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Abstract There are many qualitative indicators for postmortem
interval (PMI) of human or animal cadavers. When such indi-
cators are uniformly spaced over PMI, the resultant distribution
may be very useful for the estimation of PMI. Existing methods
of estimation rely on indicator persistence time that is, however,
difficult to estimate because of its dependence on many
interacting factors, of which forensic scientists are usually un-
aware in casework. In this article, an approach is developed for
the estimation of PMI from qualitative markers in which indi-
cator persistence time is not used. The method involves the
estimation of an interval preceding appearance of a marker on
cadaver called the pre-appearance interval (PAI). PMI is delin-
eated by PAI for two consecutive markers: the one being record-
ed on the cadaver (defining lower PMI) and the other that is next
along the PMI timeline but yet absent on the cadaver (defining
upper PMI). The approach was calibrated for use with subse-
quent life stages of carrion insects and tested using results of pig
cadaver experiments. Results demonstrate that the presence and
absence of the subsequent developmental stages of carrion in-
sects, coupled with the estimation of their PAI, gives a reliable
and easily accessible knowledge of PMI in a forensic context.

Keywords Forensic science . Postmortem interval . Carrion
insects . Succession

Introduction

Background

Forensic scientists have identified several postmortem interval
(PMI) indicators and developed many technical methods for
PMI estimation [1]. Although there are good quantitative in-
dicators, for example, cadaver temperature [2], potassium
content in vitreous humor [3], or the length of carrion insect
larvae [4, 5], many markers are qualitative, for example,
species/life stages of insects or bacteria successively occurring
on cadavers [6–9] or markers related to soft tissue decompo-
sition [10, 11]. As a rule, qualitative markers persist for some
time, and the persistence times of different markers usually
largely overlap. However, when such indicators are uniformly
distributed over PMI [12], resultant distribution may be par-
ticularly useful for the estimation of PMI. Regular distribu-
tions were found for larval insects successively appearing on
cadavers [7, 13], developmental landmarks of carrion insects
[14–16], or indicators related to soft tissue decay [10, 11].

Based on qualitative indicators, an approach for PMI was
developed by Schoenly et al. for insect successional markers
[17, 18]. A similar method was proposed for developmental in-
dicators of blowfly pupae [14] and immunohistochemical
markers [19]; it is called the “indicator presence” method, as an
estimate is based on the presence of two markers: the one that
starts later and the other that ends earlier compared to the other
markers recorded (Fig. 1a). The former defines lower PMI, the
latter upper PMI.Another approach, applied by forensic entomol-
ogists [20], is called the “indicator absence/presence” method
(Fig. 1b). It involves two markers: lower PMI is, however, de-
fined by the absence of an early indicator and only upper PMI is
delineated by the presence of a long-lasting indicator (Fig. 1b).
Both methods rely on indicator persistence time (IPT), delineat-
ing upper PMI for the first method or both lower and upper PMI
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in the case of the second (Fig. 1a, b). IPTs are, however, difficult
to estimate due to their large variation. The rate and duration of
cadaver decomposition are influenced by many factors, for ex-
ample, the type of cadaver exposure [21–23], temperature [10],
access by insects [24, 25], or cadaver mass [26, 27]. Persistence
of indicators directly or indirectly related to decomposition (e.g.,
carrion insects or bacteria) is similarly affected. Carrion insects,
for example, persist longer on large cadavers [26] or in colder
seasons [7, 28]. Accordingly, the reliance on IPTs reduces accu-
racy of existing methods. In this article, an approach is developed
for the estimation of PMI from qualitative indicators, in which
IPTs are not used.

