dallora et al. also acquired
MRIs of the knee, Stern et al. have focussed on different
anatomical sites: hand, clavicle, and wisdom teeth.

From Table 3, it is visible that the models from the
current work outperform the ones of Stern et al. and
Dallora et al. in age regression on the basis of MAE.
However, the differences can be caused by several factors
such as a different age distribution, anatomical sites, sample
number, pre-processing, and CNN architecture. The even
lower MAE from a previous work [26] is less comparable
because it was a proof of concept and no cross-validation
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Table 3 Comparison of age regression performance between the current work and other studies using automated and MRI-based methods.
Techniques used include convolution neural networks (CNNs), machine learning algorithms (MLAs), gray-level variations (GLV), and principal
component analysis (PCA). The metrics are presented in years and include the mean absolute error (MAE) and the standard deviation (SD)

Study N Gender Age range (years) Anatomical site Technique MAE ± SD

Pröve et al. [26]a 145 Male 14–21 Knee CNN+MLA 0.48 ± 0.32

Current workb 185 Male 14–21 Knee CNN+MLA 0.67 ± 0.49

Current workc 404 Male 13–21 Knee CNN+MLA 0.79 ± 0.57

Dallora et al. [30] 221 (181) Male (female) 14–21 Knee CNN 0.79d

Stern et al. [59] 56 Male 13–19 Hand MLA 0.85 ± 0.58

Stern et al. [60] 132 Male 13–20 Hand MLA 0.82 ± 0.56

Stern et al. [21] 103 Male 13–24 Hand, teeth, clavicles CNN 1.14 ± 0.96

Stern et al. [27] 322 Male 13–25 Hand, teeth, clavicles CNN 1.01 ± 0.74

Stern et al. [28] 328 Male 13–25 Hand CNN 0.82 ± 0.65e

Saint-Martin et al. [61] 80 (80) Male (female) 8–25 Ankle GLV+PCA -

aPrevious work as a proof of concept without k-fold cross-validation
bResults of current work using coronal knee MRIs
cResults of current work using sagittal knee MRIs
dSD was not indicated in the paper, and the metric omits the MAE of 1.37 years for the 21-year-old age group
eMetric only holds for subjects ≤ 18 years

was performed. A common result of these studies is the
improvement in age regression through CNN pre-training.
In the current work, the weights were initialized using
the knowledge from the segmentation task. Stern et al.
[21] pre-trained their CNN using information about the
maturation of the growth plates by radiological assessment.
In contrast, the models of Dallora et al. [30] were pre-trained
on ImageNet [62], a large database of roughly 3.2 million
images of animals, vehicles, etc.

Besides age regression, the studies mentioned above
delivered results on the classification task as well. The
metrics are markedly similar to the ones of the current

work (Table 4). Stern et al.’s higher specificities and lower
sensitivities could be caused due to the larger amount of
adults in their dataset. Nonetheless, the highlight is their
excellent AUC of 0.98 in [27]. Dallora et al. has the highest
sensitivity among all studies but does not provide values on
accuracy and AUC. Another automated approach using MRI
as modality which evaluated the classification task is the
work by Saint-Martin et al. [61]. For their male dataset of
80 individuals, they obtained a low sensitivity of 69% but a
very high specificity of 98%. In contrast to the current work,
they investigated a different anatomical site (distal tibia) and
had a wider age range (8–25 years).

Table 4 Comparison of majority classification (≥ 18 years) performance between the current work and other studies using automated and MRI-
based methods. Besides accuracy, sensitivity, and specificity the area under the curve (AUC) represents the capacity of a model to discern between
minors and adults. Metrics are presented in percentage. An overview of the population, datasets, and methods of the studies can be found in Table 3

Study Minors Accuracy Sensitivity Specificity AUC

Current worka 49.3 89.7 88.2 92.3 92.0

Current workb 52.3 90.9 88.6 94.2 94.4

Dallora et al. [30] 47.1c - 90.4c 95.6c -

Stern et al. [21] 42.7 91.3 88.6 93.2 -

Stern et al. [27] 41.6 90.7 82.1 96.8 98.0

Stern et al. [28] - - - - 95.7

Saint-Martin et al. [61] 37.5 - 69.0 98.0 -

aResults of current work using coronal knee MRIs
bResults of current work using sagittal knee MRIs
cValues for the male subjects
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Study limitations and practical implementation

The underlying population of this work was particularly
homogeneous. Only Caucasian male individuals between
13 and 21 years of age with a middle to high socio-
economic status were included. This makes comparison
to other studies, e.g., Stern et al., more practicable since
multiple factors influencing growth are largely mitigated.
One limitation of the developed method is its suitability
solely for this specific group. The application on other
populations should be validated first. Notwithstanding, it is
recommended to perform age estimation on homogeneous
groups to attain more reliable results for insufficiently large
datasets. Especially, to train separate models for males and
females since the latter mature faster and have a different
growth pattern [63–66].

