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Abstract
ProZES is a software tool for estimating the probability that a given cancer was caused by preceding exposure to ionising 
radiation. ProZES calculates this probability, the assigned share, for solid cancers and hematopoietic malignant diseases, in 
cases of exposures to low-LET radiation, and for lung cancer in cases of exposure to radon. User-specified inputs include birth 
year, sex, type of diagnosed cancer, age at diagnosis, radiation exposure history and characteristics, and smoking behaviour 
for lung cancer. Cancer risk models are an essential part of ProZES. Linking disease and exposure to radiation involves 
several methodological aspects, and assessment of uncertainties received particular attention. ProZES systematically uses 
the principle of multi-model inference. Models of radiation risk were either newly developed or critically re-evaluated for 
ProZES, including dedicated models for frequent types of cancer and, for less common diseases, models for groups of func-
tionally similar cancer sites. The low-LET models originate mostly from the study of atomic bomb survivors in Hiroshima 
and Nagasaki. Risks predicted by these models are adjusted to be applicable to the population of Germany and to different 
time periods. Adjustment factors for low dose rates and for a reduced risk during the minimum latency time between exposure 
and cancer are also applied. The development of the methodology and software was initiated and supported by the German 
Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) taking up advice by the German 
Commission on Radiological Protection (SSK, Strahlenschutzkommission). These provide the scientific basis to support 
decision making on compensation claims regarding malignancies following occupational exposure to radiation in Germany.
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Introduction

Ionising radiation is known to induce or contribute to long-
term health effects. If a person with a history of exposure 
to radiation is diagnosed with cancer, it is possible that the 
disease is related to the preceding exposure. Since cancer 
induction and promotion by ionising radiation is a funda-
mentally stochastic process, the relationship between radia-
tion and cancer can only be expressed by probabilities. The 
probability that the observed cancer in an exposed person 
may be caused by past exposure to radiation is called the 
assigned share. The assigned share is derived based on 
risk models obtained from radioepidemiological studies 
and depends on type of cancer, age at cancer occurrence, 
exposure history, and other personal factors. ProZES1 is 
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a computer program that was developed to quantitatively 
assess the assigned share together with related uncertainties. 
This paper describes the background, methodology and risk 
models of ProZES.

Persons who develop cancer after occupational exposure 
to ionising radiation may get compensated in their national 
countries. Principles and implementations of compensation 
systems vary among countries (ILO 2010). In Germany, 
judicial decisions on eligibility for compensation are based 
on estimates of assigned share. In 2009, the German Fed-
eral Ministry for the Environment, Nature Conservation and 
Nuclear Safety (BMU) initiated and supported the develop-
ment of ProZES, taking up advice by the German Com-
mission on Radiological Protection (SSK, Strahlenschutz-
kommission), to replace special radioepidemiological tables 
(Chmelevsky et al. 1995) that are in use for compensation 
claims in Germany. The aim was to develop a modern inter-
active software tool capable of calculating the assigned share 
based on scientific state-of-the-art risk models.

The functionality of ProZES is in many aspects similar 
to the US online tool IREP2 (Land et al. 2003; Kocher et al. 
2008) which is used for adjudication on compensation claims 
in the United States. However, ProZES has been developed 
independently, following critical revisions of methodology 
and models. Progress on the project was regularly presented 
to a dedicated working group of the German Commission on 
Radiological Protection (SSK), and to the Federal Office for 
Radiation Protection (BfS) who is the owner of the program. 
Furthermore, methodological aspects and risk models were 
discussed in depth with an external group of international 
experts.

Assessment of the assigned share is a complex process 
that includes several methodological challenges. Risk mod-
els obtained from radioepidemiological cohorts must be 
applied to a current Western population. Dose and dose rate 
exposure conditions for such cohorts are often different from 
exposures used in applications of ProZES and thus, the risks 
obtained from radioepidemiological studies require adjust-
ments. Since selection of a single “best” model is often not 
possible, ProZES makes systematic use of the principle of 
multi-model inference (Burnham and Anderson 2002). Due 
to power limitations of epidemiological data, it is possible to 
develop dedicated risk models only for the most frequently 
occurring cancers. Reasonable grouping of other cancer 
sites is necessary to construct meaningful and reliable risk 

models. The use of models with non-linear dose response 
relationships requires special attention in cases of fraction-
ated or protracted exposures.

ProZES allows for estimation of assigned share after 
low-LET exposure for almost all types of solid cancer and 
hematopoietic malignancies. The low-LET risk models are 
largely based on the Life Span Study (LSS) of the atomic 
bomb survivors of Hiroshima and Nagasaki (Preston et al. 
2007), and most models have been newly developed from 
cohort data using the ProZES methodology. In addition, the 
program includes risk models for lung cancer after radon 
exposure. Uncertainties from various sources are assessed 
and reported as a probability distribution of the assigned 
share from which the confidence intervals can be obtained.

This paper presents the methodology and risk models 
developed and implemented in ProZES. The first part intro-
duces the general framework for expressing the relationship 
between radiation and disease. The following part discusses 
the framework of the radiation risk models, including design 
principles, grouping of cancer sites, and selection and fitting 
procedures of the models. The most important properties of 
the derived risk models are presented. The paper concludes 
with a discussion and summary. The electronic supplement 
contains detailed information on the risk models including 
model parameter values with uncertainties and covariance 
matrices. Additional documentation can be found in the 
ProZES reports (Jacob et al. 2013; Ulanowski et al. 2016). 
The ProZES webpage (BfS 2020) contains further informa-
tion on current developments and includes a link for down-
loading the software.

Expressing the relation between radiation 
and disease

Assigned share

The central quantity in ProZES is the assigned share for a 
diagnosed primary malignancy. The assigned share depends 
on the total risk of developing the malignancy, given the 
radiation exposure history of an individual. Assuming that 
the risk to the individual can be represented by the disease 
incidence rates observed in a population matching the indi-
vidual by age, sex, country, birth year and exposure history, 
the assigned share can be interpreted as a measure of the 
probability that the diagnosed malignancy was caused by the 
past exposure to radiation: hence probability of causation. 
The assigned share of radiation, hereafter denoted as Z, can 
be expressed as follows:

(1)Z =
h

�
=

h

�0 + h
,2 The Interactive RadioEpidemiological Program (IREP) exists in 

two versions, IREP-NIOSH, https ://www.niosh -irep.com/irep_niosh /, 
and IREP-NCI, https ://www.irep.nci.nih.gov/irep/.

Footnote 1 (continued)
Strahlenexposition”, program for calculation of probability of asso-
ciation between disease and radiation exposure.

https://www.niosh-irep.com/irep_niosh/
https://www.irep.nci.nih.gov/irep/
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where for the given disease diagnosed at age a, � is the total 
incidence rate of the disease in the matching hypothetical 
exposed population, in cases per person year  (PY−1); �o is 
the observed baseline incidence rate in the matching non-
exposed population  (PY−1); and h represents the inferred 
excess incidence rate reflecting the impact of radiation expo-
sures  (PY−1). For positive values of the excess rate h , the 
assigned share has values between zero and one.

As follows from this definition, Z is a ratio of two quan-
tities described by the baseline and the excess rates. In 
ProZES, uncertainties of both quantities are simulated to 
derive the uncertainty in Z. Probability distribution func-
tions are used to model uncertainty in all involved quantities.

Convent iona l ly  used  a l te r na t ive  for mulas , 
Z = EAR∕

(
�0 + EAR

)
= ERR∕(1 + ERR)  ,  r e p r e s e n t 

the assigned share in terms of either excess absolute rate 
(or excess absolute risk) EAR = h , or excess relative risk 
ERR = h∕�0 (Land et al. 2003). However, as discussed in 
the next section, the mechanism of risk transfer between 
populations involves different baseline rates, and the type 
of transfer is not identical to the type of phenomenological 
model selected to quantify radiation risk in the epidemio-
logical cohort. Therefore, ProZES always uses Eq. (1) for 
the calculation of Z.

Transfer of risk between populations

Excess and baseline rates in Eq. (1) need to be pertinent to 
the target population. However, the radiation risk models are 
derived from epidemiological studies of certain population 
groups exposed to radiation. Commonly, the studied epide-
miological cohorts differ from the target population with 
respect to ethnicity, lifestyle, dietary, occupational, tempo-
ral, geographic, and other features. Therefore, risk estimates 
derived from epidemiological studies need to be adjusted or 
“transferred” to become applicable to the target population.

Ideas for modelling the risk transfer from one population 
to another can be developed based on current notions of 
carcinogenic effects of radiation (NRC 2006; UNSCEAR 
2012). Carcinogenesis is a complicated multi-stage pro-
cess and radiation is thought to influence various stages of 
tumour development (Rühm et al. 2017). Different processes 
can be induced by ionising radiation, for example:

• Creation of pre-malignant cells with a growth advantage 
from healthy stem or progenitor cells, e.g. by induction 
of driver gene mutations. Such initiating processes might 
be more closely related to additive risk transfer.

• Growth acceleration of clones of pre-malignant cells. Its 
magnitude depends on the number of pre-malignant cells 
and might be more closely related to multiplicative risk 
transfer.

Correspondingly, a transfer mode can be selected to be 
either additive, when the excess absolute rate from a given 
dose in the target population, h , is assumed to be the same 
as the modelled excess absolute rate, hm , for the same dose 
in the studied radioepidemiological cohort or multiplicative, 
when the same is assumed for the excess relative risk for 
the target population, h∕�0 , and the modelled excess rela-
tive risk, hm∕�0m , for the same dose. The resulting excess 
rate for the target population can, therefore, be modelled as 
a weighted sum of excess rates predicted by either transfer 
mode, additive or multiplicative. The excess rate in the target 
population can then be expressed as follows:

where f  is the relative weight of the multiplicative transfer, 
1 − f  is the complementary weight of the additive one, hm 
and �0m are the model excess and baseline incidence rates, 
correspondingly. Thus, f = 1 results in a pure multiplicative 
transfer, f = 0 in a pure additive transfer, and values in the 
range 0 < f < 1 are representative for a mixed transfer mode.

Denoting the ratio of the target population baseline and 
the model baseline rates as B = �0∕�0m , the Eq. (2) can be 
re-written as follows:

and, correspondingly, the assigned share (1) as:

The baseline ratio B reflects differences that exist between 
the spontaneous incidence rate in the target population and 
the model-based estimate of the baseline rate derived from 
the epidemiological data. Besides potential differences in 
ethnicity and lifestyle of the populations, differences also 
arise from the fact that the cohort-specific model estimates 
and the disease rates for the target population are frequently 
related to different time periods. Varying time trends in the 
disease incidence rates may therefore significantly influence 
B. For example, assume that some cancer of a German per-
son was observed in the year 2010, 30 years after an expo-
sure in 1980. When using a LSS-based model, the calendar 
year in the LSS cohort corresponding to a time since expo-
sure of 30 years is 1975 (i.e., 30 years after the detonation of 
the atomic bomb in 1945), so B = �0,Ger(2010)∕�0,LSS(1975).

Selection of the coefficient f  , which defines relative 
weights of either type of risk transfer, is a challenging task. 
A convincing decision about the type of risk transfer for a 
specific cancer should not only be based on descriptive risk 
modelling, but also include additional biological and mecha-
nistic information (UNSCEAR 2012). If no preferred value 

(2)

(3)h = hm(1 − f + fB)

(4)Z =
hm(1 − f + fB)

�0 + hm(1 − f + fB)
.
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or range of values can be identified for f  , then any value 
in the range from zero to one can be regarded as equally 
likely, thus indicating equal probabilities to all combinations 
between additive and multiplicative terms (Eq. 2). Under 
such circumstances, generation of the distribution of the 
assigned share can be realised by sampling a value of f  from 
a uniform distribution: f ∼ U(0, 1) , which represents the 
situation of highest uncertainty (maximum entropy). Cor-
respondingly, this sampling method is implemented in the 
current version of ProZES for the value of f  . For simplified 
comparisons, the best estimates of h and Z can be calculated 
using the mean value of the factor f = 0.5 . For example, the 
latter simplified approach was applied in the WHO report 
on health consequences of the Fukushima accident (WHO 
2013). Importantly, if baseline rates are significantly differ-
ent, then a significant part of the uncertainty range of the 
assigned share calculated in ProZES can originate from the 
uncertainty associated with the transfer factor f .

Multi‑model inference

A distinctive feature of the current development is a sys-
tematic use of multi-model inference (MMI) (Burnham and 
Anderson 2002; Anderson 2008; Claeskens and Hjort 2008). 
Since no single true risk model exists, different plausible 
alternative models can be used to approximate the underly-
ing risk. Statistical modelling can be performed using sev-
eral models differing by number and type of model param-
eters. Different models often provide statistically similar 
quality of fit and cannot be rejected based on purely sta-
tistical criteria (e.g. by likelihood ratio tests or information 
criteria). In MMI, instead of selecting only one “best” model 
and neglecting all other models, the risk is calculated based 
on several plausible models accounting for their descriptive 
capabilities. Thus, risk estimates are less dependent on the 
choice of one particular model. Typically, model predictions 
agree well in the centre of the data space but diverge on the 
fringes. Hence, MMI improves the characterisation of uncer-
tainties in regions of the data space with fewer numbers of 
cases and weaker statistical evidence.