An outline of the method

The approach is based on appearance times of subsequent and
interconnected indicators. It uses two indicators and involves
the estimation of an interval preceding their appearance on a
cadaver (hereafter referred as a pre-appearance interval, PAI).
Reliance of the method on PAI is its advantage, as it was
demonstrated that PAI for some indicators is unrelated to ca-
daver mass (e.g., insects [26]) and may easily be estimated
using temperature methods [29]. Lower PMI is delineated
by PAI of the present indicator and upper PMI by PAI of the
indicator that is next along the PMI timeline but yet absent on
the cadaver (Fig. 2). A similar logic of estimation was pro-
posed by Reh for the estimation of post-submersion interval

frommorphological indicators of immersed cadavers [30, 31].
Although decomposition charts of Reh were established for
the estimation of minimum PMI, it was suggested that maxi-
mum PMI may be estimated as well, by analyzing the indica-
tors that have not yet developed in the cadaver [31]. The
compound method for the early PMI estimation of Henssge
et al. [32, 33] incorporates similar mechanics of estimation.

The method may be divided into several steps (Fig. 3). First,
cadaver is examined and relevant indicators are documented.
Second, the definitive indicator (i.e., the one that starts later
than the others) is chosen through comparing indicators re-
vealed on the cadaver against the baseline distribution of indi-
cators. The third step involves the estimation of PAI for the
definitive indicator, and the fourth step consists of the estima-
tion of PAI for the subsequent yet absent indicator. The se-
quence in which indicators occur on a cadaver should be stable.
Moreover, indicators should occur with high regularity irre-
spective of case circumstances. These requirements are met
by interconnected indicators, that is, markers inherently related
to each other as, for example, subsequent life stages of carrion

Fig. 1 A schematic representation of methods for PMI estimation from
qualitative indicators. a The “indicator presence” method. b The
“indicator absence/presence” method. I1, I2, I3, I4 indicators no. 1, 2,
3, and 4

Fig. 2 A schematic representation of the “indicator presence/absence”
method. I1, I2, I3, I4 indicators no. 1, 2, 3. and 4

Fig. 3 The procedure for PMI estimation from uniformly distributed and
interconnected qualitative indicators
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insects. An interval delineated by lower and upper PMI (i.e., the
estimated interval) may be very narrow, and for this reason, it
was assumed that the true PMI may regularly lie outside of this
interval. Consequently, taking the midpoint between the lower
and upper PMI, the method involves transforming this interval
into the point estimate. The final result is presented as an inter-
val around this point estimate and is generated using previously
specified error rates of the method. Because the procedure in-
volves several sources of error (e.g., indicator documentation
error, PAI estimation error, upper-lower PMI error, etc.), it is
assumed that these conversions allow to provide highly infor-
mative and robust interval estimate by incorporating the single
error rate of the whole method.

Calibration of the method for insect evidence

Carrion insects have long been recognized as useful in estimating
PMI [34]. Several insect-related processes were tested or used
for this purpose [35, 36], and the ecological succession was
presumably the one focusing largest scientific interest [34]. The
succession of insect life stages on carrion represents a regular
pattern; therefore, life stages of carrion insects will be used as
indicators and their PAI as delineation for lower and upper PMI.

The method’s several components may be distinguished
(Online Resource: ESM 1). First, corpse fauna is collected,
identified, and classified. Second, a definitive species (i.e.,
the one that colonizes cadavers later than the others) and stage
(i.e., the most developmentally advanced life stage of the de-
finitive species) are chosen. In the third step, PAI of the defin-
itive life stage is estimated. When PAI of a stage is closely
related to the preceding temperature, it may be estimated using
case-specific temperature data and temperature model for PAI
[29]; when it is poorly related to the preceding temperature, an
average seasonal or monthly PAI may be more useful [29, 37].
In the fourth step, PAI of the next yet absent stage is estimated
using the same methods and data as in the previous step. For
example, if corpse fauna comprises 1st and 2nd instar larvae
of Necrodes littoralis (Coleoptera: Silphidae) and 3rd instar
larvae of Lucilia caesar (Diptera: Calliphoridae), 2nd instar
larvae of N. littoralis should be considered as definitive be-
cause N. littoralis colonizes cadavers later than L. caesar and
its 2nd instar larvae are the most developmentally advanced.
Consequently, PAI of the 2nd larval stage of N. littoralis de-
fines lower PMI; PAI of the next yet absent 3rd larval stage of
N. littoralis defines the upper PMI. In the last step, using the
error rate of the method, the midpoint between lower and
upper PMI is transformed into the final interval for PMI.

