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Abstract
It is well known that over the eighteenth century the calculus moved away from its
geometric origins; Euler, and later Lagrange, aspired to transform it into a “purely
analytical” discipline. In the 1780s, the Portuguese mathematician José Anastácio da
Cunhadeveloped anoriginal version of the calculuswhose interpretation in viewof that
process presents challenges. Cunha was a strong admirer of Newton (who famously
favoured geometry over algebra) and criticized Euler’s faith in analysis. However, the
fundamental propositions of his calculus follow the analytical trend. This appears to
have been possible due to a nominalistic conception of variable that allowed him to deal
with expressions as names, rather than abstract quantities. Still, Cunha tried to keep
the definition of fluxion directly applicable to geometrical magnitudes. According to a
friend of Cunha’s, his calculus had an algebraic (analytical) branch and a geometrical
branch, and it was because of this that his definition of fluxion appeared too complex
to some contemporaries.

1 Geometry and analysis in eighteenth-century calculus

When the calculus appeared at the end of the seventeenth century, it concerned variable
geometrical quantities associated with curves: abscissa, ordinate, arc-length, and son
on (Bos 1974, 5).

As the eighteenth century progressed, algebraic, or analytical, expressions, which
at first were tools for studying geometrical objects, gained ascendance.1 Between
1748 and 1770, Leonhard Euler published a set of treatises on the calculus where, for

1 (Bos 1974), already cited, covers this process from Leibniz to Euler; (Fraser 1987) addresses Lagrange’s
later, more radically algebraic, version of the calculus; (Fraser 1989) identifies the common algebraic
characteristics of Euler’s and Lagrange’s versions (which were different in other aspects). (Jahnke 2003)
gives a general view of the calculus in the eighteenth century; (Domingues 2008, 53–59) presents a picture
of the question of the foundations of the calculus at about the same period as Cunha’s work.
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580 J. C. Domingues

the first time, this was presented as being primarily about functions – “function of a
variable quantity” being defined as an “analytical expression composed in any way
from that variable quantity and numbers or constant quantities”; as examples, “a +3z;
az −4zz; az + b

√
(aa − zz); cz ; &c. are functions of z”.2 In the preface to his treatise

on differential calculus Euler states that in it “all is contained within the boundaries of
pure Analysis, so that no figure is necessary to explain all the rules of this calculus”.3

Thismove away fromgeometry and towards analysis was not immediately followed
by every author. In particular, most textbook authors resisted or ignored it. A clear
example of survival of a geometrical version of the calculus can be found in the
section on the calculus in (Bézout 1767). This was an extremely successful text,
reprinted several times up to the end of the eighteenth century; it is quite relevant to
us that this section on the calculus was translated into Portuguese (Bézout 1774) and
adopted as a textbook in the newly founded Faculty of Mathematics of the University
of Coimbra.4 In that textbook, the word “function” is first defined nearly 70 pages
after “differential”, as a mere detail in a section on multiple points of curves5 and for
a second time at the beginning of the integral calculus: “We will call function of a
quantity, any expression for calculation where that quantity enters, whatever way it
enters”6. Geometrical applications occupy amajor portion of Bézout’s calculus (about
two thirds of the differential calculus); and several results are based on geometrical
reasonings—for instance, the determination of maxima and minima comes from the
study of tangents that are parallel to the axis of abscissas (Bézout 1774, 51, 55), while
in (Euler 1755, 580–581) the condition dy

dx = 0 comes from the Taylor series expansion
of y as function of x .

What has been said above applies directly to the Leibnizian calculus, which was
dominant in continental Europe. In Britain, Newton’s method of fluxions prevailed.
Although equivalent for many purposes, these two calculi were conceptually distinct
and followed different paths. Overall, it may be said that the method of fluxions was
more consistently geometric, lacking an analytic version such as Euler’s. It is true
that formal manipulation of series was a fundamental component—so much so that
Newton called it “method of fluxions and of series”; however, after an analytical
youth, Newton came to see geometry as epistemologically superior to analysis. The
objects of the method were geometrical quantities generated by motion (fluents), a
fluxion being the velocity of a fluent’s generation, or flow. Moreover, after the famous

2 “Functio quantitatis variabilis, est expressio analytica quomodocunque composita ex illa quantitate vari-
abili, & numeris seu quantitatibus constantibus. […] Sic a + 3z; az − 4zz; az + b

√
(aa − zz); cz ; &c. sunt

Functiones ipsius z.” (Euler 1748, 4).
3 “Hic autem omnia ita intra Analyseos purae limites continentur, ut ne ulla quidem figura opus fuerit, ad
omnia huius calculi praecepta explicanda.” (Euler 1755, xx).
4 On Bézout, see (Alfonsi 2011); on the adoption of several of Bézout’s textbooks in Portugal, see (Saraiva
2015); and on Bézout’s calculus see, for example, (Blanco 2013; Lamandé 1988).
5 “[…] F , F ′, &c., T denoting quantities composed as one may wish of x , y and constants, which, to
abbreviate, are usually called functions of x , y and constants” (“[…] F , F ′, &c., T marquant des quantités
composées, comme on le voudra, de x , y & de constantes, ce que, pour abréger, on appelle des fonctions
de x , y & de constantes” (Bézout 1767, 78); cf. (Bézout 1774, 74)); that is, the word “function” appeared
only as an “abbreviation”, it did not correspond to a fundamental concept.
6 “Nous appellerons fonction d’une quantité, toute expression de calcul dans laquelle cette quantité entrera,
de quelque maniere qu’elle y entre d’ailleurs.” (Bézout 1767, 95); cf. (Bézout 1774, 98–99).
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Geometry and analysis in Anastácio da Cunha’s calculus 581

attack by Berkeley on the use of infinitely small quantities in 1734, most British
mathematicians adopted the stance that the method of fluxions was a generalization
of the ancient Greek geometers’ method of exhaustion (Guicciardini 1989, 47–51).7

The analytic perspective only gained ground in Britain in the 19th century.
It is a well-known fact that the word “analysis” has multiple meanings. It should

be made explicit that the important distinction in this text is that between analysis
and geometry, rather than that between analysis and synthesis. It is, in a sense, an
ontological distinction, rather than a methodological distinction: we are interested in
the nature of the fundamental objects of the calculus, not in how the presentation
of this subject is organized. We will see arguments that are ontologically analytical,
because they consist of manipulations of analytical expressions and do not appeal
to geometrical properties, but are methodologically synthetical, because they do not
show how a result can be obtained, only that it is true.

However, we should keep in mind that since the seventeenth century there was a
traditional association between the synthetic method and classical geometry, as the
paradigm of the synthetic method was Euclid’s Elements; while the word “analysis”
was often given as synonymous of “algebra”.

2 José Anastácio da Cunha, a heterodoxmathematician

José Anastácio da Cunha (1744–1787) was certainly the most original Portuguese
mathematician of the 18th century.8

Cunha was initially educated at the Oratorian college of his hometown, Lisbon,
where he studied elementary mathematics reading works by Andreas Tacquet, Tomás
Vicente Tosca, and Alexis Claude Clairaut (Rodrigues et al. 2013, 55–56). In 1764,
he joined the army and was stationed in the northern border town of Valença. There he
befriended several foreign officers who worked for the Portuguese army. Among these
were captain Richard Muller, son of John Muller, the first director of the Royal Mil-
itary Academy at Woolwich, and colonel James Ferrier, a Scotsman. These two gave
Cunha access to British scientific books, including Simpson’s Algebra and Newton’s
Arithmetica Universalis and Principia Mathematica (Rodrigues et al. 2013, 56–57).