Practical implementation of the MMI principle begins 
with the selection of a set of plausible models describing 
the epidemiological data similarly well. Then, each model 
i is assigned a weight wi with 

∑
i wi = 1 . A distribution of 

assigned share is constructed from a stochastically gener-
ated sample created by merging sub-samples generated by 
the different models using their corresponding weights. For 
example, to estimate risk and error bounds from 10,000 
realizations for 2 models with 60% and 40% weights, 6000 
and 4000 realizations are performed for each model and, for 
each realization, the assigned share values are computed. 
The resulting percentiles of the combined sample of the 
assigned share values produced by these models include 

both the uncertainty from the model selection and the 
model-specific statistical parameter uncertainties.

One possible way to select the model weights wi is to use 
the Akaike Information Criterion, given by AIC = dev + 2n , 
where dev is the model deviance and n is the number of 
model parameters. The weights are obtained from

The sum runs over all M models, and ΔAICi is the differ-
ence of the Akaike value of model i to some reference value, 
e.g. the minimum Akaike value. AIC-based MMI has been 
applied for radiation risk estimates by Kaiser et al. (2012), 
Kaiser and Walsh (2013) and Schöllnberger et al. (2018). 
Also, in these references, the results from the MMI approach 
are compared to the standard approach with a single risk 
model.

Dose rate effectiveness factor (DREF)

The concept of a dose- and dose rate effectiveness factor 
(DDREF) in carcinogenesis has been widely and controver-
sially discussed during the last decade (Rühm et al. 2015; 
Shore et al. 2017; Kocher et al. 2018). The use of a DDREF 
to transfer risk quantities obtained from epidemiological 
studies at moderate and high doses and dose rates to low 
doses and dose rates typical for occupational exposures has 
been recommended by NRC (2006) and ICRP (2007). For 
example, the program IREP (Kocher et al. 2008) follows this 
approach for risk calculations.

In ProZES, an alternative method has been implemented 
following UNSCEAR (2018, Annex B) and recommenda-
tions of the German Commission on Radiological Protec-
tion (SSK 2014) observing that studies of cancer risk due 
to radiation exposure at low dose rates and moderate doses 
do not provide evidence for lower risks per unit exposure 
than studies of high radiation doses and dose rates. The 
method is based on results of Jacob et al. (2009) and fol-
lows UNSCEAR (2012, Annex B, Paragraph C45), so the 
risk estimates are only modified by a dose rate effective-
ness factor (DREF). The DREF distribution is approxi-
mated by a log-normal probability distribution with the 
constant geometric mean GM = 1 and the geometric stand-
ard deviation GSD, which depends on dose rate. Math-
ematically, the geometric standard deviation is represented 
by a log-linear decreasing function of the dose rate in 
the low-dose rate range, i.e., below a threshold dose rate 
of 0.1 mGy min−1 = 6 mGy h−1 (UNSCEAR 2000; ICRP 
2005):  GSD(dr) = max

(
1.0, 1.1803 − 0.2317 log10 (dr)

)
 , 

where dr represents the dose rate in mGy h−1 (Jacob et al. 
2013). For dose rates exceeding the threshold, GSD is set 
equal to 1.0. The selected parameters ensure that at dose 

(5)wi =
e−

1

2
ΔAICi

∑M

k=1
e−

1

2
ΔAICk

.
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rates that are typical for elevated occupational dose rates 
(1 mGy  d−1 ≈ 0.042 mGy h−1) the results correspond to 
Jacob et al. (2009), i.e. GSD = 1.5.

As shown in Fig. 1, the resulting cumulative probability 
distribution of the DREF becomes broader when the dose 
rate decreases. A comparison of DDREF distributions from 
BEIR VII (NRC 2006), Kocher et al. (2008) and Jacob et al. 
(2009) can be found in UNSCEAR (2012, Annex B, Fig. 
C-II). Reduction of the dose rate does not change the median 
value of the DREF, which remains equal to 1.0, and, corre-
spondingly, the median of the risk estimates is not affected, 
as well. However, uncertainty bounds of the risk estimates 
become larger when the dose rate decreases, thus reflecting 
the decreasing evidence of risk inference at such conditions.

Minimum latency period

Due to the multi-stage process of cancer development, radi-
ation-induced cancer can be diagnosed only after a mini-
mum period necessary for development of the disease, or 
latency time. Therefore, in ProZES, a multiplicative latency-
adjustment factor is implemented to reduce risk estimates 
at early times since exposure. A widely adopted technique 
(Land et al. 2003; Kocher et al. 2008; Berrington de Gonza-
lez et al. 2012) is to use an S-shaped function to gradually 
reduce risk estimates at times since exposure shorter than 
the observed period of latency. Unlike alternative implemen-
tation realised in IREP (Kocher et al. 2008) and RadRAT 
(Berrington de Gonzalez et al. 2012), the following asym-
metric form of the S-shaped latency factor was adopted for 
use in ProZES ensuring zero radiation risk for vanishing 
time after exposure:

where t0 is the central estimate (median) of the latency 
period (year); t  is the time since exposure (year); and � is 
the parameter controlling the width of the transition period 
from zero to full probability.

In the software tool ProZES, the latency factor (6) is 
modelled as a random function with parameters different for 
solid and hematopoietic cancers, as shown in Fig. 2. Selec-
tion of minimum latency times is based on inferences from 
studies on leukaemia in the LSS cohort (Lange et al. 1954) 
and members of the public after the Chernobyl accident 
(Noshchenko et al. 2002); and from studies on solid cancers 
from radiotherapy patients (Berrington de Gonzalez et al. 
2011), nuclear workers (Daniels et al. 2017), Chernobyl 
emergency workers (Ivanov et al. 2009), and studies of thy-
roid cancer after the Chernobyl accident (Heidenreich et al. 
1999; Williams et al. 2004). For solid cancers, the parameter 
t0 is sampled uniformly in the range from 3 to 4 years and the 
width parameter is taken equal to � = 6.25 ; for leukaemia 
and lymphomas, t0 is sampled uniformly in the range from 
1.25 to 1.75 years with a width parameter of � = 7.66 . Thus, 
in practice, only risk estimates with a latency time of less 
than about 6 years for solid cancers, and about 2 years for 
leukaemia and lymphomas are affected.

Multiple exposures

Generally, a person may be exposed by radiation not only 
once, but several times. The evaluation of the assigned share 
then involves an assessment of the combined effect of all 
exposures. Taking into account that organ-specific cancer 
incidence rates are small on an absolute scale (as a rule, not 
exceeding  10−2  PY−1 for the most frequently occurring can-
cers and the highest personal ages), and assuming that effects 
of different exposures on carcinogenesis are independent, the 
cumulative effect of a series of exposures can be represented 
as a sum of excess rates from single exposures:

where hi is the excess rate at diagnosis age a due to the ith 
exposure at age ei, in a series of n exposures. Consequently, 
the assigned share from multiple exposures is given by

Accounting for mixed risk transfer (3), and assuming that 
the transfer parameter f is the same for all exposures, the 
assigned share is obtained from the following expression:

(6)FL =

[
1 + exp

(
−� ln

(
t

t0

))]−1
,

(7)� = �0 +

n∑

i=1

hi,

(8)Z =

∑
i hi

�0 +
∑

i hi
.

Fig. 1  Cumulative probability distributions of DREF for different 
dose rates as implemented in ProZES
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where hm,i is the model excess rate of the ith exposure, �0m,i 
is the model baseline rate for conditions specific to the ith 
exposure, and Bi =

�0

�0m,i

 is the baseline rates’ ratio.

Extrapolations of risk beyond the time period 
supported by the epidemiological data

Risk estimates derived from radioepidemiological studies 
usually have good statistical support in a parameter domain 
specified by sex, age and exposure conditions of the stud-
ied cohort members. Outside this domain, the model risk 
estimates lose support from the epidemiological data and 
become more uncertain. For the LSS cohort (Preston et al. 
2007), the follow-up for solid cancer incidence starts from 
1958 and continues until 1998 for most of the models imple-
mented in ProZES. Consequently, estimates of radiation 
risk of cancer incidence are not available within the first 
13 years after exposure and for more than 53 years after 
exposure. Age dependencies of the assigned share can arise 
not only through the dependence of the ERR and EAR on 
age directly, but also through temporal trends in the popula-
tion baseline rates.

To avoid potential problematic extrapolations due to such 
long-term trends, it was decided to fix the assigned share at 
time since exposure of 53 years and apply this value for time 
since exposure exceeding 53 years. For the early period dur-
ing 13 years after exposure, no such restriction was imposed 
for solid cancers. The derived model functions were allowed 
to extrapolate towards zero time since exposure, because the 
period of latent development of a solid cancer is effectively 

(9)Z =
(1 − f )

∑
i hm.i + f

∑
i hm,iBi

�0 + (1 − f )
∑

i hm.i + f
∑

i hm,iBi

,

accounted for by the latency factor at times since exposure 
below 5 years; thus the excess rates and, correspondingly, 
the assigned share are properly reduced.

A similar procedure was used for hematopoietic malig-
nancies. Here, the follow-up runs from 1950 to 2001, so 
the assigned share is set constant for times after exposure 
exceeding 56 years. Due to reduced support of the risk mod-
els for hematopoietic diseases with fewer observed cases 
and, correspondingly, weaker statistical significance of the 
risk parameters describing the dependence on time since 
exposure, no extrapolation towards zero time since exposure 
was allowed for the model functions for hematopoietic dis-
eases at small times since exposure, and a constant risk value 
was used corresponding to the model estimates at 5 years 
since exposure.

Uncertainty modelling

An essential element of ProZES is a systematic evaluation of 
the uncertainty of the assigned share. Monte Carlo sampling 
is used to estimate the total distribution of Z from several 
sources of uncertainties. Starting the calculation, ProZES 
runs a certain number of iterations (current default value 
is 5000 with a maximum of 50,000). For each iteration, a 
risk model is randomly selected from the implemented list 
of models corresponding to the specific organ in proportion 
to their MMI weights wi . Then, the parameters of the cho-
sen model, both for baseline and radiation risk, are sampled 
under normality assumptions using multivariate Gaussian 
distributions with the parameter values and the full covari-
ance matrix derived from the maximum likelihood fit of the 
epidemiological data. Further sampling for each iteration 
includes the parameters of the latency factor FL , the trans-
fer factor to the target population f  , the DREF percentile, 
and the background incidence rate of the target population. 
For LSS-based models, factors are sampled to account for 
uncertainties in dosimetry and the radiation effectiveness 
factor for neutrons, as described below. These parameters 
are considered individual specific, so they are sampled in 
each new iteration remaining fixed within the iteration. The 
contribution of uncertainty of the target population’s base-
line rate to the uncertainty of the assigned share can become 
large for cancers occurring with low rates, e.g., for rare 
diseases or diseases in young age, or in small populations. 
This uncertainty is assessed assuming a Poisson distribution 
for the number of registered cancer cases in the respective 
age–sex group of the target population. The combined con-
tributions of multiple exposures to the excess rate are calcu-
lated according to Eq. (7). For each exposure within a single 
iteration, the value of dose is sampled from the user-defined 
uncertainty distribution, and the individual-specific latency 
factor and the DREF are applied using the time since expo-
sure and dose rate corresponding to the specific exposure. 

Fig. 2  Risk adjustment factor to account for latency time
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Finally, Z is calculated in each iteration using Eq. (9). The 
mean, median and percentiles of Z are determined from the 
resulting distribution of Z values across all iterations.

Cancer incidence and demographic data

The default target population of ProZES is the population 
of the Federal Republic of Germany. The primary source 
of cancer incidence data is the publicly available database 
of the “Zentrum für Krebsregisterdaten” (ZfKD) hosted by 
the Robert Koch Institute (RKI 2020). Cancer incidence 
rates, grouped according to their ICD10 codes, have been 
collected and included in the program. Currently, the data 
set covers the period from 1995 to 2014, with rates being 
provided for each year. The ZfKD database does not include 
country-average incidence rates of non-melanoma skin can-
cer (ICD10: C44). For this cancer type, the program uses 
incidence rates for the period from 2002 to 2014 that were 
obtained from the Bavarian cancer registry (LGL 2020). 
Demographic data for the period from 1980 to 2015 were 
obtained from the publicly available dataset of the German 
Federal Statistical Office (DESTATIS 2020). Risk computa-
tions for individuals diagnosed in later years, for which the 
cancer incidence and demographic data are not yet avail-
able, are performed using cancer rates from the most recent 
available year. It is planned to periodically update the cancer 
incidence and demographic data.

Framework of radiation risk models

Design principles for radiation risk models

The greatest amount of effort during the development of 
ProZES was dedicated to the development and evaluation 
of the radiation risk models. A decision was made by Ger-
man authorities that the types of risk models in the current 
version of ProZES should include only classic, descriptive 
models of excess relative risk (ERR) and excess absolute 
rate (EAR). Alternatively, radiation risks can be estimated 
from epidemiological data using biologically based risk 
models that have an advantage of accounting for the pro-
cess of carcinogenesis (Rühm et al. 2017). However, these 
biologically based models are not included in the current 
version of ProZES, because, at the time when the ProZES 
development started, concerns were raised whether these 
mechanistic models would be accepted widely enough to 
allow for their use in compensation claims.