Materials and methods

Based on the results of previous pig carcass studies [26,
38–40] and case histories [41–44], a list of definitive

insect species was prepared for the rural habitats of
Central Europe (Online Resource: ESM 2). The only pre-
condition the species had to meet was regular breeding in
large cadavers. Species to be used in the validation tests
were selected based on their distribution over PMI and
availability of the necessary data.

Temperature models for PAI of developmental stages were
estimated using previous methods [45] and data from previous
studies [46, 47]. It was assumed that PAI starts at themoment of
death and ends in the midpoint between the first collection of
relevant insect specimen and the time when previous sample
was taken. Although oviposition PAI of most carrion flies is
poorly related to preceding temperature [46], it was assumed
that the dependence of PAI on temperature will get stronger for
later life stages due to the strong effect of temperature on the
developmental rate of insects [5]. Accordingly, temperature
models for PAI were also created for life stages of flies.

The method was validated using results of previous exper-
iment [26, 27], with pig carcasses exposed in xerothermic
grasslands (Western Poland, Europe; 52°31′N, 16°55′E) dur-
ing spring, early, and late summer of 2012. Each seasonal
block comprised eight cadavers (naked and clothed, cadaver
mass 7–64 kg). Insects were sampled manually and with pit-
fall traps. Ground level temperatures were recorded at every
carcass. The baseline data used to validate the method were
different from the data used to develop the PAI models from
the previous paragraph.

The validation procedure comprised several steps.
First, relevant data were extracted from insect occurrence
records of the baseline experiment; they included PMIs in
which relevant configurations of life stages (presence/ab-
sence of subsequent stages) had been observed (hereafter
referred as true PMI). In the second step, the current
method was used to estimate PMI (hereafter referred as
estimated PMI). Estimates were made for each day with
relevant configuration of life stages. Temperature records
were obtained from a local weather station and were ret-
rospectively corrected to accommodate systematic differ-
ences between weather station and places where cadavers
were exposed [48]. Then, using the temperature method,
PAI for the present developmental stage was estimated
[29]. The predictor temperature (i.e., temperature used to
predict PAI with the model) was approximated using the
following procedure. The average monthly PAI was ex-
tracted from a local carrion insect database. Temperature
was averaged for this PAI starting from the day when the
given configuration had been recorded and calculating
backward. Corrected weather station temperatures were
used in these calculations. The resultant average temper-
ature was used as the first approximation of predictor
temperature, and eventually the first PAI estimate was
made. This procedure was iterated twice because such
iterations were found to improve the approximation of
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predictor temperature and resultant estimate of PAI [29].
While iterating, in each case, the PAI estimate from the
previous iteration was used to approximate predictor tem-
perature in the next iteration. In the end, the 3rd estimate
of PAI was used as the lower PMI. Using the same meth-
od and data, PAI for the absent life stage (defining upper
PMI) was estimated. The third approximation of predictor
temperature as used for the PAI of the present life stage in
the previous step was used for this purpose. Average
monthly PAIs were used instead of temperature estimates
for these life stages that reveal a poor relationship be-
tween PAI and temperature. Monthly PAIs were calculat-
ed based on the same data from which temperature
models were estimated. The midpoint between resultant
lower and upper PMI is the estimated PMI. Next, error
rate of the method was analyzed.

All analyzes were made at the 5% level of significance
using Statistica 12 (StatSoft, Inc.).

Results

Due to the finely uniform distribution of their life stages over
PMI, L. caesar (Diptera: Calliphoridae), Thanatophilus
sinuatus, and N. littoralis (Coleoptera: Silphidae) met the re-
quirements to be included in the tests (Online Resource: ESM
1). Larval instars of the species and additionally the egg stage
and the post-feeding larval stage of L. caesar were used as
indicators. Consequently, eight configurations were tested
(Table 1), covering about 20 days of decomposition.
Temperature models for PAI were of acceptable quality for
the 2nd and the 3rd larval stages (feeding and post-feeding
phase) of L. caesar and for all the larval stages of
T. sinuatus and N. littoralis (Online Resource: ESM 1-2).
Due to the low quality of temperature models, the average
monthly PAIs were used for the egg stage and the 1st larval
stage of L. caesar (Online Resource: ESM 2).