In 1773, Cunhawas appointed professor at the newly founded Faculty ofMathemat-
ics of theUniversity of Coimbra—part of amajor reformation of the university ordered
by theMarquis of Pombal, the all-powerful primeminister whowas a reformer aligned
with the European enlightenment, but also a ruthless autocrat. In Coimbra Cunha had
access to advanced works of continental European mathematics; his friend and biog-
rapher José Maria de Sousa told a story of how Cunha borrowed Euler’s Integral
Calculus from his colleague José Monteiro da Rocha (1734–1819) to study it, and

7 Guicciardini addresses the rare exceptions to this in a chapter called “The analytic art (1755–85)” (1989,
82–91).
8 (Queiró 1988) is a very good introduction to José Anastácio da Cunha in English, but it is outdated in
some aspects, particularly because several manuscripts by or about Cunha have since been discovered. In
English, see also (Oliveira 1988) and (Domingues 2014). (Ferraz et al. 1990) and (Ralha et al. 2006, I)
contain important studies about Cunha, mostly in Portuguese but also, in the former case, a few in French
or English.
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later had to explain a particular passage in it to Monteiro da Rocha (Rodrigues et al.
2013, 62–63). There is an inventory of Cunha’s personal library in 1778, when it was
confiscated by the Inquisition, and it is possible to say that its mathematical section
was modest, when compared with the literary section: apart from some elementary
books, we find several works by Newton (eight volumes in total), d’Alembert’s Traité
de l’équilibre, Bossut’s Traité de hydrodynamique, and three unidentified works by
Euler bound in one volume (Giusti 1990, 35–37). But of course his readings were not
limited to the books he owned: besides borrowing books from Monteiro da Rocha, he
could use the University’s library.

Cunha’s position in the university only lasted 5 years, because a political turn in
the country (including the dismissal of Pombal) led to a persecution of free thinkers
by the Inquisition (which, although much weakened, still existed). Since Valença,
Cunha had had opinions and behaviours that were not in keeping with Roman Catholic
orthodoxy of the time. He read, and translated, authors such as Alexander Pope and
Voltaire (besides writing his own poetry, which was often also heterodox), and at
least neglected religious observance. He was arrested in July 1778 and found guilty
of heresy and apostasy.9

Cunha was detained in Lisbon, at the Oratorian house of Necessidades. This was
in the same building where the new Science Academy of Lisbon (Academia Real das
Sciencias de Lisboa, founded in 1779) was based. Although he was never admitted
into the Academy, the Oratorian priest Teodoro de Almeida, his friend and spiritual
director,was a foundingmember; thus,Cunha had close, albeit indirect contactwith the
Academy in its early years (Estrada et al. 2006). During this time, he kept working in
mathematics: he wrote a text entitled “Principios do Calculo Fluxionario” (“Principles
of fluxionary calculus”), which survives only in a fragmentary state, with the date
March 1780 (Cunha 2006b; Domingues et al. 2006).

Cunha was released in 1781, but forbidden from returning to Coimbra. He was
appointed director of studies of a school for poor boys in Lisbon, but apparently by
1785 he had lost that position too. In his final 2 or 3 years, he depended on friends, as
he was jobless and his health was frail (Rodrigues et al. 2013, 71–72). He died on the
1st January 1787.

In 1785–86, he was involved in two polemics with other mathematicians. The most
important one was with his former university colleague JoséMonteiro da Rocha.What
is left of it are three letters, two by Cunha and one by Monteiro da Rocha, which were
published in the 1890s in the journalO Instituto and reprinted in (Ferraz et al. 1990). In
particular, the first one (Cunha 1785), addressed to his friend João Manuel de Abreu,
but which appears to have circulated in manuscript copies, is an important source for
Cunha’s opinions on several issues in his final years. He was highly critical of how
mathematics was usually taught in Portugal and of the scientific level of the Science
Academy of Lisbon (where Monteiro da Rocha was the foremost mathematician). He
repeatedly praised Newton and d’Alembert,10 while presenting Monteiro da Rocha as

9 His file at the Inquisition has been published as (Ferro 1987).
10 This happens not only in (Cunha 1785) but also in other texts: for example, in an undated essay on the
principles of mechanics (Cunha 1807) and in one of the fragments comprising (Cunha 2006b).
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as an ardent follower of Euler,11 as if projecting d’Alembert’s rivalry with Euler on to
his own disagreements with Monteiro da Rocha.

Around 1782, a book by Cunha, entitled Principios Mathematicos (Mathematical
Principles), began being printed; according to João Manuel de Abreu, who later trans-
lated the book into French, as each section of the book was printed, it was used in the
college where he worked at the time (Cunha 1790, French transl., iii). But the printing
of the book was interrupted when Cunha lost his position. Only 3 years after his death
was it published (Cunha 1790).

(Cunha 1790) is a relatively short book (little over 300 pages) that tries to present
in a logical order the main branches of pure mathematics, from elementary geometry
to some calculus of variations. To cover so much ground, it is naturally an extremely
concise text. It also has a few peculiarities, both in the organization of the subjects
and in several definitions. As Grattan-Guinness (1990, 59) put it: “Impressive but odd,
powerful but cryptic, this book […] ‘interesting’, but too off-beat to gain the attention
that he deserved”.

A French translation of (Cunha 1790), by his friend João Manuel de Abreu, was
published in 1811 (and reissued in 1816) but it did not have much impact (Duarte and
Silva 1990; Domingues 2014).

In the late twentieth century Cunha’s book received some attention from historians
of mathematics, particularly for three originalities:

• in book 9 he defined “convergent series” as one that satisfies what would later be
called the Cauchy criterion, proceeding to actually prove the convergence of some
series using this definition12;

• also in book 9 he defined the power ab as 1+ bc + bbcc
2 + bbbccc

2×3 + &c., where c

is such that a = 1 + c + cc
2 + ccc

2×3 + &c. (i. e., ab is defined via the power series

for eb log(a)) covering rational, real and even complex exponents in the definition;
• in book 15 he defined “fluxion” in a way that has been described as corresponding
to the modern definition of differential.

Only the third will be directly relevant here. Although Cunha, naturally, used power
series in his calculus, he did not address their convergence in that context. As far as I
can tell, the word “convergent” does not appear after book 9.

Notice that all these originalities are related to the issue of how to (properly) define
particular concepts. Notice also that they are not merely descriptive definitions (as
often happened in the eighteenth century): they are actually used in proofs and in the
development of theories (albeit short theories, because of the concise nature of the
book).