Besides gender, the application of the method on
individuals with lower socio-economic status has not been
evaluated. EASO [10] and Schmeling et al. [67] state that
in such a case the method would likely underestimate
the subjects since lower socio-economic status generally
delays skeletal maturation. This outcome would support the
principle of “in dubio pro reo.” This hypothesis could be
validated in the future by applying the method on other
populations.

The age range in this work did not allow classification
on the basis of other age limits such as 14 and 21 years
which are relevant legal ages in specific fields. Nonetheless,
the focus of this work was the 18-year age limit which is
a crucial threshold to separate minors from adults in many
countries. The selected age range made it possible to assess
this age limit with sufficient margin of error.

A uniform age distribution is the optimal starting point
for an unbiased age estimation. The coronal dataset was
unbalanced but was countered by augmenting the knee
MRIs of the subjects from the less populated age groups.
A slight bias could still be present when comparing the
regression results from DScor with DSsag which was more
uniformly distributed. However, the classification results
were superior using DSsag which suggests that a more
“favorable” distribution is not necessarily followed by better
performance.

In addition to obtaining a uniform age distribution, the
size of the dataset in medical applications is often limited
due to laws and guidelines to protect the privacy of patients
[68]. Although DSsag had over 400 three-dimensional MRIs
of the knee, the roughly 40 cases per age group might not
be sufficient to fully capture the variability of the group.
Furthermore, data-driven methods such as deep learning
require a large amount of data to learn a complex task given
the high number of unknowns in the system. Cho et al. [68]
concluded that 1000 samples per class in the training data

is necessary to correctly classify body parts in computed-
tomography (CT) images using deep learning. Although it is
a different field of study, it gives a perspective of how much
data is necessary for data-driven models.

A final limitation of the current study is MRI as
image modality due to the high cost in comparison
to X-ray due to spacious facilities, equipment, medical
technical assistants, and examination duration. In [69–78],
a solution is proposed to accelerate acquisition times by
reconstructing MRIs using undersampled data in k-space.
Besides reducing the costs it can lower the stress to patients
as well, which is particularly useful for young refugees
with traumatic backgrounds. First promising applications
of the acceleration technique in the area of age estimation
have been analyzed in [71, 74, 75]. Other non-invasive
techniques such as ultrasound (US) have yet to be evaluated
for their suitability for age estimation, especially when used
in combination with machine learning. A recent study by
Herrmann et al. [79] proposed a growth plate classification
system of the knee for age estimation using US volumes and
compared the results with MRI.

Conclusion

The current work presented a new method for automated
age estimation of young individuals based on machine
learning—notably CNNs—using MRIs of the knee in coro-
nal and sagittal orientation. The three-step approach first
pre-processed the MRIs (correction and standardization),
subsequently extracted age-relevant structures (data reduc-
tion and simplification), and finally, estimated the chrono-
logical age based on the extracted data.

The computer-based method demonstrated its ability to
both age regression and majority classification (≥ 18 years)
in a fully automated, non-invasive, and user-independent
setting.

For the regression task, a combination of a CNN, i.e.,
AgeNet2D, and a tree-based machine learning algorithm
and achieved an MAE of 0.67 ± 0.49 years. Although this
was the best-performing model and was evaluated similarly
to other studies, it may not capture the full variability of the
approach. Therefore, the specifically performed repeated
stratified k-fold validation with a MAE of 0.71 ± 0.55 years
may provide a more realistic and reliable estimate of the
model’s performance in practice.

For the classification task, AgeNet2D followed by a random
forest classifier showed the highest values for sensitivity
(88.6%) and specificity (94.2%) and comparable to similar
studies. The repeated cross-validation results with a sensitivity
of 88.4% and a specificity of 86.1% might offer a more realis-
tic and reliable evaluation of the classifier’ performance.
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The results of age estimation differed slightly for both
imaging planes. While the regression was significantly
better using coronal rather than sagittal MRI, the age
distribution and size of the datasets were different. For a
practical implementation of a similar approach, the imaging
plane might have less influence than the factors mentioned
above, especially when considering data-driven models that
use deep learning, for example. Further analysis could be
conducted in the future to evaluate this assumption.
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