In ProZES, the model type (ERR- or EAR-type) is 
explicitly distinguished from multiplicative or additive 
types of risk transfer (Eq. 2). Either type of model includes 

description of excess and baseline rates necessary for risk 
transfer and estimation of the assigned share.

Risk models for low-LET radiation are mostly based on 
the Life Span Study (LSS) of the atomic bombing survivors 
in Hiroshima and Nagasaki (Preston et al. 2007; Grant et al. 
2017). With its large number of cohort members, wide range 
of exposures, and long and high-quality follow-up, the LSS 
cohort is the most important source of epidemiological evi-
dence on risk of radiation-attributed diseases. The LSS is 
the only cohort where reliable risk models for many specific 
and grouped cancer sites can be derived also allowing for 
selection of statistically significant modifiers of radiation 
risk, e.g., related to sex, age, time and screening. For breast 
cancer, several large medical cohorts exist (e.g. Swedish 
hemangioma cohorts, Lundell et al. 1999), and a study of 
pooled data from these cohorts by Preston et al. (2002) has 
been used.

A recent pooled study of large nuclear worker cohorts 
has estimated the risk of death for all solid cancer and 
leukaemia (Richardson et al. 2015, 2018; Leuraud et al. 
2015; Daniels et al. 2017). However, average doses and, 
consequently, the number of radiation-attributed cases are 
much lower than in the LSS, so site-specific risk estimates 
have large uncertainties (Richardson et al. 2018; Muirhead 
et al. 2009) and are not implemented in the current version 
of ProZES.

For lung cancer after radon exposure, it was decided to 
implement two different risk models, depending on the expo-
sure situation: one model for mining and other underground 
work, and another for indoor, residential exposure. The 
miner model was obtained from the German Wismut cohort 
(Kreuzer et al. 2015). It is the world’s largest cohort of min-
ers occupationally exposed to radon and includes members 
of the German population. The model for indoor exposures 
was obtained from results of the study of Darby et al. (2005).

The selection of models and parameter estimation 
required some general design decisions. The overall aim 
was to obtain robust, “evidence-based” risk models, that 
are scientifically supported by epidemiological data. To 
avoid researchers’ subjective preferences for some particu-
lar model or form of effect modification (such as the age 
dependence of the excess risk), model selection and param-
eter estimation was guided by the following principles which 
were applied consistently during the development of the 
ProZES risk models:

1. No common dependence of excess risk with attained 
age or age at exposure was assumed across cancer sites. 
Since the biological processes leading to cancer differ 
for different organs, organ-specific age dependencies 
might differ substantially. Therefore, each cancer site or 
group of cancer types was tested separately for signifi-
cant age modifiers.
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2. Generally, risk models only include statistically sig-
nificant (at the 95% level) parameters. This provides 
a uniform criterion for selecting parameter values and 
ensures that baseline and risk parameters reflect the 
epidemiological evidence, thus it removes arbitrariness 
which parameters should be included, and which should 
be discarded. Furthermore, it avoids possible implausi-
ble extrapolations for ages at exposure or attained ages 
where cancer data are sparse. Finally, including non-sig-
nificant parameters in the risk models may lead to large 
parameter uncertainties with possibly large parameter 
correlations in the covariance matrix. This can result 
in large uncertainties of the risk estimates, in particular 
outside the central region of the data.

3. Multi-model inference (MMI) has been applied to two 
different situations: all models with a similar quality 
of fit were included for the final risk estimate with a 
weighting according to the AIC criterion. This avoids 
bias by selection of one particular model. Furthermore, 
MMI was employed for some cancer sites with strong 
differences between sexes. This avoids potentially sig-
nificant sex-specific underestimation of risk. Details are 
given below.

Grouping of cancer sites

Incidence rates for the most frequent cancers do not exceed 
1% per person-year (IARC 2014; GEKID 2012; RKI 2017, 
2020). Correspondingly, epidemiological studies aiming 
to quantify the impact of radiation on site-specific cancer 
development are commonly challenged by low incidence 
rates of the diseases with relatively small numbers of cancer 
cases and, more importantly, small number of cases attribut-
able to radiation. This leads to a situation in which reliable 
radiation risk models can only be developed for the most 
prevalent types of cancer, such as colon, stomach, female 
breast, lung and thyroid cancer. For less prevalent cancers, 
the observed numbers of cases are low, and the data do not 
allow derivation of reliable evidence-based radiation effect 
models. Therefore, aggregation of site-specific malignancies 
into groups of functionally similar diseases is necessary to 
obtain sufficient statistical power for developing robust risk 
models.

During the development ProZES, there were extensive 
discussions of how to group cancer sites for the low-LET 
models, with goal of being as specific as possible, while 
taking into account the potential and limitations of the LSS 
cohort data. Finally, an approach for grouping of cancer sites 
based on the following criteria was chosen:

1. Cancer sites should be functionally related, as discussed 
below.

2. Cancer sites should demonstrate a compatible behaviour 
of baseline incidence rates, i.e., a similar relative age 
dependency, although absolute values of the baseline 
rates can differ for different sites, populations, and time 
periods.

3. The number of cases in the epidemiological cohort 
should be sufficient for reliable statistical inference and 
robust radiation risk models. For solid cancers in the 
LSS, the groups should include about 300 or more cases. 
For hematopoietic cancers with their larger radiation-
attributable fractions, the groups were allowed to be 
smaller, as described below in the model section.

4. ERR values for the individual cancer sites included in a 
cancer grouping should be consistent taking into account 
the error bounds.

5. The compatibility of the diseases in a group was checked 
by comparing the baseline cancer incidence data for var-
ious diagnoses as found in the contemporary popula-
tion cancer registers in Japan (NCC 2013) and Germany 
(RKI 2017). This comparison included the investigation 
of calendar year effects and of relative age dependencies.

It was considered important that the cancers within a 
group would be functionally or physiologically related. 
For example, it would be difficult to justify risk estimates 
for female genital cancers based on a group that includes 
brain or skin cancer. The relative age dependence of the 
single cancer sites should be also compatible, otherwise the 
derived risk estimates and the dose and age dependencies 
of risk might be distorted. One notable example is female 
genital cancer. It was found that cervical cancer in Japan 
has very different age patterns compared to other female 
genital cancers, and therefore, female genital cancers were 
split into two separate groups (cervix and female genital 
organs, excluding cervix). Another example is cancer of the 
liver which, with its 1494 cases in the LSS, would qualify 
as a separate group according to these criteria. However, 
liver cancer is often related to other malignancies, so dif-
ferentiation between primary and secondary malignancy is 
not straightforward (Preston et al. 2007). Therefore, it was 
decided to include liver cancer in the digestive group. A 
remainder group includes all types of cancers that either 
could not be reasonably assigned to a specific group (e.g. 
bone cancer), or that did not fulfil the above criteria (e.g. 
testis cancer).

For solid cancers, risk models were developed for can-
cers of the colon (COLON), stomach (STOMACH), female 
breast (BREAST), lung and trachea (LUNG), thyroid 
(THYROID), digestive tract without colon and stomach 
(DIG), urinary tract (URI), cervix (GNF1), female geni-
tal organs, excluding cervix (GNF2), male genital organs 
(GNM), brain and central nervous system (BCNS), non-
melanoma skin (SKIN), and remaining organs (REM). 
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Hematopoietic malignant diseases were split into four 
groups, thus representing acute lymphoblastic leukaemia 
(HEM1), lymphoma including chronic lymphoblastic leu-
kaemia (HEM2), acute myeloid leukaemia (HEM3), and 
chronic myeloid leukaemia (HEM4). The full list of risk 
models together with the diagnoses and ICD10 codes can 
be found in Table 1.

Radiation-induced mechanisms of carcinogenesis in 
single cancer sites within a group can differ, and poten-
tially lead to different risk estimates and age dependencies. 
However, the chosen methodology of grouping necessar-
ily represents a compromise between model specificity on 
one side, and the practical epidemiological requirements 
of feasibility, plausibility and robustness of the radiation 
risk models on the other side.

Application of the multi‑model inference principle 
in ProZES

Development of the risk models in ProZES included a sys-
tematic use of multi-model inference (MMI). MMI was 
used with the following goals: to reduce the dependence on 

one selected model, to better reflect the inherent dose, age 
and sex dependencies present in the epidemiological data, 
and to provide a more realistic assessment of uncertainties. 
To achieve these goals, MMI was applied in two different 
situations.

First, for many organs, two or more models provided 
a comparable statistical quality of fit. These models were 
weighted based on differences in the Akaike information 
criterion (AIC). Often, both ERR and EAR models quali-
fied providing a similar description of baseline but differ-
ing in the age dependency of the radiation risk. The final 
MMI-averaged model will then reflect an intermediate age 
dependency.

Second, for some cancer sites, very strong sex differ-
ences were observed, including colon cancer and lymphoma 
including chronic lymphocytic leukaemia. For example, for 
colon cancer, it was found that the ERR for males was rela-
tively independent of attained age, whereas females had a 
strongly decreasing risk with increasing age. This differ-
ence was considered to be rather implausible on biological 
grounds. However, using only risk models with a joint age 
dependency would neglect the statistically significant sex 
differences observed in the epidemiological data. To account 

Table 1  Grouping of malignant diseases for modelling in ProZES

Model name Organ or organ group and diagnose (ICD10 code)

Solid cancers
STOMACH Stomach (C16)
COLON Colon (C18)
LUNG Lung and trachea (C33, C34)
BREAST Female breast (C50)
THYROID Thyroid (C73)
DIG Oral cavity (C00–C14), esophagus (C15), small intestine (C17), rectum (C19–C21), liver (C22), gallbladder (C23, C24), 

pancreas (C25), other digestive (C26, C48)
URI Kidneys (C64), renal pelvis and ureter (C65,C66), urinary bladder (C67), other urinary (C68)
GNF1 Uterus/cervix (C53)
GNF2 Uterus/corpus (C54) or uterus/non-specified (C55), ovaries (C56), other female genital organs (C51, C52, C57, C58)
GNM Prostate (C61), other male genital (C60, C63)
BCNS Eyes (C69), brain and CNS (C70–C72)
SKIN Skin (non-melanoma cancer, C44)
REM Nasal cavity (C30, C31), larynx (C32), thymus (C37), heart and intrathoracic (C38, C39), bone (C40, C41), connective tissue 

(C45–C47, C49), testis (C62), adrenals (C74), other endocrine (C75, C76)
Hematopoietic malignant diseases
HEM1 Acute lymphoblastic leukaemia (ALL, C91.0), prolymphocytic leukaemia of B-cell type (C91.3), lymphoid leukaemia/

unspecified (C91.9)
HEM2 Hodgkin lymphoma (C81), non-Hodgkin lymphoma (C82, C83, C85, C86), lymphoma of peripheral and cutaneous T-cell 

(C84), malignant immunoproliferative disease (C88), chronic lymphoblastic leukaemia (CLL, C91.1), hairy cell leukaemia 
(C91.4)

HEM3 Acute myeloid leukaemia (AML, C92.0), sub-acute myeloid leukaemia (C92.2), myeloid sarcoma (C92.3), acute promyelo-
cytic leukaemia (C92.4), acute myelomonocytic leukaemia (C92.5), monocytic leukaemia (C93), other leukaemia of speci-
fied cell type (C94), leukaemia of unspecified cell type (C95), other or non-specified (C96)

HEM4 Chronic myeloid leukaemia (CML, C92.1)
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for both aspects, it was decided to give each approach the 
same weight. Thus, the risk of colon cancer is calculated 
using a 50% weight to models with sex-specific depend-
ency on attained age and a 50% weight to models with joint 
attained age dependency. Furthermore, several models were 
selected and weighted according to AIC within each group.

The section “Description of site-specific risk models” and 
the supplementary materials provide details for each cancer 
grouping, including the information about the application 
of MMI in each case.

Generic form of risk models

Fitting of radiation risk models, with a few exceptions, was 
performed using a common generic phenomenological 
model framework, described below.

The LSS cohort data are represented by categorical cells 
that contain information on the number of observed can-
cer cases and person-years obtained by stratification of the 
individual data depending on sex s, attained age a, age at 
exposure e, birth year b, dose d, and diagnosed cancer. The 
incidence rates were defined either as excess relative risk 
(ERR) or excess absolute rate (EAR) model:

Here, �0 is the baseline incidence rate in the absence of 
radiation, and � is the total incidence rate after exposure to 
radiation. Additionally, a screening factor may be present 
as in the case for thyroid cancer. Such a factor accounts 
for time-dependent cancer screening in the LSS cohort 
due to periodical medical examinations and the autopsy 
program, which was most actively run in the period before 
1970 (Hayashi et al. 2010; Grant et al. 2017). The baseline 
rate fitted to the LSS data is represented as a product of 
two functions:

where � is the vector of fit parameters. The function f  
describes the sex-, age- and birthyear-dependent baseline 
incidence rate. The function g depends on cohort-specific 
parameters (c, IC) . The city parameter c indicates whether 
a person lived in Hiroshima or Nagasaki, and the “in-city” 
parameter IC indicates whether a person was in the city at 
the time of bombing. These parameters are meaningless for 
target populations beyond the LSS cohort. Consequently, if 
the fitted model baseline includes these LSS-specific param-
eters, they have to be averaged, using the number of cancer 
cases or person-years as averaging weights, and used as a 
factor modifying the cohort-independent model baseline f  . 
The resulting model baseline rate is represented as a prod-
uct of the rate f (⋅) with all cohort-independent explanatory 

(10)� = �0(1 + ERR) = �0 + EAR.