Another posthumous publication (Cunha 1807), about the principles of mechanics,
should be mentioned. According to Cunha, the first principles of mechanics cannot
be proven mathematically (unlike what many authors tried to do in the eighteenth

11 By the end of his life, Monteiro da Rocha owned most of Euler’s books, and drew on his work about the
orbits of comets; but there is no evidence, apart from Cunha’s “accusation”, that Monteiro da Rocha was
more Eulerian than the average mathematician of his time (Domingues 2007, 97–100).
12 Unfortunately, the French translation is faulty in these passages, and the French version of this definition
contains a fallacy. On Cunha’s convergence of series, see (Queiró 1988, 40–41), (Oliveira 1988), and (Giusti
1990, 42–45).
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century). There are then two possibilities: in a physico-mathematical work these first
principles must be proven experimentally or come from observation of nature; in
a purely mathematical work they must be taken as axioms. In the latter case, the
author is, in theory, free to assume the laws of mechanics at will, even that light
propagates in a circular, rather than straight, line: “mathematical truth consists solely
in the legitimacy with which theorems and solutions of problems are derived from
definitions, postulates, and axioms”13. It is true that, to avoid being criticized for
lack of usefulness, the mathematician should take as axioms factual truths taught by
nature. But that theoretical freedomwas very unusual, to say the least, in the eighteenth
century.

3 Cunha’s fluxionary calculus: geometry or analysis?

It is possible to glimpse the evolution of José Anastácio da Cunha’s personal views
on the foundations of the calculus, but it is not possible to have a full picture.

In his essay on the principles of mechanics, whose date of composition is not
known, he spoke of ultimate ratios (Cunha 1807, 344–345) and used the dot notation
for fluxions.14 Thus, it seems that at some point Cunha was a canonical follower of
the Newtonian calculus of fluxions.15

A manuscript discovered in 2005 and published in (Ralha et al. 2006, II) bears the
title “Principles of the fluxionary calculus” and the date March 1780 (Cunha 2006b).
But it is only a copy, by someone else, of very incomplete fragments from at least two
different versions of Cunha’s work (Domingues et al. 2006, 265–266). In the first part
(the one actually dated 1780), Cunha gives a definition of fluxion very close to the
one that later appeared in (Cunha 1790),16 and uses the d notation; in another part, on
higher-order fluxions, he uses the dot notation; near the end, he refers to a definition of
limit (which is not extant) and says that “A is the limit of A + By +Cy2 + Dy3 +&c.
in regard to infinitesimal y”.17 The word “infinitesimal” should be understood in the
non-Leibnizian sense of a variable (not a magnitude) capable of assuming arbitrarily
small (but finite) values; this is the sense in which Cunha defined it in the first part of
the manuscript and later in (1790).18

Finally, it must be mentioned that João Manuel de Abreu reported that among the
manuscripts that Cunha had left, one had the title “Against the doctrine of prime and

13 “A verdade mathematica não consiste senão na legitimidade com que os theoremas, e as soluções dos
problemas se derivam das definições, postulados e axiomas” (Ferraz et al. 1990, 340).
14 The editor of the 1807 edition added footnotes with the Leibnizian d notation, and the editor of the 1856
edition used only the d notation; the editors of the 1990 edition copied the 1856 edition, but acknowledged
this issue (Ferraz et al. 1990, 315).
15 On Newtonian calculus, see (Guicciardini 1989, 2003, 74–85).
16 But with all verbs in the indicative, rather than subjunctive mood (see Sect. 5.4).
17 “A he o limite de A + By + Cy2 + Dy3 + &c. a respeito de y infinitessimo” (Cunha 2006b, 54–55).
18 On Cunha’s non-Leibnizian concept of infinitesimal, see (Domingues 2004, 23–26) and page 17 below.
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ultimate ratios of nascent and evanescent quantities”19. Neither the date nor the content
of this text are known. But in (Cunha 2006b, 50–51) he distanced himself from the
idea, used by Newton, of quantities being generated by motion, which would entail
the consideration of time in geometry.

All this suggests that Cunha’s opinionsmoved from a canonical Newtonian calculus
to a somewhat original take on d’Alembert’s proposal of using limits (not surpris-
ing, given that d’Alembert, according to himself, was following Newton), and later
developed into a more original version of the calculus, using a peculiar definition of
infinitesimal. The last one, the version that appeared in (Cunha 1790), is the only one
that survives in a form that we may call complete, and the only that will be considered
henceforth.

We will see that Cunha used the Leibnizian notation dx, d�x (and also
∫

dx �x)
in (1790), but he kept the Newtonian word “fluxion” (as well as “fluent”). In (2006b,
52–53), he had commented that those names might appear improper, but added that
“it matters little: in the definitions lies everything”20.

Cunha’s definition of fluxion is the following:

“Some magnitude having been chosen, homogeneous to an argument x , to be
called fluxion of that argument, and denoted by dx ; we will call fluxion of
�x , and will denote by d�x , the magnitude that would make d�x

dx constant and
�(x+dx)−�x

dx − d�x
dx infinitesimal or zero, if dx were infinitesimal and all that

does not depend on dx constant.”21

Speaking of this definition, Youschkevitch (1973, 19) said that “it was Cunha who,
for the first time, formulated a rigorous analytical definition of the differential, taken
up again and used later by the mathematicians of the nineteenth century”22. Mawhin
(1990, 100) was more specific, saying that it “corresponds to the modern definition of
differential of f at x as a linear function h → Ah such that f (x + h)− f (x)− Ah =
h B(h) where B(h) → 0 when h → 0”23; that is, d�x is a linear function of dx
(since d�x

dx is constant) such that limdx→0
�(x+dx)−�(x)−d�x

dx = 0. Of course, this
“correspondence” must be taken with a grain of salt. Even apart from some linguistic
or conceptual differences (for instance, Cunha does not explicitly say that d�x is
a function of dx , even though he spoke of functions), his definition is not strictly
equivalent, in the mathematical sense, to the modern one, nor could it be without a
modern theory of real functions; among other details, and like all his contemporaries,

19 “Contra a doutrina das razoens primeiras e ultimas das quantidades nascentes e fenescentes” (Ferraz
et al. 1990, 355); also “Contre la méthode des premiers et derniers rapports des quantités naissantes et
évanouissantes de Newton” (Cunha 1790, Fr. transl., ii).
20 “isso pouco importa: nas definições está tudo”.
21 “Escolhida qualquer grandeza, homogénea a uma raiz x , para se chamar fluxão dessa raiz e denotada
assim dx ; chamar-se-á fluxão de �x , e se denotará assim d�x , a grandeza que faria d�x

dx constante e
�(x+dx)−�x

dx − d�x
dx infinitésimo ou cifra, se dx fosse infinitésimo e constante tudo o que não depende de

dx” (Cunha 1790, 194).
22 “C’est da Cunha qui a, pour la première fois, formulé une définition analytique rigoureuse de la dif-
férentielle, reprise et utilisée plus tard par les mathématiciens du XIXe siécle.”
23 “correspond […] á la définition moderne de différentielle de f en x comme fonction linéaire h → Ah
telle que f (x + h) − f (x) − Ah = h B(h) oú B(h) → 0 lorsque h → 0”.
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he assumed that all functions were differentiable, or considered only differentiable
functions.

A question that naturally arises is whether Cunha’s version of the calculus wasmore
geometrical or followed the analytical trend of the late eighteenth century. Historians
or mathematicians who have studied Cunha’s calculus have focused mostly on how
rigourous it was, and have not really addressed this question. We will take a brief look
at a couple of passing remarks, by Youschkevitch and Gomes Teixeira, that apparently
point in opposite directions, simply to show that the classification of Cunha’s calculus
as geometrical or analytical is not immediate.