PMI estimates were highly aggregated around the line
representing perfectly accurate estimates in the entire PMI
range (Fig. 4). A regression model for the relationship

between estimated and true PMI (linear regression, estimated
PMI = 0.6173 + 0.8934 * true PMI, t = 42.3, P < 0.001,
r2 = 0.83, Fig. 4) only slightly deviated from the line
representing perfect estimates (Fig. 4). Relative error of esti-
mation decreased with an increase in PMI (Fig. 5). This find-
ing suggests that configurations relevant for short PMI have
higher estimation error than configurations relevant for long
PMI. A formal comparison of configurations according to the
error rate revealed highly significant differences (Kruskal-
Wallis test, H(7, 371) = 88.8, P < 0.001), with beetle configu-
rations having lower error rates than fly configurations
(Table 2, Online Resource: ESM 1). Error rates were not
related to carcass mass (linear regression, relative error of
estimation = 0.30057 − 0.000735 * carcass mass, t = −0.62,
P = 0.535, r2 = 0.001, Online Resource: ESM 1).

Confidence intervals (Table 3) based on practical error rates
(Online Resource: ESM 1) were narrower for beetle configu-
rations than for fly configurations; they were reasonably small
for beetle configurations, indicating that the method may give
robust PMI estimates.

Table 1 Tested configurations of
indicators Species Configuration of indicators Abbreviation

Lucilia caesar Presence of eggs and absence of 1st instar larvae Eggs/1st

Presence of 1st instar larvae and absence of 2nd instar larvae 1st/2nd

Presence of 2nd instar larvae and absence of 3rd instar larvae 2nd/3rd

Presence of 3rd instar larvae and absence of post-feeding larvae 3rd/post-feeding

Thanatophilus sinuatus Presence of 1st instar larvae and absence of 2nd instar larvae 1st/2nd

Presence of 2nd instar larvae and absence of 3rd instar larvae 2nd/3rd

Necrodes littoralis Presence of 1st instar larvae and absence of 2nd instar larvae 1st/2nd

Presence of 2nd instar larvae and absence of 3rd instar larvae 2nd/3rd

Fig. 4 Results of PMI estimation for eight configurations of insect
indicators. Solid line, regression model of the relationship between true
and estimated PMI. Dotted line, hypothetical line representing perfectly
accurate estimates
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Discussion

Current results demonstrate that insect successional indicators
may produce accurate PMI estimates without using indicator
persistence time (IPT). When they are interconnected and uni-
formly distributed over PMI, the presence and absence of sub-
sequent indicators (here life stages of carrion insects) coupled
with the estimation of their PAI gives a reliable and easily ac-
cessible knowledge of PMI.

The method has several advantages. First, it covers a wide
range of PMI, similar to development-based entomological
methods [5] or decomposition-based taphonomic methods
[10]. Moreover, through the inclusion of other species and life
stages, this rangemay be expanded outperforming development-

based entomological methods. Stearibia nigriceps (Diptera:
Piophilidae), Omosita colon (Coleoptera: Nitidulidae), species
of Necrobia (Coleoptera: Cleridae) or Dermestes (Coleoptera:
Dermestidae), and parasitoids of blowfly pupae, for example,
Nasonia vitripennis (Hymenoptera: Pteromalidae), regularly col-
onize cadavers long after death [7, 26, 41, 49] and, from this
point of view, may expand the range until about 3 months after
death. Inclusion of eggs, pupae, and tenerals may have similar
effect. Second, the method has a fine resolution, dividing PMI
into many uniform and narrow subintervals. From this point of
view, it outperforms decomposition-based taphonomic methods,
in case of which subintervals enlarge with an increase in PMI
[10]. Third, the method is accurate, particularly with these con-
figurations for which PAI may be estimated using temperature
methods. Although some methods have lower error rates, for
example, methods based on cadaver temperature [50], accuracy
of the current method is higher than some other approaches
relevant for long PMI, for example, decomposition-based taph-
onomic methods [10, 51], or similar as compared to the others,
for example, development-based entomological methods.
Fourth, it may be easily applied in the forensic routine, as it needs
only good insect sample and reliable temperature data. Fifth,
accuracy of PMI estimation is unrelated to cadaver mass, and,
from this point of view, the method outperforms other insect
successional methods [17, 18, 52].