(11)�0 = f (�|s, a, b)g(�|c, IC),

variables and of the average modifying factor g calculated 
using the number of cancer cases or, for a few models, per-
son-years in groups of cohort members, stratified according 
to their residence and location at the time of detonation.

The ERR and EAR have been modelled using the fol-
lowing generic functional form:

where � is the vector of risk-specific parameters. The func-
tion p characterises sex-specific radiation effects of dose d 
(linear, linear-quadratic, power, exponential), and the func-
tion r includes risk modifiers for sex, age attained and age at 
exposure. The specific forms of the risk models are provided 
in the Supplement. The indicator variables were defined as:

For every cancer grouping, all possible effect modifiers 
were tested, and generally only the statistically significant 
ones (at 95% confidence level) were preserved in the final 
models.

Details of the fitting procedure

Most of the radiation risk models were obtained from a rea-
nalysis of the LSS data. The reanalysis was considered nec-
essary for ProZES, for the following reasons:

• Model baseline rates were needed in addition to the 
excess rates for assessment of the assigned share, and 
for risk transfer to the target population

• For most groupings of cancer sites, no risk models 
existed in the literature

• Both the parameter uncertainties and the full covariance 
matrices were necessary for the uncertainty assessment

• To ensure that the general principles of the ProZES meth-
odology were followed, including use of model selection 
by multi-model inference.

Unless otherwise specified, the model parameters were 
determined by fitting the LSS cancer incidence data for the 
follow-up periods 1958–1998 for solid cancers and 
1950–2001 for hematopoietic malignancies. The best fit 
parameters were obtained from Poisson regression by mini-
mization of the deviance, dev = −2

∑
i

li , where li is the like-

lihood of the ith cell, and the sum runs over all cells i in the 
LSS dataset, which forms a matrix constructed from vectors 
specifying the cells:

(12)
ERR

EAR

}
= p(�|d, s)r(�|s, a, e),

(13)
s =

{
−1 male

+1 female
c =

{
−1 Hiroshima

+1 Nagasaki

IC =

{
1 in city

0 not in city
.



611Radiation and Environmental Biophysics (2020) 59:601–629 

1 3

where � and �� are the vectors of the observed number 
of cancer cases and person years. The deviance was then 
computed as

where

is the model-estimated expected number of cases for the ith 
cell with �i =

(
si, ai, ei, di, ci, ICi, ni,PYi

)
 . Unconstrained 

quasi-Newton minimization as implemented in Matlab’s 
Optimization Toolbox3 was used to minimize the deviance. 
Minimisation results were evaluated using AIC and likeli-
hood ratio test (LRT). The final fitted parameters were inde-
pendently checked using the EPICURE software tool (Pres-
ton et al. 2015) as a part of quality assurance procedures.

If not described otherwise, only statistically significant 
model parameters ( p ≤ 0.05 ) were kept for the final mod-
els. Exceptions were made only for parameters of radiation-
attributed excess rate if the epidemiological evidence did 
not allow for statistically significant estimates and the 95% 
confidence interval included zero risk, also. In such cases, 
the relatively large uncertainties of the model parameters 
are reflected in the uncertainty distribution of the assigned 
share.

The fitted models for baseline rates in the LSS were 
checked for plausibility by comparing these rates with can-
cer incidence rates observed in the entire Japan for various 
years (NCC 2013), and with incidence rates reported for 
Hiroshima and Nagasaki cities (IARC 2014). Generally, the 
model baselines were in good agreement with the incidence 
rates obtained from the population registries for different 
time periods. Details and examples can be found in Appen-
dix 2 of the report of Ulanowski et al. (2016).

To account for the cohort-specific uncertainty in dosim-
etry for members of the LSS cohort, a multiplicative factor 
described by a lognormal probability density function cen-
tred at 1.0 with a geometric standard deviation GSD = 1.1 
was applied based on expert judgement. Additional cohort-
specific uncertainty accounted for the uncertainty associated 
with the neutron radiation weighting factor used to calculate 
the weighted organ dose for the LSS cohort members. The 

(14)� = (�, �, �,�, �, ��, �,��),

(15)

dev(�,�) = 2
∑

i∶ni≠0

[
ni ln

ni

�i

(
�,�i

) −
(
ni − �i

(
�,�i

))
]

+ 2
∑

i∶ni=0

�i

(
�,�i

)
,

(16)�i

(
�,�i

)
= �

(
�,�i

)
PYi

uncertainty in the neutron weighting factor was simulated 
by a triangle distribution between 5 and 30 with the mode 
10 and using the estimated risk response to varying values of 
the neutron weighting factor for internal and external organs, 
separately (see details in Jacob et al. 2013).

Description of site‑specific models

This section summarizes the main features of the risk mod-
els used in ProZES. Details of each model including formu-
las for baseline and excess risks, estimated parameter values 
and covariance matrices are provided in the Supplement. 
Additional information, such as plots of ERR versus attained 
age, or dependence of the assigned share Z on different expo-
sure scenarios, can be found in the ProZES reports (Jacob 
et al. 2013; Ulanowski et al. 2016). The properties of several 
grouped models are summarized in Table 2.

Models for solid cancers after low‑LET exposure

Stomach cancer (STOMACH, ICD10:C16)

Four stomach cancer risk models were identified by fitting 
the LSS data for the follow-up period 1958–1998. The mod-
els, two of ERR-type and two of EAR-type, were aggregated 
using multi-model inference (MMI) based on their AIC 
weights. All models have a linear dose response. Risk coef-
ficients in the EAR models are the same for the both sexes, 
while in the ERR models the risk is sex dependent. Three 
models (two of EAR- and one of ERR-type) with the total 
AIC weight exceeding 95% include risk modifiers depending 
on attained age, while the fourth is an ERR-type model and 
includes age-at-exposure as a risk modifier.

Figure 3 contrasts the fitted age-specific spontaneous 
rates seen in the Japanese LSS population with the much 
lower rates observed in the German population. The fig-
ure also indicates how age-specific rates in the LSS have 
declined over time. Because of the marked difference in 
Japanese and German stomach cancer rates, additive and 
multiplicative risk transfer from the LSS cohort to the Ger-
man population leads to markedly different risk estimates. 
Therefore, as explained in the methodology section, ProZES 
systematically uses a risk transfer which involves both trans-
fer pathways combined with a uniformly distributed random 
transfer factor. This procedure adds additional uncertainty to 
the estimated values of Z. The larger the differences between 
the baseline rates in the two populations the greater the 
uncertainty introduced by the transfer of risk.

3 Matlab and Optimization Toolbox. The Mathworks Inc., Natick, 
MA, USA. https ://www.mathw orks.com.

https://www.mathworks.com
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Colon cancer (COLON, ICD10:C18)

For colon cancer in the LSS, the dependence of ERR on 
attained age differs strongly between males and females. 
Whereas for males, the dependence of ERR on attained age 
is relatively flat, the fitted ERR for females decreases mark-
edly with increasing age. However, no biological mechanism 
is known that supports such a sex difference. Furthermore, 
the baseline rates of males and females show similar age 
dependencies. To account for both possibilities, a decision 
was made to assign an equal MMI weight of 50% to sets of 
models with and without sex-dependent attained age effect 
modification of radiation risk. With this approach, the final 
ProZES model for radiation risk reflects both the existing 
sex differences suggested by the epidemiological data and 
biological plausibility. The increased error bounds for Z 
from the MMI procedure include this additional source of 
uncertainty.

For each set of models, the usual model selection pro-
cedure was performed, including likelihood ratio tests and 
MMI weighting based on AIC. There were four sex-specific 
attained-age-dependent models, two for males and two for 
females, and three sex-independent models (see Fig. S2.1). 
For each sex, the final model was constructed from the two 
sex-specific models and the three common models. For 
risk transfer to the German population, it was important 
to account for the calendar period. Colon cancer incidence 

rates in the LSS increase strongly with calendar year. The 
incidence rates of later calendar years become more com-
patible to those for the contemporary German population.

Cancer of lung and trachea (LUNG, ICD10:C33, C34)

For lung cancer, the model of Furukawa et al. (2010) was 
selected for use in ProZES. It is based on the LSS data set 
with additional information on influence of smoking on 
radiation risk. Among the four selected models, the sim-
ple additive (AM) and simple multiplicative (MM) models 
describe independent effects of smoking and radiation on 
lung cancer incidence. The more complex generalized addi-
tive (GAM) and generalized multiplicative (GMM) models 
include explicit interaction terms between radiation and 
smoking. The generalized models provide a significantly 
better fit to the data, where the ERR depends on smoking 
intensity in a non-linear way: ERR increases with increasing 
smoking intensity up to about 5–10 cigarettes per day (cpd), 
then it decreases strongly and almost vanishes for more than 
20–25 cpd.

While the vanishing ERR might reflect the large influence 
of heavy smoking on the spontaneous lung cancer incidence, 
it is also accompanied by higher uncertainties; therefore, it is 
questionable if such a strong decrease in relative risk is plau-
sible and can be justified. Furthermore, the radiation risk 
values at high smoking intensities depend on the assumed 

Table 2  Main parameters of the models derived for several groupings of solid cancers based on the LSS data

a Fraction of the observed incidence rate, which is attributed to radiation exposure
b Centred at attained age 70
c Sex-averaged value; effect of sex is significant (p = 0.011) and results at age 70 in sex-dependent ERR per 1  Gy ≈ 0.5 (males) and ≈ 1.9 
(females)
d Non-linear dose response with dose exponent equal to 1.55 (p < 0.001)
e ‘Age-at exposure’ effect modifier of log-risk equals to –89% per decade (p < 0.001)
f Non-linear dose response with dose exponent 1.60 (p < 0.001)
g ‘Age-at-exposure’ effect modifier of log risk equals to −75% per decade (p < 0.001)
h Sex-averaged value; effect of sex has low significance (p = 0.14) resulting in sex-dependent EAR  (10−4  PY−1  Gy−1) of 1.0 (males) and 0.2 
(females)

Group Cases ERR  (Gy−1) EAR  (10−4 PY−1 Gy−1)

Attrib. 
 fractiona (%)

Constant (p value) Power of att.  ageb (p value) Attrib. 
 fractiona (%)

Constant (p value) Power of att. 
 ageb (p value)

DIG 4083 2.8 0.24 (0.001) −3.04 (< 0.001) 2.4 6.85 (< 0.001) 2.26 (< 0.001)
URI 741 7.9 1.21c (< 0.001) – 7.3 4.19 (< 0.001) 3.63 (< 0.001)
GNF1 978 0.45 0.06 (0.68) – 0.8 0.57 (0.4) –
GNF2 479 2.7 0.35 (0.12) – 1.5 0.49 (0.3) –
GNM 403 1.1 0.12 (0.56) – 1.9 1.39 (0.38) 2.7 (0.3)

1.6 0.20 (0.37) −3.7 (0.3)
BCNS 281 5.0 0.23 (0.23) −2.97 (0.009) 4.1 0.46 (0.046) –
SKIN 330 11.7 0.71d,e (0.018) – 11.2 1.1f,g (0.021) 3.65 (< 0.001)
REM 324 4.8 0.25 (0.20) −2.77 (0.02) 4.5 0.60 h (0.03) –
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model function. Therefore, due to increasing uncertainty of 
radiation risk at high smoking intensities and trying to avoid 
potential underestimation of radiation risk, it was decided 
not to rely on the generalized models alone, but conserva-
tively use the maximum ERR value of either the simple or 
the generalized models. Effectively, this leads to a constant 
ERR for large smoking intensities, see Fig. 4.

Although, for calculation of radiation risk of lung cancer, 
the ProZES models require information on smoking, provi-
sion of personal information on smoking behaviour is not 
mandatory. By selection of “unknown” smoking status, the 
software applies random sampling for smoking status and 
related parameters using the distributions describing smok-
ing prevalence and habits in Germany (Lampert 2011, Jacob 
et al. 2013).

By definition, the lung cancer baseline rates in the risk 
model of Furukawa et al. (2010) represent spontaneous dis-
ease rates for non-exposed never-smokers. Unfortunately, 
such statistical data are not readily available for the German 

population. Therefore, the transfer factor from the LSS 
cohort to the German population is modelled stochastically, 
assuming that the ratio of baselines B (see Eq. 3) is log-
uniformly distributed in a range from 1/3 to 3.