On one hand, Youschkevitch, as quoted above, explicitly stated that “Cunha […]
formulated a rigorous analytical definition of the differential”. It is far from straight-
forward that in this sentence the word “analytical” is particularly meaningful or used
in a sense similar to the one described in section 1; however, it should be remarked that
Youschkevitch immediately pointed out that “a precise definition of the differential
had already been given, under a geometrical form, by Leibniz”24 (but also that this
precise geometrical definition by Leibniz, dependent on subtangents, was useless for
calculations).

On the other hand, Gomes Teixeira25, although praising the rigour of Cunha’s
fluxionary calculus, included too large a role for geometrical intuition as one of its
few flaws:

“It would suffice to introduce in the exposition the word limit, which Anastácio
da Cunha, bound to the Greek tradition, did not want to employ, to make explicit
some conditions included in proofs, and to give a less intense role to geometrical
intuition, in order to reduce our geometer’s doctrine to the modern form.”26

Cunha’s personal opinions aboutNewton andEuler seem to suggest that he favoured
geometry over analysis (speaking of general approaches to mathematics, not limited
to the calculus). Cunha repeatedly expressed his admiration for Newton, while he
disliked Euler, and in particular Euler’s faith in analysis. In a letter included in the
polemic against Monteiro da Rocha (see page 5 above), he wrote, right after praising
d’Alembert:

“But in Coimbra c’est tout une autre chose [it is completely different] Newton,
d’Alembert,ne sont que de petits génies [are only little geniuses]. Euler is the only
god of mathematics, and Monteiro [da Rocha] his prophet. And which author
could our masters, nos sages maîtres [our wise masters], find more suitable to
the characters and interests but the one who established implicit faith in matters
of mathematics? I do not know if I have ever told you that this author, when

24 “une définition exacte de la différentielle avait déjá été donnée, sous une forme géométrique, par Leibniz”
(Youschkevitch 1973, 19).
25 Francisco Gomes Teixeira (1851–1933) was, by far, the foremost Portuguese mathematician of his
time. An analyst at first, he then turned his attention to geometry and, in his later years, to the history of
mathematics in Portugal. His History of Mathematics in Portugal (1934) is, regrettably, still the most recent
general account of the subject; it is, naturally, quite dated.
26 “Bastaria introduzir na exposição a palavra limite, que Anastácio da Cunha, prêso á tradição grega, não
quis empregar, tornar explícitas algumas condições incluídas nas demonstrações e dar á intuïção geométrica
um papel menos intenso, para reduzir a doutrina do nosso geómetra á formamoderna.” (Teixeira 1934, 257).

123



Geometry and analysis in Anastácio da Cunha’s calculus 587

perplexed between manifest truths and Algebra, which contradicts them, would
close his eyes and cry out as a faithful algebraist: Quidquid sit, calculo potius,
quam judicio nostro, est fidendum! [Whatever the question, we should rely on
calculation, better than on our judgement!]”27

Some of Cunha’s philosophical opinions, which will be the subject of the next
section, also suggest, at first sight, a preference for geometry.

But, as we will see in later sections, things are not so simple. In a sense, both
Youschkevitch and Gomes Teixeira were right: Cunha’s calculus had an analytical
part and a geometrical part. And Euler was probably a bigger influence than Cunha
himself would like to admit.28

4 Cunha’s mathematical ontology

One of themost marked characteristics in José Anastácio da Cunha’sPrincipios Math-
ematicos is the near absence of commentaries or explanatory notes. A consequence is
that no motivation is presented there for the frequently unusual and sometimes truly
original paths that the text follows.

However, Cunha also left several shorter manuscripts on particular mathematical
topics, and in those texts he did include several methodological and philosophical
reflexions, often very critical of the ways in which several mathematical topics were
usually developed in the eighteenth century.

Based on one of the few of those texts then known (his essay on the principles of
mechanics, alreadymentioned), Norberto Ferreira daCunha noted in (2001)Anastácio
da Cunha’s nominalistic, or anti-essentialist, stance: he rejected the real existence of
universals (abstract ideas).29 But one of the most clear passages in this respect can be

27 “Mas em Coimbra c’est tout une autre chose Newton, d’Alembert, ne sont que de petits génies. Euler é o
único Deus da Mathematica, e Monteiro o seu propheta. E que auctor podiam os nossos mestres, nos sages
maîtres, achar mais acommodado aos characteres e interesses senão o que instituiu a fé implícita em pontos
de Mathematica? Não sei se algum dia lhe contei, que este auctor, quando se via perplexo entre verdades
manifestas, e a Algebra, que as contradiz, fechava os olhos, e exclamava como fiel algebrista: Quidquid sit,
calculo potius, quam judicio nostro, est fidendum!” (Cunha 1785, 367) A sentence very close to the last one
(“Quicquid autem sit hic calculo potius, quam nostro iudicio est fidendum”) occurs in (Euler 1736, I, 108),
in a discussion of a body under a force of attraction inversely proportional to the distance: this body reaches
the centre of attraction with infinite speed but, contrary to what common judgement would imagine, does
not go beyond it, because if it did its speed would become imaginary. However, the possibility should not
be excluded that Cunha knew this sentence from a satyrical pamphlet by Voltaire, part of a polemic against
Maupertuis, who was supported by Euler: a supposed “peace treatise” where Euler begged forgiveness to
all logicians for having written such a sentence (Voltaire 1877–1885, XXIII, 578).
28 A similar conclusion was drawn already by Giusti (1990, 39), not about the calculus but about (Cunha
1790) at large.
29 The word “essentialism” was proposed by Popper (1944, 94) to refer to the belief in the actual existence
of universals (or essences); the traditional term is “realism”, but “essentialism” has gained some ground
in the last decades. “Nominalism” is the traditional name for the view that universals are merely names.
Popper’s example is the following: “The universal term ‘white’, for instance, seemed to [the nominalists]
to be nothing but a label attached to a set of many different things, snowflakes, table-cloths, and swans, for
instance. […] Essentialists deny that we first collect a group of single things and then label them ‘white’;
rather, they say, we call each single white thing ‘white’ on account of a certain intrinsic property that they
have in common—their ‘whiteness’” (Popper 1944, 94).
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found in another text, discovered only in 2005, a prologue for a presentation of the
principles of geometry30:

“[there is no reason to] seriously consider, analyse and combine beings of rea-
son, mere Aristotelian substantial forms, such as would be, in the literal sense of
almost every author, point, line, surface, angle, ratio between two magnitudes,
incomparable indivisibles, infinitely large and infinitely small [quantities], flux-
ions, prime and ultimate ratios, velocity, momentum, force, action, reaction,
collision, attraction, repulsion. It is not usually noticed that such words are but
descriptions of phenomena, abbreviations of phrases, of arguments, sometimes
intricate and even unfeasible; and this negligence together with the unprofitable
mistake or imprudence of taking them for names of substances, such as are e. g.
the words man, tree, flower, Sun, stars, etc. has been an extremely plentiful
source of logomachies and relevant errors”.31

Cunha’s concern with proper definitions (pages 6-7 above) was, at least in part, a
consequence of his nominalism. For most mathematicians of the 18th century, defini-
tions were merely descriptions of mathematical objects that were assumed to exist a
priori; they were intended to convey the general meaning of a word, but did not need
to exhaust that meaning [Ferraro 1999, 103–104; Petrie 2012, 282–285]. Not so for
the nominalist Cunha: for instance, in a manuscript (in English) on logarithms and
powers, he complained of authors who