The method has, however, also some disadvantages. First, its
good performance depends on the professional sampling of in-
sects. Several life stages used are difficult to be sampled due to
their small size (eggs or first instar larvae) or cryptic behavior
(e.g., larvae of some beetle species). Although these effects may
be reduced by including accessory species (i.e., species

Fig. 5 Relative error of estimation (absolute difference between true and
estimated PMI divided by true PMI) plotted against true PMI

Table 2 Accuracy of PMI estimates with the current method

Species Configuration of indicators Accuracy of PMI estimation

N Inclusionsa Mean PMI widthb (days) Absolute error (days)c Relative errord

N % Mean Range Mean Range

Lucilia caesar Eggs/1st 24 16 67 0.72 0.404 0.05–1.20 0.684 0–6.50

1st/2nd 38 24 63 2.31 0.920 0.05–2.55 0.514 0.03–3.50

2nd/3rd 37 10 27 1.59 1.201 0.15–3.35 0.327 0.04–1.20

3rd/post-feeding 75 42 56 3.00 1.651 0.15–4.30 0.268 0.02–1.07

Thanatophilus sinuatus 1st/2nd 50 28 56 3.03 2.000 0.10–6.65 0.235 0.01–0.96

2nd/3rd 52 21 40 2.24 1.647 0.05–9.60 0.142 0–0.99

Necrodes littoralis 1st/2nd 53 18 34 2.30 1.775 0–4.65 0.130 0–0.41

2nd/3rd 42 2 5 2.00 3.131 0.50–5.75 0.181 0.03–0.29

Eggs/1st presence of eggs and absence of 1st instar larvae, 1st/2nd presence of 1st instar larvae and absence of 2nd instar larvae, 2nd/3rd presence of 2nd
instar larvae and absence of 3rd instar larvae, 3rd/post-feeding presence of 3rd instar larvae and absence of post-feeding larvae
a Cases when the true PMI lay within the estimated interval (interval between lower and upper PMI)
bMean difference between upper and lower PMI (Schoenly et al. 1996)
c Absolute difference between true and estimated PMI (i.e., the midpoint of the estimated interval)
d The absolute error divided by the true PMI
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colonizing cadavers at time regimes similar to the major spe-
cies), without standardized and professionalized sampling on a
crime scene, themethodmay be ineffective. Second, themethod
needs sophisticated baseline data, that is, temperaturemodels for
PAI or average monthly or seasonal PAIs for particular life
stages of carrion insects. Current protocols for decomposition
studies cannot provide such data, and consequently, rebuilding
them will be necessary. A framework for novel protocol was
published recently [45]. Third, problems may arise with
recolonizing taxa [12], as they may have two (or more) separat-
ed intervals during which the same configuration of indicators is
present. A recent study revealed that species feeding on long-
lasting carrion parts or arthropods present in such parts frequent-
ly recolonize on large cadavers [40]. Moreover, it was indicated
that winter break in insect activity is necessary for the occur-
rence of recolonization [40]. Therefore, these estimation prob-
lems may occur for overwintered cadavers, for which the meth-
od seems to be inapplicable. Another possible disadvantage is
the dependence of the method upon the environment in which
cadaver was found. Because environments differ in composition
of carrion fauna [53–55], cadavers in different environments
may have different definitive species. Moreover, when average
monthly PAI is used instead of temperature estimates, the most
accurate PMI estimates will be given from the PAI data specific
for the environment in which cadaver was found. The questions
whether average monthly or seasonal PAIs differ across envi-
ronments and how large are these differences remain, however,
open. From the other side, in the case of these taxa for which
PAI may be estimated using temperature methods, validation
studies for these methods [29, 56, 57] suggest that a single
PAI model may be used across habitats. Moreover, previous
data suggest that temperature models for PAI may give accurate
estimates for insects from different geographic populations [56],
and this finding indicates that the current PAI models may be to

some extent used also across different geographic areas. All
these problems need, however, further studies.