Female breast cancer (BREAST, ICD10:C50)

The breast cancer model from the pooled study of Preston 
et al. (2002) was used for ProZES, since it includes not only 
the LSS data, but also results from several other studies of 
radiation-induced breast cancer in Western populations. The 
risk model is an EAR-type model with explicit dependence 
on attained age and age at exposure. In the pooled study, no 
age-dependent baseline rates are available. Therefore, the 
transfer factor to the German population is modelled sto-
chastically with the assumption that the ratio of baselines 
is log-uniformly distributed in range from 1/3 to 3, similar 
as it is done for lung cancer. This method of risk transfer 
modelling additionally increases the uncertainty range of the 
estimated assigned share. The breast and lung cancer models 
are the only low-LET exposure risk models that were not 
fitted explicitly for ProZES. For breast cancer, no data on 
the other breast cancer studies included in the pooled study 
were available to the authors, and in case of lung cancer in 
the LSS additional information on smoking was missing in 
the available dataset. Male breast cancer is rare and is not 
considered in ProZES.

Thyroid cancer (THYROID, ICD10:C73)

The thyroid cancer model (Jacob et al. 2014), applied in 
ProZES, is based on an analysis of the LSS data with explicit 
modelling of a screening effect created by the additional 
medical surveillance received by the LSS cohort members 
participating in the Adult Health Study (AHS) (Wong et al. 
1993) and the autopsy studies for deceased LSS cohort 
members (Hayashi et al. 2010). The screening effect resulted 
in higher thyroid cancer incidence rates in the cohort. The 
screening factor was found to be significantly different for 
time periods before 1970 and after, thus likely reflecting the 
changing screening or autopsy practices for the LSS and the 
AHS members. The risk model used is an ERR model with 
explicit dependence on attained age and age at exposure. 
The relative risk decreases with increasing attained age and 
increasing age at exposure.

Cancer of digestive organs, excluding stomach and colon 
(DIG, ICD10:C00‑C15, C17, C19‑C26, C48)

The group DIG combines cancers of the digestive tract 
organs other than colon and stomach. Baseline incidence 
rates of these cancers are generally lower than that of colon 
and stomach, so there are fewer cases in the LSS cohort 

Fig. 3  Fitted baseline incidence rates of stomach cancer in the LSS 
cohort for different calendar years compared to the stomach cancer 
incidence rate in Germany in 2006 for females (top) and males (bot-
tom)
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diagnosed with these diseases and no statistically signifi-
cant radiation effect can be identified for a specific disease 
within this group. Plausibility of the grouping was justi-
fied by checking for compatibility of their relative baseline 
rates (see Appendix 2 of the ProZES report, Ulanowski et al. 
2016). This assures that the same phenomenological model 
can be applied to describe the cancer risk for the selected 
diagnoses.

Fitting of these grouped data resulted in two models, one 
of ERR-type and one of EAR-type, that were included in 
ProZES with MMI weights based on their AIC values. The 
ERR-type model received weight of 71% while the EAR-
type model’s weight was 29%. Both models were linear in 
dose. The relative risk was found to depend explicitly on 
attained age and resulted in a decreasing ERR, and corre-
spondingly decreasing assigned share Z, with increasing 
attained age.

Cancer of urinary organs (URI, ICD10:C64–C68)

The group URI combines cancers of urinary system organs. 
The plausibility of this grouping was established based on 
a compatibility check similar to that used for the group 
DIG. The resulting models of almost equal AIC weights 
were an EAR-type and an ERR-type model with weights 
of 53% and 47%, respectively. Both models were linear in 
dose. The ERR-type model was independent of any age 
modifiers; the EAR-type model depended on attained age. 
The resulting MMI average for the assigned share showed 
a moderately decreasing Z with increasing attained age for 
most exposures.

Cervical cancer (GNF1, ICD10:C53)

A combination of all female genital organ cancers into one 
group resulted in an inconsistent data set, because an analy-
sis of baseline incidence rates in Japan revealed that the age 
dependence of spontaneous cervical cancer differs substan-
tially from that for other parts of the uterus, ovaries and 
other genital organs. The cervical cancer baseline incidence 
rate in Japan in 2010 shows a peak at age 40 and decreases 
at older ages, whereas such age patterns are not observed for 
other genital cancers. Since such incompatible time depend-
ence might lead to bias in the shape of dose response and 
the age dependence of risk and the assigned share, it was 
decided to split cancers of female genital organs into two 
groups with a separate group to represent cancer of cervix 
uteri.

Two models for cervical cancer were selected for MMI, 
an EAR-type and an ERR-type model with 57% and 43% 
AIC weights, respectively. Both models are linear in dose 
without any effect modifiers. The risk estimates are quite low 
and not statistically significant, resulting in a low assigned 
share. The cervical cancer baseline in Japan, including Hiro-
shima and Nagasaki cities, is strongly affected by screening 
and prevention (vaccination) actions taken during the last 
decades (Tsuji 2009; Konno et al. 2010). These result in 
non-standard age dependencies of the baseline, including 
strong non-linear time trends. Further modelling dedicated 
for cervical cancer might improve the baseline and risk 
description.

Cancer of female genital organs other than cervix (GNF2, 
ICD10:C51–C52, C54–C58)

For the group GNF2, two models, an ERR-type and an 
EAR-type, were selected with 72% and 28% AIC weights, 
respectively. The statistical significance was not sufficient to 
identify age dependencies of radiation risk, thus both models 
are linear in dose without any effect modifiers.

Cancer of male genital organs (GNM, ICD10:C60‑C61, C63)

The group GNM includes cancers of male genital organs, of 
which cancer of the prostate accounts for 387 of 403 cases. 
Originally attributed to the GNM group, 17 cases of tes-
ticular cancer were re-assigned to the group of remaining 
cancers (REM) because of the distinctively different age 
dependency of the testicular cancer incidence rate. Unlike 
prostate cancer, the incidence rate of testicular cancer starts 
to increase after age 15, approaches a maximum between 30 
and 35, and falls to minimal levels after age 50–55.

Three final models were identified, two models of ERR-
type and one EAR-type model. The ERR model with the 
largest AIC weight of 76% is a linear dose response model 

Fig. 4  Radiation ERR at 1 Gy of the lung cancer model selected for 
ProZES as a function of smoking intensity for females (solid red) 
and males (dashed blue) for age at exposure of 30 years and attained 
age of 70 years. Smoking started at age 20 until age 70 (colour figure 
online)
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without effect modifiers. The remaining ERR model and the 
EAR model with 19% and 5% weight, respectively, depend 
explicitly on attained age. The risk estimates have low sta-
tistical significance. The magnitude of risk is relatively low, 
with assigned shares expected to be lower compared to other 
cancer sites for the same dose.

Cancer of brain and central nervous system (BCNS, ICD10: 
C69–C72)

The group of brain and central nervous system consists of 
one ERR-type model with 58% AIC weight, and one EAR-
type model with 42% weight. Both models are linear in dose. 
The EAR-type model does not include any effect modifi-
ers, whereas the ERR-type model depends on attained age. 
The relative risk and, correspondingly, the assigned share 
decrease with increasing attained age.

Non‑melanoma skin cancer (SKIN, ICD10: C44)

The non-melanoma skin cancer group includes one ERR-
type and one EAR-type model with 72% and 28% AIC 
weights, respectively. However, the dose response is differ-
ent from most other solid cancers. The models show a dose 
response that is significantly non-linear with a power form: 
in both models, the risk increases with dose to a power of 
about 1.5–1.6. Therefore, the risk is very small at low doses 
but increases more strongly at high doses. Furthermore, 
both models depend on age at exposure, and risk decreases 
for older age at exposure. In addition, the EAR-type model 
depends on attained age.

The non-linear power dose response of the models may 
result in lower values of radiation risk and assigned share 
following fractionated exposures, than the values of risk and 
assigned share estimated for a single exposure with the same 
dose. Currently, available epidemiological data for the LSS 
do not suggest alternative shapes of dose responses due to 
missing evidence of radiation risk at doses less than 1 Gy. In 
case of fractionated low-dose exposures, it could be advised 
to calculate additionally, as a conservative upper limit, the 
assigned share using a single exposure with dose equal to 
the total dose of fractionated exposures.

ProZES does not contain a model for melanoma skin 
cancer. It is a rare cancer in the LSS cohort with only 17 
reported cases, and no significant estimates of radiation-
associated risk can be safely inferred. Additionally, it is 
unclear if the radiation mechanisms for induction of mela-
noma are similar to other solid cancers. Furthermore, UV 
light might have a strong confounding effect.

Cancer of the remaining organs (REM, ICD10: C30–C32, 
C37–C41, C45–C47, C49, C62, C74–C76)

The group of “remaining” solid cancers includes cancers 
of the nasal cavity, larynx, thymus, heart and intrathoracic, 
bone, connective tissue, testis, adrenals, and other endo-
crine organs. The REM group combines all solid cancer 
types in the LSS which could not be well attributed to the 
other groups, and for which the number of observed can-
cer cases was not sufficient for inference of radiation risk. 
It also includes 17 testicular cancer cases, because the age 
dependence of the baseline incidence rate of this disease was 
incompatible to other male genital cancers, in particular, of 
prostate cancer.

The REM group contains an ERR-type and an EAR-type 
model with 67% and 33% AIC weights, respectively. The 
dose response of the both models is linear. The EAR-type 
model is independent of attained age, whereas the ERR-type 
model depends on attained age. The relative risk and the 
assigned share decrease with increasing attained age.

Models for hematopoietic malignant diseases 
after low‑LET exposure

The models for radiation risk of leukaemia are based on the 
LSS incidence data from 1950 to 2001. In total, 944 leu-
kaemia cases were observed. The present work uses similar 
grouping of leukaemia subtypes as suggested by Hsu et al. 
(2013) where detailed descriptions on the background of 
the data set and the grouping can be found. Four leukaemia 
models are implemented in ProZES:

• Acute lymphoblastic leukaemia (ALL), 43 cases
• Lymphoma including chronic lymphoblastic leukaemia 

(CLL), 449 cases
• Acute myeloid leukaemia (AML), 176 cases
• Chronic myeloid leukaemia (CML), 75 cases

The structure of the risk models is similar to Hsu et al., 
however, the models were newly developed using the 
ProZES methodology including multi-model inference. In 
addition, for risk prediction and potential use in compen-
sation claims so-called ‘twin’ models were introduced, as 
explained below. Model fits were performed using doses for 
red bone marrow.

Currently, no model for multiple myeloma (136 cases) is 
implemented, but is anticipated to be added in future updates 
of ProZES. Adult T-cell leukaemia is known to be caused by 
infection of viral origin (Takatsuki 2005), thus the 47 cases 
of this disease were excluded from the radiation risk model-
ling. Eighteen (18) cases of other leukaemia types were also 
not included in any disease group for the analysis. CLL (10 
cases) was grouped together with various lymphomas.
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The leukaemia risk models are among the most challeng-
ing models for risk assessment and compensation claims, for 
reasons described below:

• Due to the relatively small number of cases and the rela-
tively high fraction (30–50%) attributed to radiation, a 
clear separation between baseline and radiation-induced 
cases is more difficult than for solid cancers

• Baseline and radiation risk often depend strongly on sex
• Radiation risk models show strong temporal effects 

depending on attained age, age at exposure and time 
since exposure

• Non-linear dose responses are found for several groups 
and for all leukaemia combined, mainly driven by the 
strong non-linear dose response of AML

• The period of latency for development for hematopoietic 
malignant diseases is typically shorter than that for solid 
cancers

The non-linear dose responses may lead to problematic 
risk estimates for fractionated and protracted exposures, 
which are typical exposure types in the case of compensation 
claims. Risk estimates are usually driven by epidemiological 
data from the medium-to-high dose range. Straightforward 
extrapolation of non-linear dose responses to low doses can 
result in implausible risk predictions. For example, let us 
assume a pure quadratic dose response like the one obtained 
for the AML model with the highest AIC weight. Fraction-
ated exposure of 10 × 100 mGy reduces the risk by a factor 
of 10 compared to the risk estimate for a single exposure 
of 1 Gy, while a fractionation of 100 × 10 mGy results in 
risk reduction by a factor of 100 with the same total dose 
of 1 Gy. Protracted exposure can be seen as exposure of a 
large number of small doses and, as the number of fractions 
increases, the risk estimate for the protracted exposure tends 
to vanish for any value of total dose.

To avoid such wrong extrapolations, the method of model 
“twins” was introduced for the leukaemia models in ProZES. 
For any model with a non-linear dose response in the low-
dose region, an additional “twin” model was added that 
shares the same form of baseline and effect modifiers but 
has a linear low-dose response. Following the standard MMI 
procedure adopted in ProZES, a model is randomly selected 
from the list of eligible models with probability defined by 
its AIC weight. If, however, the selected leukaemia model 
has the non-linear dose response, then the assigned share is 
computed both for the selected non-linear model and its lin-
ear “twin”. Then, the maximum of these two assigned share 
values is used, only. Since all non-linear leukaemia models 
have positive curvature at low doses, i.e. positive second 
derivative, this method forces selection of the linear “twin” 
model at sufficiently low doses and guarantees unambiguous 
risk estimates for fractionated and protracted exposures. For 

sufficiently high doses this procedure results in the usual 
MMI involving typically all models.