“employ sophistry to prove what the narrowness of their definition renders not
only incapable of demonstration, but even unintelligible. They define the power
of a number to be what is form’d by its continual multiplication. Admit this, and

then I will ask you what does a
1
2 or a

1
3 signify?” (Cunha 1778, 58).32

For Cunha, the word “power”, or the symbol ab, could mean only what its definition
said it meant; hence he sought to define power, in (Cunha 1778) and in (Cunha 1790,
108–109), in ways not limited to integer exponents.33 We have seen in page 9 that

30 Those principles of geometry were probably an early version of the first few “books” of (Cunha 1790).
31 “[Não há razão para] seriamente contemplar, analysar e combinar entes de razão, meras formas substan-
ciaes, aristotelicas, quaes seriam no sentido literal de quasi todos os Autores o ponto, a linha, a superficie,
o angulo, a razão de duas grandezas, os indivisiveis incomparaveis, infinitamente grandes, e infinita-
mente pequenos, fluxões, razões, primeiras e ultimas, velocidade, quantidade de movimento, força, acção,
reacção, percussão, attracção, repulsão. Geralmente n[ão] se custuma reparar que semelhantes palavras
não são senão [des]cripções de phenomenos, abreviaçoens de frases, de discursos, as vezes, entrincados, e
athe impraticaveis: e esta incuria junta com a mal succedida equivocação ou temeridade de as tomar por
nomes de substancias, como o são v.g. as palavras homem, arvore, flor, Sol, Estrellas, &c. tem sido um
manancial copiosissimo he Logomachias, e de relevantes erros” (Cunha 2006a, II, 6–7)
32 Although not using the word “definition”, Euler opens the chapter on powers of his Elements of Algebra
stating that “When a number is multiplied several times by itself, the product is called a power” (“Wann eine
Zahl mehrmalen mit sich selbsten multiplicirt wird, so wird das Product eine […] Potenz […] genennet”

(Euler 1770, I, 99)). Later, he concludes that a0 = 1, a−1 = 1
a , a

1
2 = √

a, and so on (Euler 1770, I,
104–105, 116–117).
33 There is more to these attempts than a philosophical standpoint on definitions: Cunha also wished to
present a proper proof of the binomial theorem.
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when discussing the appropriateness of the names “fluent and fluxion”, he concluded
that “it matters little: in the definitions lies everything”.

Another, but related, aspect of Cunha’s ontology is his physicalism. In the same
prologue to the principles of geometry, following a quotation from Newton, Cunha
concludes that “thus, in the opinion of Sir Isaac, geometry is properly a part of physics.
And in truth I do not know what else it might be”34. Accordingly, Cunha defined the
simpler objects of geometry (points, lines, surfaces) as “bodies”: for instance, the first
definition in Cunha (1790) reads

“The Body, whose length is such that no remarkable error comes from disre-
garding it, is called Point”35.

More complex objects (for instance, fluxion or velocity) are just names, words that
abbreviate more intricate phrases.36

Anti-essentialism, nominalism, or physicalism are not, of course, originalities of
Cunha (although we will see that he drew some original consequences from his nom-
inalism). David Sepkoski (2005) identified nominalist and physicalist conceptions in
Barrow and Newton (and, as had been said, Newton was one of Cunha’s mathematical
heroes).

It is important to notice that the anti-essentialism of Barrow and Newton is asso-
ciated to their preference for geometry over algebra. Analytic/algebraic methods and
concepts, being more abstract, would be more palatable to mathematicians with essen-
tialist stances. Giovanni Ferraro, in a paper on “analytical symbols and geometrical
figures in eighteenth-century calculus” (2001), used Aristotelian references to inter-
pret the analytical definitions of variable, in particular those of Euler and Lagrange.
While for authors of geometrical versions of the calculus, a variable was literally
a (geometrical) quantity that varied, increasing or decreasing, for the great analysts
Euler and Lagrange, a variable was “an indeterminate or universal quantity” (Euler)
or an “abstract quantity” (Lagrange); being “generated from particular geometrical
quantities by means of a process of abstraction […] the notion of a variable concerned
the essence of quantity” (Ferraro 2001, 541) (emphasis in the original).

Actually, Cunha’s definition of variable may have have been inspired by Euler’s,
but with a crucial nominalistic twist: for Euler, to quote in full, “a variable quantity
is an indeterminate or universal quantity, which comprises in itself absolutely all
determinate values”37; for Cunha, “if an expression can assume more than one value,
while another can assume only one, the latter will be called constant, and the former

34 “Hé pois propriamente a geometria na opinião de Sir Isaac huma parte da physica. E na verdade, não
sei que outra cousa possa ser […]” (Cunha 2006a, 6–7).
35 “O Corpo, cujo comprimento he tal, que de se naõ attender a elle, naõ resulta erro notavel, chama-se
Ponto” (Cunha 1790, 1).
36 This distinction made here between simpler and more complex objects is somewhat artificial: “point”
is also an abbreviation, for the more intricate phrase “body whose length is such, that no remarkable error
comes from disregarding it”.
37 “Quantitas variabilis est quantitas indeterminata seu universalis, quae omnes omnino valores determi-
natos in se complectitur” (Euler 1748, I, 4).
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variable”38 — that is, Cunha’s variable is an expression (rather than a quantity) that
can assume, if not all values like Euler’s, at least several.

Cunha’s definition seems more distant from the traditional geometrically-inspired
definitions (quantities that vary), of which he was very critical (notice the opposition
between the explanation by “common authors”, which allegedly results in a contra-
diction, and the understanding of “the geometer”, i. e. a proper mathematician):

“Common authors [say] that, e. g. in a given circle, the diameter is constant
and the chord is variable; and [the reader] understands that the same magnitude
is now the chord of 10° then of 11° etc.; that is, one magnitude is and is not
the same. — The geometer understands by variability only what consists in the
possibility of denoting several magnitudes by a single expression.”39

5 The algebraic and the geometrical branches in Cunha’s calculus

The question of whether Cunha’s calculus was more geometrical or more analyti-
cal received an answer over 200 years ago, from João Manuel de Abreu, a friend of
Cunha’s and the translator of (Cunha 1790) into French. He was not trying to answer
this question. A review of the French edition of (Cunha 1790) had appeared in the
Edinburgh Review (anonymously but almost certainly by the Scottish mathematician
John Playfair) (Domingues 2014, 37–38). This review was globally positive, but crit-
icised several aspects of Cunha’s book. Abreu published a reply (but in Portuguese,
in a Portuguese periodical published in London) (Abreu 1813–1814).40 In that reply,
addressing Playfair’s criticism that Cunha’s definition of fluxion was “very difficult to
be understood”, Abreu stated that

“[Anastácio da Cunha] divided his theory of fluxions into two branches, an
algebraic one, composed of proposition 1 of book 15, and of all propositions
that depend on it; and a geometrical one, whose first proposition is Archimedes’
axiom, and which is composed of propositions 13, 14, 15, 17, and 18, of book
15, and 39, 40, 41, of book 16, &c. In the first, algebraic, branch he followed his
ordinary method, always resorting to the fundamental definition, or to theorems
deduced from it; in the second, geometrical, branch, he adopted the ancients’
method of proof, commonly called of exhaustion. Now, definition 4 of book
15 is common to both; thus, it must be more complex, and consequently less
intelligible than any definition of fluxion that comprehends but one of the two
branches.”41