Although the method was calibrated for immature insects,
it may be tempting to include adult insects. Most previous
successional approaches for PMI used adult insects as primary
indicators [9, 17, 52]. The inclusion of adult insects may be,
however, problematic for two reasons. First, adult insects may
be present on cadaver longer than all immature life stages. For
this reason, the presence of adult stage and absence of 1st
instar larval stage may occur twice, that is, at the beginning
and at the end of adult stage residency, and this may decrease
the accuracy of PMI estimation with the method. Second,
there are carrion species that may be present on some cadavers
exclusively as adult stage, for example, N. littoralis on some
small or medium cadavers was found only as an adult stage
[26]. In such cases, the time regime during which adult insects
are present and 1st instar larval insects are absent may be
distinctly prolonged, affecting the accuracy of estimation.

Although the method was tested only with insect succes-
sional markers, it may be similarly effective with other qual-
itative markers, in particular the ones that are reasonably in-
terconnected and uniformly spaced over PMI. From this point
of view, insect developmental indicators are very promising.
Insect development may be easily represented as a sequence
of qualitative changes uniformly spaced over insect life cycle
and eventually over PMI. Forensic entomologists documented
many examples of such stepwise distributions of external or
internal morphological characters over the developmental
timeline [14–16, 58]. The current logic of estimation may be
used to determine insect age from such distributions. Some
morphological characters of immature insects may, however,
also be used as direct PMI markers, similarly to the larval
instars that were used here as primary indicators. Although
modeling their occurrence along the PMI timeline will be

Table 3 Confidence limits for
PMI estimates based on practical
error rates

Species Configuration of indicators N Confidence limitsa

90% 95% 99%

Lucilia caesar Eggs/1st 24 −0.64x;2.09x −0.87x;2.09x −0.87x;2.09x
1st/2nd 38 −0.60x;0.74x −0.78x;0.74x −0.78x;0.74x
2nd/3rd 37 −0.40x;0.68x −0.54x;0.81x −0.54x;0.81x
3rd/post-feeding 75 −0.42x;0.71x −0.47x;0.75x −0.52x;0.78x

Thanatophilus sinuatus 1st/2nd 50 −0.46x;0.22x −0.48x;0.24x −0.49x;0.28x
2nd/3rd 52 −0.24x;0.26x −0.29x;0.27x −0.50x;0.30x

Necrodes littoralis 1st/2nd 53 −0.24x;0.30x −0.27x;0.34x −0.29x;0.34x
2nd/3rd 42 −0.18x;0.37x −0.20x;0.37x −0.21x;0.41x

Eggs/1st presence of eggs and absence of 1st instar larvae, 1st/2nd presence of 1st instar larvae and absence of 2nd
instar larvae, 2nd/3rd presence of 2nd instar larvae and absence of 3rd instar larvae, 3rd/post-feeding presence of
3rd instar larvae and absence of post-feeding larvae
a Confidence limits (lower; upper) based on practical error rates calculated for PMI estimates from this study,
practical error rate the difference between true and estimated PMI divided by estimated PMI, x estimated PMI
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challenging, the gain in resolution will compensate the neces-
sary research efforts. Taphonomic markers are similarly prom-
ising. Cadaver decomposition may be described as a stepwise
distribution of qualitative characters [1, 10], and some of
them, for example, rigor mortis, bloating, or bone exposure,
nicely fit the current approach for PMI. Moreover, it seems
that all qualitative markers (entomological, taphonomic, etc.)
may be combined in a single, multimarker method for PMI,
incorporating the logic of estimation described in this article.
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