Acute lymphoblastic leukaemia (ALL), prolymphocytic 
leukaemia of B‑cell type, lymphoid leukaemia/unspecified 
(HEM1, ICD10:C91.0, C91.3, C91.9)

The group HEM1, including ALL, has only 43 cases, but a 
high fraction of about 50% radiation-induced cases. Thus, it 
is difficult to provide a reliable description of the baseline, 
nevertheless, the sex-independent baseline was found to 
increase with age. Two EAR-type models were selected for 
MMI, one model linear in dose with 90% AIC weight, and 
one model quadratic in dose with 10% weight. The linear 
model serves as a twin for the quadratic one. Both models 
depend on attained age and sex. The radiation risk, namely, 
EAR and the corresponding ERR, decreases strongly with 
increasing attained age.

Hodgkin lymphoma, non‑Hodgkin lymphoma, chronic 
lymphoblastic leukaemia (CLL), lymphoma of peripheral 
and cutaneous T‑cell, malignant immunoproliferative 
disease, hairy cell leukaemia (HEM2, ICD10:C81–C86, C88, 
C91.1, C91.4)

The lymphoma group HEM2 is dominated by non-Hodgkin 
lymphoma with 402 of total 449 cases. Cases of Hodgkin 
lymphoma form the second largest group with 35 cases. 
While there is controversy in the literature whether CLL 
is induced by radiation, recent studies find an association 
between exposure and the disease (Hsu et al. 2013; Zablot-
ska et al. 2013; Ojha et al. 2018), and for ProZES it was 
decided to include CLL in the HEM2 group. CLL is a very 
rare disease in Japan, and only 10 cases were observed in 
the LSS.

A separate fit for males and females resulted in no evi-
dence of radiation risk for females, while for males, the 
fitted risk estimates were positive and statistically signifi-
cant. Fitting both sexes together also resulted in significant 
positive risk. On biological grounds, it is very unlikely that 
males would be at risk for radiation-induced lymphoma, but 
females would have zero risk.

Therefore, the following decision was made for imple-
mentation of the HEM2 model in ProZES: both groups of 
sex-independent and of male-specific models are assigned an 
equal weight of 50%. That is, the MMI-selection procedure 
starts from a random selection of an appropriate sub-group 
of models. Then, within each of the two model sub-groups 
an AIC-based weighting is performed, resulting in one ERR-
type and one EAR-type model for the joint set of models, 
and one ERR-type and one EAR-type model for the male-
only model set. All models are linear in dose without effect 
modifiers, and there are no twin models. Both males and 
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females are then evaluated with the same set of radiation 
risk models but with sex-specific baselines. This procedure 
ensures a plausibly conservative upper estimate of radia-
tion risk for females. For males, the risk is between the sex-
average and male-only risk and therefore somewhat lower 
than for the male-only risk model.

Acute myeloid leukaemia (AML), sub‑acute myeloid 
leukaemia, myeloid sarcoma, acute promyelocytic 
leukaemia, acute myelomonocytic leukaemia, monocytic 
leukaemia, other leukaemia of specified cell type, 
leukaemia of unspecified cell type, other or non‑specified 
(HEM3, ICD10:C92.0, C92.2, C92.3, C92.4, C92.5, C93–C96)

A characteristic feature of the HEM3 group is the strongly 
non-linear dose response. All models show a low radiation 
risk per dose at lower doses and a higher radiation risk at 
higher doses. The two models with highest AIC weight, one 
of an ERR-type and one of an EAR-type, have a pure quad-
ratic dose response. These models would lead to vanishing 
risk and assigned share for protracted or highly fraction-
ated exposures. Therefore, they were allowed to form twin 
pairs with threshold-linear-spline (TLS) dose response mod-
els. In the TLS models, risk increases with a smaller slope 
until about 0.7 Gy and, after that, risk increases stronger for 
higher doses. The ERR-type models depend on sex and age 
at exposure, whereas the EAR models are sex-independent 
and depend on attained age.

Chronic myeloid leukaemia (CML) (HEM4, ICD10:C92.1)

The group HEM4 of CML includes six models, four of an 
ERR-type and two of an EAR-type. CML shows strong tem-
poral effects, and the radiation risk depends on time since 
exposure, attained age and age at exposure. Although the 
dose response is dominantly linear (91% of AIC weight for 
the linear models), two of the ERR-type models have a quad-
ratic-exponential dose response. These models have “twins”, 
which are the corresponding ERR-type models linear in 
dose. Three of the models depend on time since exposure 
and attained age, and three models on age at exposure and 
attained age. Relative risk decreases strongly with increasing 
time since exposure. The ERR-type radiation risk models 
are sex-independent, whereas the EAR-type radiation risk 
models depend on sex.

Models for lung cancer after high‑LET exposure 
(Radon)

Lung cancer is the main health concern after exposure to 
radon and its progeny. For ProZES, two population target 
groups with radon exposure were identified: (a) former 
miners and occupational underground employees and (b) 

persons with occupational indoor exposure. It was, therefore, 
decided to implement two separate risk models for the two 
target groups. For miners, the model is derived from a study 
of the German Wismut miner cohort (Kreuzer et al. 2015), 
whereas the model for indoor exposure to radon is based 
on a pooled analysis of 13 European studies of residential 
exposure to radon in homes (Darby et al. 2005).

Miners

Studies of lung cancer among miners clearly show an 
increased risk of lung cancer associated with radon exposure 
(NRC 1999). Risk depends in a complex way on attained 
age, age at exposure and time since exposure. In addition, an 
inverse exposure rate effect is observed, where risk increases 
with decreasing exposure rate for the same total exposure. 
For ProZES, it was decided to base the risk model on the 
cohort of German uranium miners with low exposures and 
exposure rates. The Wismut cohort is the worldwide largest 
epidemiological cohort of miners exposed to radon. Further-
more, the cohort is relevant for compensation claims after 
radon exposure in mines in Germany. Patterns of low expo-
sure and exposure rates better reflect current occupational 
exposure scenarios. Currently, the implemented model is 
based on a sub-cohort of Wismut employees hired in 1960 or 
later (Kreuzer et al. 2015). This model is preliminary, since 
it is a simple linear exposure response model of ERR-type 
without any effect modifiers. Exposure is specified in terms 
of working level month (WLM) (ICRP 2010). The miner 
model for radon exposure is anticipated to be revised soon 
based on upcoming national and international miner studies 
which are capable to provide additional evidence to quantify 
risk modifying effects by time, since exposure and age at 
exposure also at low radon exposures and exposure rates.

Indoor

For lung cancer after indoor radon exposure, the study of 
Darby et al. (2005) was selected. It is a large pooled analysis 
using data from 13 European case–control studies of lung 
cancer after residential radon exposure. Radon exposure 
was estimated by a time-weighted average of radon con-
centrations over the past 5–34 years before the diagnosis of 
(or death from) lung cancer, assuming a time lag of 5 years 
between exposure and cancer. This ERR-type model depends 
linearly on total exposure. Risk was stratified by smoking, 
age, sex, study and region of residence. There was little evi-
dence that relative risk differed by smoking status or age. For 
males, the relative risk was higher than for females, but not 
significantly different (p = 0.19 for heterogeneity), therefore, 
only the joint risk estimate is used for ProZES.

For the indoor model, the total radon exposure is quanti-
fied by the average indoor air activity concentration (Bq/m3) 
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times the duration of exposure. Therefore, the duration is a 
necessary input to quantify total exposure, and risk depends 
linearly on exposure duration. This contrasts with other 
ProZES models where exposure duration is only used for a 
potential low dose rate correction factor DREF.

Discussion

Considerations regarding the use of ProZES 
in compensation claims

Organisation of radiation protection at workplaces generally 
follows basic internationally adopted principles (ICRP 2007; 
IAEA 2014), which presume limiting radiation exposures to 
exclude (early) deterministic detrimental effects of radiation 
and to reduce as far as reasonably achievable the probability 
of (late) harmful stochastic effects.

Principles and implementations of compensation systems 
vary among countries. A review and comparison of vari-
ous national compensation systems can be found elsewhere 
(ILO 2010). ProZES has been designed for use in Germany, 
where a decision on eligibility for compensation (SGB VII) 
is based on an assessment whether the observed disease is 
caused with predominant probability by occupational and 
insured activities that led to radiation exposure. In the field 
of compensation, predominant probability means that—
under consideration of all circumstances—more reasons for 
causing the observed disease are related to the occupational 
field than to other exposure circumstances like naturally 
occurring radiation exposure or e.g. uninsured occupational 
exposure or private behaviour like smoking in the case of 
lung cancer.

ProZES was developed to support experts in the evalua-
tion of this probability. The assigned share Z depends on the 
type of cancer, age at cancer occurrence, exposure history, 
and person-specific information such as sex and birth year. 
Furthermore, smoking information can be taken into account 
in the evaluation of Z for lung cancer, if available.

ProZES calculates an uncertainty distribution of the 
assigned share, from which all required statistics can be 
derived, including the mean, the median, and all percen-
tiles. In the current version of ProZES, the median of Z is 
of particular relevance, because it provides a value border-
ing two equiprobable domains. If the median of Z exceeds 
0.5, then the cancer can be regarded as more likely to be 
induced by occupational radiation exposures, and the person 
would be eligible for compensation. However, the expected 
value (the arithmetic mean) may be considered as an alterna-
tive quantity to facilitate advisory and decision making in 
compensation claims. During the development of ProZES, 
a substantial effort has been made to carefully assess various 
sources of uncertainty. Correspondingly, a combination of 

point estimates of the assigned share Z and confidence inter-
vals, expressing uncertainties of these point values, provides 
essential information for making an informed decision on 
compensation claims, which should be based not only on 
point estimates but, additionally, involve consideration of 
the related uncertainties.

Application to medical exposures

While the developed radiation risk models in ProZES can be 
used for compensation claims from occupational exposures, 
these models also have relevance for a much larger range of 
exposure situations. For example, medical applications of 
radiation may result in exposures that are often highly organ 
specific, so dedicated models of radiation risks are neces-
sary to assess accompanying long-term risks. Diagnostic 
procedures may lead to exposures in the low- and medium-
dose range, which is covered by the ProZES radiation risk 
models. Data exist suggesting that the risk estimates after 
diagnostic exposures to low-energy photons may require fur-
ther adjustments for increased carcinogenic effectiveness; 
however, the topic is still under discussion and no adopted 
recommendations are available. Radiotherapy (RT) deliv-
ers high doses to a planned treatment target volume and to 
adjacent organs, while also creating lower dose exposures in 
other, more distant, organs. In addition, the dose distribution 
in the organs close to the treatment volume exhibits strong 
gradients, so a significant part of these organs is usually 
exposed in the medium dose range. While a number of stud-
ies on second primary cancer risk of RT patients estimate 
the excess relative risk for a therapeutic dose range above 
about 4 Gy, these studies have little statistical power at lower 
doses where the LSS-derived models are valid. With the aim 
to provide organ-specific risk models that cover a full dose 
range from low doses up to therapeutic doses, the ProZES 
risk models were combined with risk estimates from RT 
studies; then these models were integrated into the PASSOS 
software tool to estimate personalised lifetime risk of sec-
ondary cancer and heart diseases after breast RT (Eidemüller 
et al. 2019).

Assigned share and probability of association

The definition of the assigned share Z of Eq. (1) has impor-
tant consequences. Radiation risk estimates are obtained 
from an exposed population group. As the name indicates, 
the expected share of radiation in total risk of the population 
group is then assigned to a specific individual, adjusted for 
exposure characteristics, population, age, and other factors. 
However, from the perspective of the exposed individual 
who developed cancer, the situation is fundamentally differ-
ent. It might be that radiation not only induced the cancer, 
measured by Z, but radiation could also have accelerated 
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cancer development, leading to earlier manifestation of the 
disease and to lifetime lost. For the particular person who 
developed cancer at a specific age, the probability that her/
his cancer is associated with radiation can therefore be larger 
than the assigned share.

Interestingly, a quantitative estimate of such probability 
of association cannot be directly obtained from analysis 
of epidemiological studies. It also depends on underlying 
mechanisms of carcinogenesis, and how these mechanisms 
are affected by radiation exposure. For example, if the effect 
of radiation is the induction of new pre-malignant cells from 
healthy stem cells, it can be expected that Z approximates 
the probability of association to a large extent. If, however, 
radiation acts dominantly on the phase of clonal growth, it 
is likely that the probability of association is larger than the 
assigned share calculated in ProZES. These concerns about 
the validity of Z to quantify the individual or etiologic frac-
tion of association of radiation and disease are recognized 
and discussed elsewhere (Greenland 1999; Greenland and 
Robins 1988; Beyea and Greenland 1999).

The definition of Z used here also implies negligible 
impact of the competing health risks, including radiation-
attributed competing risks. It has recently been shown by 
Ulanowski et al. (2019) that for compound outcomes with 
high incidence rates and for higher doses (order of 1 Gy and 
above), growth of radiation-attributed risks is accompanied 
by reduced manifestation of spontaneous risks, thus directly 
affecting not only the excess rate but also the baseline rate in 
the exposed population.