38 “Se huma expressaõ admittir mais de hum valor, quando outra expressaõ admitte hum só, chamarse-ha
esta constante, e aquella variavel” (Cunha 1790, 193).
39 “Os autores vulgares [dizem] que, v. g. em hum circulo dado, o diametro hé constante e a corda variavel;
e fica entendendo que huma mesma grandeza hé ora corda de 10° ora de 11° &c.a; isto hé, que huma mesma
grandeza hé e não hé a mesma. — O geometra não entende por variabilidade se não o que consiste na
possibilidade de notar com huma so expressão grandezas diversas.” (Cunha 2006b, 54–55).
40 Playfair’s review and Abreu’s reply were reprinted as appendices in (Ferraz et al. 1990).
41 “[Anastácio da Cunha] dividio a sua theorica das fluxoens em dous ramos, hum algebraico, que se
compoem da proposiçaõ 1 do livro 15, e de todas as que della dependem; outro geometrico, cuja proposiçaõ

123



Geometry and analysis in Anastácio da Cunha’s calculus 591

These “branches” do not reflect the formal organization of (Cunha 1790), nor are
they ever mentioned in Cunha’s known writings. Rather, they reflect Abreu’s classifi-
cation of those propositions, a classification made about 25 years after Cunha’s death.
But it is a classification that makes sense: as we will see, the “algebraic” branch is
composed of purely analytical propositions (and will often be called in the following
“analytical”, rather than “algebraic”), while geometrical objects and arguments appear
in the geometrical branch. This classification even seems to reflect, if we restrict our-
selves to book 15, a subtle difference in language, namely in some verb moods (see
Sect. 5.4).

5.1 The algebraic/analytical branch in book 15

(Cunha 1790) is organized in chapters called “books”, following the Euclidean model.
Book 15 is dedicated to the calculus, starting with fundamental definitions. We have
seen that, according to João Manuel de Abreu, definition 4, of fluxion, is common to
both the algebraic (analytical) and the geometrical branches. How can we classify the
other definitions in book 15?

We have already seen definition 1, of constant and variable (pages 14–15 above).
Its classification is not straightforward. It is not a typical analytical definition (vari-
able as an universal or abstract quantity), but it is even more distant from traditional
geometrical traditions (quantities that vary). It may be a nominalistic adaptation of
Euler’s analytical definition.42

A similar difficulty occurs with definition 2:

“A variable always capable of assuming a value greater than any proposed mag-
nitude will be called infinite; and a variable always capable of assuming a value
smaller than any proposed magnitude will be called infinitesimal.”43

Throughout the eighteenth century there were plenty of discussions about the nature of
infinite and infinitesimal quantities, and whether they actually existed or instead some-
thing like limits was more advisable. This definition by Cunha, which must be read in
conjunction with his definition 1, does not correspond to any of the common solutions
of the period: it introduces infinitesimals, but as variables and hence expressions, not
quantities.44

Footnote 41 continued
primeira he o axioma de Archimedes, e que se compoem das proposiçoens 13, 14, 15, 17, e 18, liv. 15, e
39, 40, 41, liv. 16, &c. No primeiro ramo algebraico seguio o seu methodo ordinario, recorrendo sempre á
definiçaõ fundamental, ou á theoremas deduzidos della; no segundo ramo Geometrico adoptou o methodo
de demonstraçaõ dos antigos, chamado vulgarmente d’exhaustaõ. Ora a definiçaõ 4, liv. 15, he comum a
ambos; logo deve ser mais complicada, e por consequencia menos intelligivel que qualquer definiçaõ de
fluxaõ, que naõ comprehenda senaõ hum dos dous ramos.” (Abreu 1813–1814, 451–452)
42 On definitions 1 and 2, in their eighteenth-century context, see also (Domingues 2004).
43 “A variavel que podér sempre admittir valor maior que qualquer grandeza que se proponha chamarse-
ha infinita; e a variavel que podér sempre admittir valor menor que qualquer grandeza que se proponha,
chamarse-ha infinitessima.” (Cunha 1790, 193).
44 It is obvious that Cunha’s infinites and infinitesimals are potential, rather than actual. This is consistent
with all that we know about Cunha (“the attitude of considering only potential infinites and infinitesimals
permeates all the Principios” (Queiró 1988, 41)). But there is more here than the classical opposition
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Like definition 1, definition 2 may best be classified as nominalistic. Notice that
neither of them introduces new ontological categories, but only names for certain types
of expressions. However, being about expressions, they are in a sense (albeit not the
traditional one) in an analytical domain.

Definition 3 reinforces the analytical course: “If the value of an expression A
depends on another expression B, A will be called function of B”45. It is signifi-
cant that “function” is defined so early in Cunha’s calculus, suggesting that this is a
central object here, as it was in Euler’s; and indeed it is.

This is followed by definition 4, of fluxion, two definitions (of fluent as antideriva-
tive, and of higher order fluxions) that are not important for our purpose, some remarks
on notation, and then propositions.

According to Abreu, propositions 1 to 12 are part of the algebraic branch. Indeed, in
these propositions, Cunha presents fundamental results of the differential calculus in
a purely analytical context, without any geometrical concepts or arguments. A simple
example of the typical format of these propositions is proposition 2, to the effect that
d(xn) = nxn−1dx . Proposition 1 had established that a polynomial in an infinitesimal
variable is itself infinitesimal; this is now used to verify that nxn−1dx satisfies the
conditions in the definition of fluxion (page 9 above):

“dx infinitesimal andwhat does not dependondx constantmake nxn−1dx
dx

(= nxn−1
)

constant and (x+dx)n−xn

dx − nxn−1dx
dx

( = n n−1
2 xn−2dx + n n−1

2 × n−2
3 xn−3dx2 +

&c.
)
infinitesimal.”46

Another example, whose analytical character is very obvious, is proposition 8,
where the fluxion of the logarithm is obtained differentiating term by term the series
of the exponential:

“Let x stand for any number and l indicate hyperbolic logarithms: then dx =
xdlx .
For dx = d

(
1 + lx + 1

2 (lx)2 + 1
6 (lx)3 + 1

24 (lx)4 + 1
120 (lx)5 + &c.

) = dlx +
2
2 (lx)dlx + 3

6 (lx)2dlx + 4
24 (lx)3dlx + 5

120 (lx)4dlx +&c. = (
1+ lx + 1

2 (lx2)
+ 1

6 (lx)3 + 1
24 (lx)4 + &c.

)
dlx = xdlx .”47

In this case Bézout (1774, 23–26) is not explicitly geometrical, but neither really
analytical: the result equivalent to this is obtained going back to the definition of loga-

Footnote 44 continued
between potential and actual infinities: in Cunha’s time, the usual route for those who rejected the actual
infinite was to follow the method of limits, as proposed by d’Alembert in the Encyclopédie (Domingues
2008, 57–59); Cunha apparently at some point used limits (see page 8), but later changed paths.
45 “Se o valor de huma expressaõ A depender de outra expressaõ B, chamarse-ha A funcçaõ de B” (Cunha
1790, 193).
46 “dx infinitessimo, e o que de dx naõ depende, constante, fazem nxn−1dx

dx

[
= nxn−1

]
constante e

(x+dx)n−xn

dx − nxn−1dx
dx [= n n−2

2 xn−2dx + n n−1
2 × n−2

3 xn−3dx2 + &c.] infinitessimo.” (Cunha 1790,
195).
47 “Represente x qualquer numero e indique l logarithmos hyperbolicos: será dx = xdlx . Pois he dx =
d
(
1+lx + 1

2 (lx)2+ 1
6 (lx)3+ 1

24 (lx)4+ 1
120 (lx)5+&c.