Limitations of ProZES

Assessment of the assigned share is a complex task and 
involves many elements. A number of limitations relate to 
necessary decisions about the general framework, epidemio-
logical evidence and the specific risk models. These una-
voidable limitations reflect current scientific state-of-the-art 
and do not imply that ProZES is inadequate or unsuitable 
for use in compensation claims. As a guideline, it was the 
intention to develop risk models that are based on robust epi-
demiological evidence and provide unbiased estimates of Z. 
In case of ambiguous data, models were selected to respect 
a balanced view on statistical evidence and plausibility, and, 
in particular, to avoid potential strong underestimations of 
risk, e.g. for specific ages or sex. In most cases, the limita-
tions in data and methodology have already been addressed 
by assessing the uncertainty range for Z. A discussion of the 
most important limitations is provided below.

Risk models

Risk models for low-LET exposure are almost exclusively 
based on the LSS cohort, which includes individuals who 

experienced an acute exposure to radiation. While it would 
be preferable to additionally use studies of cohorts with 
protracted exposure, e.g. nuclear workers (Richardson et al. 
2015, 2018; Leuraud et al. 2015; Daniels et al. 2017; Cardis 
et al. 2007; Muirhead et al. 2009), site-specific estimates 
still suffer from low statistical power and cannot be used 
for reliable risk prediction models. Nevertheless, risk esti-
mates for all solid cancers combined are compatible with 
risk estimates from the atomic bomb survivors, supporting 
the validity of risk transfer between populations. ProZES 
uses the LSS incidence data with a follow-up until 1998. 
An update of the LSS incidence data with 11 years more of 
follow-up time and 29% more solid cancer cases is currently 
in process. At the time of this writing, risk for all solid can-
cers combined and for lung, breast, colon and uterine cancer 
was analysed (Grant et al. 2017; Cahoon et al. 2017; Brenner 
et al. 2018; Utada et al. 2018; Sugiyama et al. 2020). While 
not yet included in ProZES, it is intended to keep ProZES 
up to date with scientific developments.

Although the organ-specific models have been discussed 
previously, some models deserve special considerations:

• The lung cancer model after low-LET exposure is likely 
the most complex model implemented in ProZES due 
to the interaction of radiation and smoking. The radia-
tion ERR of the best generalized multiplicative model 
decreases strongly at high smoking intensities. This 
could prevent compensation for heavy smokers even 
at high radiation exposures and might be caused by 
the particular functional form of this complex model. 
Thus, it was decided to use the maximum ERR value 
from different models. A further complication is missing 
population and health statistics data for lung cancer of 
never-smokers in Germany. Therefore, a generic transfer 
of risk between the Japanese and German population was 
applied, leading to additional uncertainties.

• The breast cancer model is the only low-LET model 
that is not exclusively based on the LSS, but on pooled 
data from several cohorts (Preston et al. 2002). It has the 
advantage that not only the LSS, but also several other 
cohorts with more protracted exposures and other popula-
tions are included. However, the follow-up of the cohorts 
used in the pooled analysis is no longer up-to-date. This 
applies not only to the LSS as the most important cohort 
in the pooled study, but, in particular, also to the Swed-
ish haemangioma cohort, which is the second most 
important cohort for radiation-induced breast cancer in 
the world. Recently, the risk estimates for this cohort 
were increased by a factor of two following revision of 
its dosimetry system when known dosimetric issues for a 
part of the high-exposed women were corrected (Lundell 
et al. 2015; Eidemüller et al. 2015). Furthermore, due to 
the very different exposure situations in the cohorts, it is 
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not clear whether derived age dependencies are a general 
property of radiation-induced breast cancer, or an artefact 
of pooling the data. Further complications can arise from 
differences in the biological effectiveness of lower energy 
X-rays in exposures of medical patients compared with 
high-energy photons in the LSS cohort and from com-
paring risks per unit dose from a single acute exposure 
in the LSS cohort with risks per unit dose from fraction-
ated exposures of varying dose rates. Finally, the pooled 
study has no baseline parametrisation. Due to the absent 
model baseline rate, only a generic transfer of radiation 
risk to the German population can be applied. This may 
become problematic since breast cancer rates in Germany 
are higher than in Japan.

• The leukaemia risk models are among the most challeng-
ing models due to the small number of cases in combina-
tion with high radiation-attributed fractions, non-linear 
dose responses, strong temporal effects, sex differences, 
and differences in population baseline rates. To avoid 
strong underestimation of risk for protracted exposures, 
for the non-linear dose response models, the method of 
“twin” models was introduced (see below). The radiation 
risk models depend strongly on attained age, age at expo-
sure or time since exposure. While the leukaemia models 
were designed to represent well the epidemiological data 
in the LSS cohort, due to the strong modifying effects it 
is not clear whether the models are robust enough to 
allow for risk extrapolations beyond exposure situations 
typical for the LSS cohort. In future updates, the ProZES 
leukaemia models will be re-evaluated with emphasis on 
models’ robustness and secure extrapolations of radiation 
risk.

• Lung cancer risk models for miners occupationally 
exposed to radon and its progeny usually demonstrate 
complex exposure and age dependencies (NRC 1999). 
They are primarily derived from highly exposed min-
ers’ cohorts, and it is not clear if these modifying effects 
remain valid at lower exposures. The current risk model 
for ProZES is derived from a study of Wismut employ-
ees hired in 1960 or later with low exposures and is a 
linear exposure response model without effect modifiers 
(Kreuzer et al. 2015). A recent study with emphasis on 
temporal effects in the Wismut cohort at low radon expo-
sures and exposure rates found evidence for modifying 
effects by time since and age at exposure also for low 
exposures (Kreuzer et al. 2018). It is foreseen that the 
ProZES miner radon model will be revised according 
to new scientific evidence. The Wismut study is based 
on lung cancer deaths. The risk estimates are then trans-
ferred to the incidence of lung cancer. It is assumed that 
the relative risk estimates and age dependencies are simi-
lar between incidence and mortality studies.

• The lung cancer risk model after indoor radon exposure 
(Darby et al. 2005) is linear in total exposure and has 
no modifying effects with time since exposure, age at 
exposure or attained age. While miner studies with high 
exposures have shown strong modifying effects, resi-
dential studies have weaker statistical evidence. More 
fundamentally, in residential studies, it is not possible 
to distinguish between effects of exposures received in 
different periods of the past, because radon exposures in 
different time periods are highly correlated (Darby et al. 
2006). For ProZES, it is assumed that the risk of expo-
sures received during a shorter period of time is the same 
as for the long-term exposures in the residential studies, 
for the same total exposure. Furthermore, breathing rates 
are different for light and heavy physical work and can be 
higher than that in residential places. An extension of the 
model to allow for different breathing rates is planned.

Transfer of risk

Radiation risk is transferred from the historic Japanese 
population to the current German population. The transfer 
of risk allows to adequately account for population-specific 
differences in secular trends of baseline incidence rates, 
and it assumes a random mixture of additive and multipli-
cative transfer types. As no prior knowledge on the type 
of risk transfer is assumed, a uniform distribution between 
both types was applied. Therefore, the central estimate of 
Z is associated to the mean transfer factor f = 0.5 . If the 
type of risk transfer for a particular cancer site was differ-
ent, then the result for the central value of assigned share 
would change accordingly. This is particularly relevant for 
cancer sites with strong differences in background cancer 
rates between both populations.

Future versions of ProZES may have the capability to 
distinguish between the two possible risk transfer types by 
taking into account new epidemiological evidences or bio-
logical mechanistic insights for specific cancers. Techni-
cally, this can be achieved with a non-uniform distribution 
function for the factor f, which would allow for additional 
or reduced weights towards pure additive ( f = 0 ) or pure 
multiplicative ( f = 1 ) types of the radiation risk transfer.

Multi‑model inference

The current development includes a systematic use of the 
MMI principle. Therefore, the resulting uncertainty distri-
bution incorporates contributions from model uncertainty. 
Nevertheless, the chosen models are not exhaustive, and the 
number and type of models depend on the selection crite-
ria. For some cancers with strong sex differences, a mix-
ture between sex-averaged and sex-specific risk models was 
applied. For exposure situations with weak epidemiological 
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evidence due to poor statistics, e.g. for cancer at young ages, 
the risk models provide an extrapolation that can become 
more and more uncertain for more extreme situations. Use of 
MMI can lead to extrapolations that depend less on proper-
ties of a particular model, thus this technique translates part 
of this uncertainty to the error bounds of Z.

Correction factors for low dose rates and latency time

The use of a correction factor for low doses and low dose 
rates is under active international discussion (Rühm et al. 
2015; Shore et al. 2017; Kocher et al. 2018). For ProZES, 
currently, only a correction factor for low dose rates (DREF) 
was introduced with geometric mean of 1. This is supported 
by the recent large workers study INWORKS (Richardson 
et al. 2015), whereas the approaches of the BEIR commit-
tee and of ICRP reduce the risk estimate (NRC 2006; ICRP 
2007). Conditional on future international developments and 
recommendations, the use of the risk correction factors in 
ProZES for effects of low dose and low dose rate exposures 
might be revisited.

Cancer needs time to develop, and the latency correc-
tion factor was introduced for radiation-induced cancer 
which raises from zero and reaches its maximum after about 
6 years for solid cancers, and 2 years for haematopoietic 
cancers. If the time between radiation exposure and the 
observed cancer is smaller, the assigned share depends on 
the selected functional form chosen for the latency correc-
tion factor. However, the form of the latency function cannot 
be derived from the epidemiological data of the LSS cohort, 
since the follow-up starts only 13 years after exposure for 
solid cancers and 5 years after exposure for hematopoietic 
cancers. Other known studies do not provide conclusive evi-
dence on the cancer latency times.

Enhanced biological effectiveness of different radiation 
types

Currently, ProZES does not explicitly account for the effect 
of different radiation types but requires the user to provide 
input doses (expressed in mSv) that may already account 
for an enhanced biological effectiveness of different types 
of radiation other than high-energy gamma radiation, e.g. 
for low-energy photons and electrons, neutrons, protons and 
alpha particles other than from radon and its progeny. The 
uncertainty distributions used for input doses may include 
the contribution of uncertainties associated with radiation 
effectiveness.

Dose responses from major epidemiological studies, 
including the LSS, are representative of exposures to low-
LET radiation. In particular, Japanese atomic bomb survi-
vors received acute doses of mainly high-energy photons. In 

addition, several epidemiological studies are available for 
cases of exposure to high-LET radiation, however, they are 
generally limited to exposures to alpha particles (e.g. from 
inhalation of radon or plutonium and their decay products) 
and to a small number of cancer sites (e.g. lung, liver, bone). 
Evidence from limited human data and from more abun-
dant animal and in vitro cell studies indicates that high-LET 
radiation is more effective than low-LET radiation in induc-
ing cancer (NCRP 2012; UNSCEAR 2012). Recent analyses 
of data indicate that low-energy photons and electrons may 
also exhibit an enhanced biological effectiveness compared 
with high-energy photons (NCRP 2018; Kocher and Hoff-
man 2019).

In the system of radiological protection, absorbed doses 
(in Gy) are modified by quality factors or radiation weight-
ing factors, which are intended to represent the enhanced 
biological effectiveness of each type of radiation relative to 
low-LET radiation. The current radiation weighting factors 
recommended by the ICRP (2007) for radiation protection 
of humans are 1.0 for photons, electrons and muons, 2.0 for 
protons and charged pions, 20 for alpha particles, fission 
fragments and heavy ions, and 2–20 for neutrons of various 
energies. These values of the radiation weighting factors are 
“… selected by judgement on the basis of a broad range 
of experimental RBE data which are relevant for stochas-
tic effects” (ICRP 2007, paragraph 114). Correspondingly, 
ProZES currently accepts the dose input in terms of equiva-
lent dose (mSv). An explicit consideration of carcinogenic 
effectiveness of various types of radiation can become an 
important topic for future advancing of ProZES.

Estimation of risks in cases of actual exposures is also 
carried out using modifying factors, with the difference 
that such factors are customized for the risk assessment of 
interest (e.g. adjudication of compensation claims for work-
ers in the US; mission planning for astronauts exposed to 
heavy ions in space). These factors are based mostly on ani-
mal data, include estimates of uncertainty in the possible 
effectiveness of each radiation type, and account for dif-
ferences in effectiveness of inducing leukaemia and solid 
cancers (Kocher et al. 2005; Cucinotta et al. 2013). In IREP, 
assigned share is estimated using probability distributions 
to describe the enhanced biological effectiveness of high-
LET radiation and of low-energy photons (< 250 keV) and 
electrons (< 15 keV) (Kocher et al. 2005, 2008).

Twin models

Several risk models, in particular, for hematopoietic cancers, 
have a non-linear dose response which leads to problem-
atic risk estimates for multiple and protracted exposures. 
Estimates of Z would depend on the number of exposures 
and might become arbitrarily small. The method of “twins” 
was introduced to provide stable risk estimates. For each 
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non-linear model, a corresponding linear model is assigned, 
and the maximum value of either model is used, thus provid-
ing a conservative “LNT-like” risk estimate. Although the 
method appears reasonable for the ProZES leukaemia risk 
models, it is still unclear whether this procedure could be 
generalized to other types of non-linear relationships.