) = dlx + 2
2 (lx)dlx + 3

6 (lx)2dlx + 4
24 (lx)3dlx +

5
120 (lx)4dlx + &c. = (

1 + lx + 1
2 (lx2) + 1

6 (lx)3 + 1
24 (lx)4 + &c.

)
dlx = xdlx .” (Cunha 1790, 196).
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Fig. 1 Diagram for propositions
13 and 14 of book 15 of (Cunha
1790)

rithms as terms in an arithmetical progression in a correspondence with a geometrical
progression, establishing the relation ma(y′−y)

y = x ′ − x between consecutive terms

in these progressions48 and then imagining the differences y′ − y and x ′ − x infinitely
small. Other authors from this period are more directly geometrical: (Cousin 1777,
29–30) uses the logarithmic curve (defined by the property that, if the abscissas are
in arithmetical progression, then the ordinates are in geometrical progression); while
(Saladini 1775, II, 44–47) uses the characterization of the logarithm as the area under
a hyperbola.

5.2 The geometrical branch in book 15

According to João Manuel de Abreu, the geometric branch starts in proposition 13,
whose enunciation reads:

“Let AB stand for the abscissa and BC for the ordinate corresponding to an
arbitrary arc AC of a regular curve AD (that is, of a curve whose ordinate
is a function of the abscissa); let any other ordinate DE be drawn and the
parallelogram B F be completed: if B E is fluxion of AB, B F will be fluxion of
the area AC B.”49

There is here a surprisingly analytical detail: the explicit condition that the ordinate
be a function of the abscissa. However, the proof is geometrical: Cunha assumes that
the ordinate function is monotonic50 and trusts the diagram (Fig. 1; notice oblique
coordinates) to convince the reader that area C DF is contained in the parallelogram
with diagonal C D (not drawn):

48 a is the first term in the geometrical progression and m is the quotient between the difference between
the two first terms in the arithmetical progression and the difference between the two first terms in the
geometrical progression.
49 “Represente AB a abscissa, e BC a ordenada correspondentes ao arco qualquer AC de huma curva
regular AD [isto he, de huma curva, cuja ordenada he funcçaõ da abscissa]; tire-se outra qualquer ordenada
DE e complete-se o parallelogramo B F : se B E for fluxaõ de AB, será B F fluxaõ da area AC B.” (Cunha
1790, 200).
50 Or, at least, piecewise monotonic. In a proof included in a letter to João Manuel de Abreu, Cunha wrote:
“Let the ordinates always increase or always decrease from �0 to �x (for all cases may be reduced to this
one) […]” (“Cresçam sempre ou diminuam sempre as ordenadas desde �0 até �x (pois a este caso de
podem reduzir todos) […]” (Ferraz et al. 1990, 363)).
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“ B F
B E will be the perpendicular drawn from point C to line B E , produced if need

be; let B F
B E + π be the perpendicular drawn from point D to the same line AE ;

then C DF
B E < π . AB constant and B E infinitesimal would make BC constant,

B F
B E constant, π infinitesimal and the area C DF infinitesimal; and therefore B F

B E
constant and ADE−AC B

B E − B F
B E (= BC DE

B E − B F
B E = C DF

B E < π ) infinitesimal.
Therefore if B E is fluxion of AB, B F will be fluxion of the area AC B.”51

( B F
B E , that is, the area of parallelogram B F divided by the length of base B E , is the

height of parallelogram B F ; Cunha assumes that the curved region C DF is contained
in the parallelogram C D, so that the area of that region divided by the length of base
B E = C F is less than the height π of parallelogram C D; it remains only to verify
the conditions of the definition of fluxion — page 9 above)

A modern reader might be tempted to see in this proposition a version of the
(first) fundamental theorem of the calculus.52 However, as was usual in the eighteenth
century, for Cunha the definite integral was not a central concept: it has already been
observed that “fluent” is defined as an antiderivative (“every magnitude is called fluent
of its fluxion”53). Therefore, proposition 13 is only the first geometrical application of
the fluxionary calculus, equivalent to deriving the area under the graph of a function.

The remainingpropositions in the geometrical branchof book15 are yet geometrical
applications of the calculus: the characteristic triangle, with the tangent to the curve
and the fluxion of the arc; and the fluxion of the volume of a solid.

5.3 The following books of PrincipiosMathematicos

Book16 is dedicated to trigonometry. The initial approach is geometrical, sine, tangent,
etc. being defined as lines. Cunha even waits thirteen pages (and 28 propositions) until
he assumes the radius of the circle to be 1; thus, his versions of the basic trigonometric
formulasmust take the radius in account (for instance, sin(ζ +z) = sin ζ cos z+cos ζ sin z

r ).
This is partly due to some peculiarities in the organization of the subject. Euler had
given in [1748, I, 93–107; 1755, 164–177] a purely analytical calculus of trigonometric
functions, but he had done so assuming the reader to already know the basic formu-
las of trigonometry (for example, sin.(y + z) = sin.y.cos.z + cos.y.sin.z (Euler
1748, I, 94)), presumably from more elementary books, that certainly used geomet-
rical arguments. Cunha could have done something similar, presenting a geometrical
version of elementary trigonometry in an earlier book of (1790) and then, after book

51 “ B F
B E será a perpendicular conduzida do ponto C á recta B E , produzida se necessario for; seja B F

B E +π a

perpendicular conduzida do ponto D á mesma recta AE ; será C DF
B E < π . AB constante e B E infinitessima

fariam BC constante, B F
B E constante, π infinitessima e a área C DF infinitessima; e logo B F

B E constante, e
ADE−AC B

B E − B F
B E [= BC DE

B E − B F
B E = C DF

B E < π ] infinitessimo. Logo se for B E fluxaõ de AB, será B F
fluxaõ da area AC B.” (Cunha 1790, 200–201).
52 This theoremwas fundamental in the creation of the calculus, but by themiddle of the eighteenth century,
with the integral seen almost always as an antiderivative, it had become only a geometrical application of
the calculus—for instance, in (Bézout 1767, 111–113). It is absent from (Euler 1768–1770), because this
treatise does not include geometrical applications. It became fundamental again in the 19th century, when
the definite integral became a fundamental concept.
53 “Toda a grandeza se chama fluente da sua fluxaõ […]” (Cunha 1790, 194).
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15, developing the fluxionary calculus of trigonometric functions in an analytical way.
Instead, in his very economical style, he concentrated all of trigonometry in book
16, organizing it in a peculiar order: it practically starts with the fluxion of the sine
(r d sen z = dz cos z), demonstrated with a geometrical argument and invoking propo-
sition 14 of book 15 (part of the geometrical branch); from there, he derives the power
series for the sine and cosine, and it is from these that comes the formula for the sine
of the sum of two arcs. In spite of frequent use of analytical arguments such as this,
book 16 must be classified as geometrical, because the basic definitions and some
fundamental arguments are geometrical.

In book 17, we find topics of elementary differential geometry of curves: multiple
points, asymptotes, radius of curvature. Naturally, it is geometrical.