Non‑cancer diseases

Currently, only malignant neoplasms are considered in 
ProZES. However, epidemiological studies provide strong 
evidence that radiation exposure induces cardiovascular 
diseases as well. Recent studies include analysis of cardio-
vascular mortality in the LSS cohort (Schöllnberger et al. 
2018) and in a pooled cohort of nuclear workers (Gillies 
et al. 2017), as well as incidence of heart and cerebrovas-
cular diseases among the Mayak workers (Simonetto et al. 
2014, 2015). Notably, there is some suggestion for a non-
linear dose response relationship for radiation risk, though 
uncertainties concerning the linearity of the dose response 
relationship are still large. Further complications originate 
from confounding factors affecting the baseline, and from 
the definition and classification of endpoints. Biological 
mechanisms underlying the disease development and radia-
tion risk transfer to different populations are still under 
intense scientific debates. The same applies to the induction 
of cataracts by ionising radiation. Therefore, inclusion of 
these endpoints in the current version of ProZES was con-
sidered as premature.

Also, currently the program does not consider radiation 
risks of benign tumours. Following recent growing interest 
to establish quantitative dose response relationships for non-
malignant neoplasms (SSK 2017), future development of 
ProZES may also include consideration of benign tumours 
as harmful outcomes of radiation exposure.

Software implementation and usage

ProZES is implemented as a Windows standalone desktop 
application with a graphical user interface in German and 
English. The tool is implemented using the .NET frame-
work4 and, during installation, availability of the  .NET 
framework on the user PC is checked. If required prereq-
uisites are missing, then the installation utility attempts to 
automatically download and install the required software.

Starting the calculation, from the user-provided input 
data the tool generates a random sample of assigned share 
values and presents the results in graphical and text forms 
(see Figs. 5 and 6). The assigned share is displayed as a 
cumulative probability distribution. The output report with 
a summary of the input and the output statistics is generated 
and can be viewed either in concise form with the central 

estimate and 68%- and 95%-confidence intervals or in the 
expanded form with detailed percentiles of Z. The plot and 
the output report can be saved either as bitmap (PNG) or 
vector (PDF) images. A user manual is available under the 
program’s “Help” menu. The user can vary the sample size 
to give more emphasis to the speed of the calculation or to 
produce more precise evaluation of the percentiles.

Uncertainties from various sources are combined using 
Monte Carlo simulations and reported as a probability dis-
tribution of the assigned share. In case of multiple exposure 
events, each exposure is described by an organ dose (mSv) 
that has its own uncertainty and it is sampled uncorrelated 
to doses from other exposures. For lung cancer after inhala-
tion of radon, exposures, specified in WLM or Bq/m3, are 
also treated as independent events in the exposure history. 
Sources of uncertainties implemented in ProZES include 
statistical uncertainties in parameters of the selected model 
(represented by the corresponding covariance matrix), 
model uncertainty given by the MMI weights, and parameter 
uncertainties related to DREF, latency factor, and population 
transfer factor. While each parameter set is sampled inde-
pendently and uncorrelated to the others, the parameter sets 
are assumed to be fully correlated among various exposures. 
The principal flow of computation is shown in Fig. 7.

Input to ProZES

The following user-defined input is required to run the 
ProZES tool:

• Cancer type and year of diagnosis
• Sex and birth year
• History of radiation exposure including the radiation 

doses and year of each exposure. For indoor exposure 
to radon, also the working time (hours) is required. The 
doses are provided in mSv for exposures to low-LET ion-
ising radiation, and in WLM or Bq m−3 for exposures to 
radon and progeny from underground/mines and indoor 
exposures, respectively.

For each exposure, a probability distribution can be 
specified to describe the uncertainty in dose. The currently 
implemented uncertainty distribution types are Gaussian 
(normal), log-normal, uniform and triangular. In the case 
of small dose rates below 6 mSv h−1, that can be calculated 
from user-provided duration of each exposure (hours), the 
corresponding DREF distribution is used for low-LET radia-
tion (Fig. 1). For exposures to radon in underground/mines 
or indoor a DREF correction is not applied (i.e., assumed to 
be equal to 1.0).

For lung cancer only, the user can provide information on 
smoking history. For a current or past smoker, the smoking 
intensity and period can be provided. If individual smoking 4 https://dotnet.microsoft.com/.



623Radiation and Environmental Biophysics (2020) 59:601–629 

1 3

history for a current or past smoker is unknown, then the 
computations are performed using nation-average statistics 
for Germany. Currently, only the risk model for lung cancer 
after external radiation exposure depends on the individual 
smoking history.

The model for lung cancer from indoor radon exposure 
depends on the average indoor air activity concentration 
(Bq m−3). Therefore, the total radon exposure is the product 
of the concentration and the exposure duration, and the risk 
scales linearly with the duration.

ProZES allows to load and save the input data in Excel 
format. A user-defined template can be created by saving 
the input data for a specific case. This Excel file can then be 
edited and loaded back into the program.

The ProZES tool allows to choose the year of cancer 
diagnosis up to the current calendar year. However, cancer 
incidence and population data are not yet available for the 
most recent years. Therefore, if the year of diagnosis is later 
than the last available year from the registries, the cancer 
incidence rates and population data from that last available 
year are used.

ProZES and IREP

Both ProZES and IREP (Kocher et al. 2008) calculate the 
assigned share Z with associated uncertainty bounds. In both 
applications, the low-LET risk models are based primar-
ily on epidemiological evidence from the LSS cohort of 
the Japanese atomic bomb survivors. Both programs share 
common central elements of the calculation such as group-
ing of cancer sites, transfer of risk between populations, 
and factors accounting for the dose rate experienced by the 
exposed individual and for changes of risk during the mini-
mum latency period.

Nevertheless, there are a number of conceptual differ-
ences. First, ProZES includes a systematic use of multi-
model inference. Another difference stems from the fact 
that IREP uses a dose and dose rate effectiveness factor 
(DDREF) specified as a distribution with uncertainty range 
extending below and above 1.0, whereas ProZES only uses 
a dose rate effectiveness factor with geometric mean of 1.0 
and an uncertainty range conditional on the value of the dose 
rate. However, like in IREP, the uncertainty range of DREF 
in ProZES includes values less than 1.0.

As opposed to ProZES, IREP explicitly uses uncertain 
radiation effectiveness factors (REF) for cases of exposure 
to radiation types other than high-energy gamma radia-
tion (Kocher et al. 2005, 2008). Thus, IREP can be directly 
applied for exposures to high-LET radiation (e.g., inhalation 
of plutonium or uranium; exposure to neutrons), or to low-
energy photons and electrons (e.g., intake of tritium). Cur-
rently, ProZES assumes that the user-provided doses, except 
from exposure to radon, are given in terms of equivalent 

dose, and are, therefore, already adjusted for radiation type 
effectiveness.

For the transfer factor between populations, ProZES uses 
a uniform distribution between multiplicative and additive 
risk transfer. IREP includes a trapezoidal mixture that goes 
beyond the limits of f = [0, 1] to account for chances that 
the pure multiplicative risk transfer model and the pure addi-
tive risk transfer models are plausible outcomes. In ProZES, 
this additional uncertainty is generically accounted for by 
explicit modelling of the uncertainties of the parameters of 
the model baseline rate and use of the full covariance matrix.

The compensation system in the US is different from 
that used in Germany. In the US, compensation is awarded 
if the 99th percentile of Z exceeds 0.5. To ensure a good 
precision at the 99th percentile, IREP generates 2000 sam-
ples obtained using mid-point Latin Hypercube Sampling 
for its Monte Carlo simulations. The number of samples 
is increased to 300,000 to enhance precision for cases that 
produce an assigned share with a 99th percentile within 5% 
of the decision criteria.

The grouping of cancer sites is different in the two pro-
grams. While based on similar epidemiological low-LET 
data, the ProZES models are based on the LSS data with a 
longer follow-up and more cancer cases. Cancer groupings 
used in IREP include at least 50 cases among the atomic 
bomb survivors with doses greater than 10 mSv. In ProZES, 
the cancer risk models have been developed independently 
using the methodology described in the previous sections 
and are different from the IREP models. The radon model 
in IREP is based on U.S. uranium miner data (Kocher et al. 
2008), while ProZES relies on the studies of the German 
Wismut workers. The method of “twin” models was intro-
duced for the ProZES leukaemia models with a non-linear 
dose response relationship.

More detailed comparisons of ProZES and IREP predic-
tions of the assigned share for various cancer sites can be 
found elsewhere (see Jacob et al. 2013; Ulanowski et al. 
2016, Appendix 3).

Summary and outlook

ProZES is a software tool that estimates the probability 
that a given cancer in an individual was caused by previous 
radiation exposure. This probability is called the assigned 
share, Z, and depends on the type of cancer, age at cancer 
diagnosis, exposure history and person-specific information 
such as, e.g., sex and birth year. ProZES has been devel-
oped at the Helmholtz Zentrum München and can be used 
to provide scientific support for expert judgements in the 
context of compensation claims for cancer after occupational 
exposure by ionising radiation. Its functionality is in many 
aspects similar to its US-counterpart, the program IREP 
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(Kocher et al. 2008). However, the development of ProZES 
progressed independently following critical assessment of 
methodology and models. Its development was accompanied 
by intense scientific discussions with leading national and 
international experts.

The cancer risk models, which are the core part of 
ProZES, have been newly developed or re-evaluated from 
up-to-date radioepidemiological data. The risk models for 
low-LET radiation are based on incidence of cancer of the 
atomic bomb survivors of Hiroshima and Nagasaki (the LSS 
cohort), except for breast cancer where pooled data from 
several cohorts are used. For lung cancer after radon inha-
lation, separate risk models are implemented for exposure 
in mines and indoor exposure. ProZES includes dedicated 
risk models for the most frequent types of radiation-induced 
cancers, including cancers of the lung, female breast, colon, 
stomach, and thyroid. Risks for other cancers are estimated 
based on models developed for groupings of cancers with 
similar physiology.

The calculation of the assigned share has several meth-
odological challenges that required design decisions. The 
most important elements are:

• Risks observed in a Japanese population during the time 
since the Second World War must be applied (or trans-
ferred) to a current Western population (i.e., the popula-
tion of Germany). Since cancer incidence rates in the 
two populations can be significantly different for spe-
cific organs, and additionally can vary with calendar year, 
additive or multiplicative risk transfer modes can result 
in different values of the assigned share. In ProZES, no 
preference to either mode of transfer is given. All values 
between these two transfer modes are considered to be 
equally likely.

• ProZES includes a systematic use of multi-model infer-
ence which reduces the dependence on one selected 
model and allows accounting for model uncertainty. 
MMI is also applied for some problematic cancer sites 
to avoid potential strong underestimation or bias of Z for 
specific ages or sex.

• To account for dose rate effects, instead of applying a 
conventionally used DDREF, an approach based on a 
dose rate effectiveness factor DREF with geometric mean 
of 1.0 was introduced. The uncertainty of the DREF is 
assumed to increase with decreasing dose rate.

Fig. 5  Screenshot of the ProZES tool running a lung cancer case for a current smoker with exposure history. A tab with a plot of the cumulative 
distribution of Z is selected and displayed in the right panel. The dots indicate the percentiles of the distribution
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• Cancer groupings were formed by combining function-
ally similar cancer sites with compatible age dependence 
and risk estimates. The grouping represents a compro-
mise between model specificity and the requirement 
of sufficient sample size to allow for reliable statistical 
inference and robust radiation risk models.

• For leukaemia models with non-linear dose responses, 
the method of corresponding linear “twin” models was 
introduced to avoid potential strong underestimation of 
risk and assigned share for fractionated and protracted 
exposures.

Particular attention was given to careful consideration of 
various sources of uncertainty. These include the statistical 
uncertainties and correlations between the parameter esti-
mates for specific fitted models, model selection uncertainty 
addressed by multi-model inference, uncertainty distribu-
tions of the radiation doses and uncertainties related to the 
DREF, latency factor, and population transfer factor. Monte 
Carlo simulation was used to integrate these contributions 
into the total uncertainty represented by the generated dis-
tribution of Z.

A substantial effort has been made to incorporate the 
best available science during the model development. It was 
designed to provide evidence-based, robust and unbiased 
estimates of the probability of cancer causation from previ-
ous radiation exposure. With a view to its use in compensa-
tion claims, in case of ambiguous data, the selected models 
should avoid potential strong underestimation of risk. It is 
intended to keep ProZES up to date with scientific progress, 
including updates of risk models from extended epidemio-
logical evidence, methodological improvements and new 
health statistics and demographic data.

Currently, ProZES is available as a Windows stand-alone 
program with a graphical user interface in German and Eng-
lish. Since the program has been designed for use in the 
Federal Republic of Germany, the calculation of Z is based 
on German national statistics on cancer incidence rates and 
demographic data. However, it is possible to extend its appli-
cability to other countries as well using pertinent national 
data. The ProZES software tool, documentation and infor-
mation on current developments are freely available from the 
ProZES webpage (BfS 2020) hosted by the German Federal 
Office for Radiation Protection.

Fig. 6  Screenshot of the ProZES tool running a lung cancer case for a current smoker with exposure history. A tab with the summary report 
(concise form) is selected and displayed in the right panel
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Fig. 7  Computational flow of the ProZES software tool
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