The next three books, however, are purely analytical. In book 18, we find several
techniques of integration (such as partial fraction decomposition), and L’Hôpital’s
rule, which is proven using Taylor series expansions of the numerator and of the
denominator. Book 19 deals with differential equations, in a purely analytical way,
including Euler’s solution for linear differential equations with constant coefficients
(Baroni 2001, 34–35). Book 20 deals with the calculus of finite differences.

Book 21, the last one, is a case apart. It is a miscellany, probably compiled from
several short manuscripts left by Cunha on diverse topics, by whoever arranged for
the final publication of (Cunha 1790). It was almost certainly not revised by Cunha.
It is here that we see what is possibly the only case in (Cunha 1790) of a fundamental
proposition of the calculus that, not being about a geometrical object, resorts to a
geometrical reasoning; but the argument is so vague that it is not clear whether it is
geometrical. The proposition in question is proposition 12: “To find the maximum
value of a given function �x”54. Cunha just: 1 - states that “the fluxions of any two
values of �x that are each on each side of the maximum, will be opposite [i. e., will
have opposite signs]”,55, but does not explain why (the relationship between the sign
of the fluxion and the increasing or decreasing property of the function is not explained
before), and 2 - invokes a scholium from book 17 according to which “experience has
shown geometers that any variable whose values have infinitesimal differences, when
passing from positive to negative becomes equal either to 0 or to 1

0”
56—a version of

the intermediate value property, grounded on experience, for lack of a proof.

5.4 A linguistic distinction between the two branches

Let us recall Cunha’s definition of fluxion:

“Some magnitude having been chosen, homogeneous to an argument x , to be
called fluxion of that argument, and denoted by dx ; we will call fluxion of
�x , and will denote by d�x , the magnitude that would make d�x

dx constant and

54 “Achar o maximo valor de huma funcçaõ proposta �x” (Cunha 1790, 294).
55 “As fluxoens de quaesquer dois valores de �x , que estaõ hum de huma parte, outro de outra do maximo,
seraõ contrarias”.
56 “A experiencia tem mostrado aos Geometras, que toda a variavel, entre cujos valores ha differenças
infinitessimas, ao passar de positiva para negativa, se acha igual, ou a 0, ou a 1

0 .” (Cunha 1790, 247).
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�(x+dx)−�x
dx − d�x

dx infinitesimal or zero, if dx were infinitesimal and all that
does not depend on dx constant.”

Are Cunha’s fluxions infinitesimal, using this word in the sense of definition 2 (p. 17
above)? The counterfactual clause “if dx were infinitesimal” suggests that dx is not.
Furthemore, if fluxions were infinitesimal, according to definition 2 they would be
variables, that is, expressions that can assume multiple values; while the definition of
fluxion says explicitly that a fluxion is a magnitude—thus, presumably, having only
one value. See the quotation in pages 14–15 above, which shows his reservations about
talking of variable geometrical magnitudes.

Yet, going beyond the definition and looking at the language used in propositions
of book 15, we see a clear distinction in this respect between the analytical branch and
the geometrical branch, and in the former fluxions seem to actually be infinitesimal.

In fact, in the analytical branch, Cunha systematically uses phrases like “dx
infinitesimal and what does not depend on dx constant make […] nxn−1 constant
and (x+dx)n−xn

dx − nxn−1dx
dx […] infinitesimal” (prop. 2, quoted above; my emphasis),

using the indicative mood, which indicates that fluxions are infinitesimal.
On the other hand, in the geometrical branch, at least in book 15, we find phrases

such as “AB constant and B E infinitesimal would make […] areaC DF infinitesimal”
(prop. 13, quoted above; my emphasis).57 In the geometrical branch of book 15,
fluxions are never said to actually be infinitesimal.

At first hand, this may seem inconsistent. However, in the analytical branch x ,
dx , �x , d�x ,…are expressions that stand for multiple magnitudes, so that they can
be infinitesimal in Cunha’s sense; apparently, this did not happen in the geometrical
branch, perhaps because he did not see the phrase “line B E” as representing several
segments.

An actual inconsistency in (Cunha 1790) is that from book 16 onwards these sub-
tleties of language disappear, and we find phrases stating that geometrical magnitudes
are infinitesimal. For instance, in book 16: “let AD be constant and DF infinitesimal;
B Em
DF will be infinitesimal”58. Maybe all this concern with language might be difficult
to maintain, and it was enforced only in book 15. Or, perhaps, Cunha’s death in 1787
prevented him from revising the text from book 16 onwards in order to introduce
subjunctives when speaking of magnitudes.

Still, it seems clear that in book 15 Cunha made an effort to use language consistent
with the following scheme:

• Speaking of geometrical magnitudes, their fluxions are magnitudes, homogeneous
to them, therefore not infinitesimal (although, in calculating them, one operates as
if they were infinitesimal);

• Speaking of expressions that may represent several magnitudes (that is, variables),
their fluxions are naturally also variables, and are indeed infinitesimal.

57 The French translation appears to be faithful in this respect. The passages quoted in these two paragraphs
are rendered as “dx infinitiéme, et ce qui ne dépend pas de dx constant, rendent […] nxn−1 constante et
(x+dx)n−xn

dx − nxn−1dx
dx […] infinitiéme” and “AB constante et B E infinitiéme rendroient […] l’aire

C DF infinitiéme” (Cunha 1790, Fr. tr., 198, 203), my emphases. Of course, the translator was the same
João Manuel de Abreu who wrote about the two branches.
58 “Seja AD constante, e DF infinitessima; será B Em

DF […] infinitessimo” (Cunha 1790, 222).

123



Geometry and analysis in Anastácio da Cunha’s calculus 597

In practical terms, this linguistic distinction is inconsequential, but it suggests that
Cunha actually distinguished in his mind between the two branches, and indicates
that, at a theoretical level, the geometrical branch took precedence—the definition of
fluxion is worded in the manner of the geometrical branch.

6 Final remarks

José Anastácio da Cunha’s personal and philosophical ideas, such as his dislike of
Euler and of Euler’s faith in algebra, his admiration for Newton, his preference for a
geometry grounded on physical bodies, his anti-essentialism, all suggest at first sight
that his version of the calculus should be geometrical, not in line with the analytical
trend of the late eighteenth century.

Also, an attentive reading of Cunha’s definition of fluxion brings out geometrically
inclined characteristics: fluxions are defined as magnitudes, and dx must be homoge-
neous to x (concern with homogeneity is a hallmark of geometrical thinking).

And yet, we see that he developed the fundamental propositions of his version of the
calculus in an analyticalway, thanks to an original, nominalistic, conception of variable
that allowed him to talk of functions and infinitesimals as mere expressions, not, as
he would put it, “beings of reason”. What Abreu called the “geometrical branch” and
what has been classified as geometrical in Sect. 5.3 are really geometrical applications,
not results that might instead be derived analytically.59

It is significant that Cunha felt that his definition of fluxion had to speak of mag-
nitudes and conform with homogeneity to accommodate geometrical objects. Unlike
Euler, he did not see variables as a more general kind of magnitude. But in practice,
apart from a convoluted definition, his calculus was mainly analytical; certainly more
analytical than the one adopted in the University of Coimbra (Bézout 1774).

Actually, the conclusion must be drawn (or reinforced) that, despite his dislike
of Euler, Cunha was heavily influenced by him. He was always very critical, but he
managed to reconcile his anti-essentialism with the analytical ways that were gaining
ground in his time.
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