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Abstract
In hisMetrica, Hero provides four procedures for finding the area of a circular segment
(with b the base of the segment and h its height): an Ancient method for when the
segment is smaller than a semicircle, (b+h)/2 · h; a Revision, (b+h)/2 · h+(b/2)2/14;
a quasi-Archimedean method (said to be inspired by the quadrature of the parabola)
for cases where b is more than triple h, 4/3(h · b/2); and a method of Subtraction
using the Revised method, for when it is larger than a semicircle. He gives superficial
arguments that the Ancient method presumes π � 3 and the Revision, π � 22/7. We
are left with many questions. How ancient is the Ancient? Why did anyone think it
worked?Why would anyone revise it in just this way? In addition, why did Hero think
the Revised method did not work when b > 3 h? I show that a fifth century BCE Uruk
tablet employs the Ancient method, but possibly with very strange consequences, and
that a Ptolemaic Egyptian papyrus that checks this method by comparing the area of
a circle calculated from the sum of a regular inscribed polygon and the areas of the
segments on its sides as determined by the Ancient method with the area of the circle
as calculated from its diameter correctly sees that the calculations do not quite gel in
the case of a triangle but do in the case of a square. Both traditions probably could
also calculate the area of a segment on an inscribed regular polygon by subtracting
the area of the polygon from the area of the circle and dividing by the number of sides
of the polygon. I then derive two theorems about pairs of segments, that the reviser
of the Ancient method should have known, that explain each method, why they work
when they do and do not when they do not, and which lead to a curious generalization
of the Revised method. Hero’s comment is right, but not for the reasons he gives. I
conclude with an exploration of Hero’s restrictions of the Revised method and Hero’s
two alternative methods.
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452 H. Mendell

1 Introduction

Hero of Alexandria in the Metrica,1 followed by the Heronian Geometrica and pre-
ceded by Columella in his De re rustica,2 preserves a method for calculating the area
of a circular segment that is remarkable in its accuracy and is likewise peculiar in the
very same matter. While we expect no justification of the method in the Geometrica
or in a work on agriculture, it is notable that while Hero goes to some effort to jus-
tify an alternative method, he does little to establish this method nor a more ancient
method on which it is based. It is also notable how modern commentators slide over
the basis for both methods as well, usually accepting the little Hero says. Hero adds
that the method only works well when the base of the segment is no more than three
times its height and then offers the alternative method which he does establish, but
which is much worse outside the limited case. This too is perplexing, as we shall see.
He concludes his discussion with a fourth method, by subtraction, for the case where
the height of the segment is greater than the radius. I shall start with a discussion of
Hero’s presentation in order to raise twelve questions about it. I do not pretend that
I can answer all twelve, but they are all worth posing, and most will get plausible
answers. I shall then use the appearance of the Ancient method, as I shall call it, in
the third century BCE Demotic Egyptian treatise assembled by Parker from P. Cairo
89127-30, 89137-43, a text with Babylonian background, to establish some basis for
why the rule might seem plausible even if it lacked a proof, although it was also
known to be imperfect. While I do not know how the Babylonian mathematicians
came to discover the ancient method nor how old it is, I will at least establish its use
in Uruk, via the late fifth century BCE tablet W 23291-x, and will give some grounds
for why it would be seen as plausible, although my analysis will also involve some
startling coincidences. I shall also make some observations about an algorithm in the
Old Babylonian tablet, BM 85194, and about the constants for polygons in the late Old

1 There are now three editions of theMetrica available, Schoene (1903), with a German translation, Bruins
(1964a), with an English translation (with only the Greek text in Bruins 1964b), and Acerbi and Vitrac
(2014), with a Fnrech translation, based on the single manuscript, Cod. Seraglio G.I. I (formerly Const.
Palat. Vet. 1), which Bruins (1964a) also reproduces in facsimile. I shall not attempt to diagnose the history
of the text, whether certain parts are intrusions. For convenience, I will assume that Hero composed the
Metrica sometime in the first or second century CE. SeeAcerbi andVitrac (2014, pp. 16–26) for a discussion
of the controversy and Masià (2015) for a more recent attack on one of the principal foundations for the
dating of Hero, a lunar eclipse of 62 CE, wounded perhaps but not moribund (Masià, for example, considers
it likely that Hero, Dioptrics 35, just happened to choose to display an instance, “let there have been found
an eclipse …,” chock full of very specific details, mostly completely unnecessary to his abstract argument).
It is unimportant to my argument when Hero lived, but if my argument is right, it is unlikely that he lived
in the second century or even the early first century BCE, at a time when the discovery of what I call the
Revised method was made. For he would have presented it better.
2 I put Columella before Hero for convenience and concede that this might be completely wrong. What is
important for my argument is that Columella does not use the Metrica, although his procedures are very
close to procedures presented in the Metrica. For example, in the case of the circular segment, he presents
for the case of the segment less than a semicircle what I will call the Revised method, but uses a value for
the height (5) and base (20) for which Hero recommends a different method. For a discussion of Columella
in the Latin metrical tradition, see Bertoni (2017). Of treatises in the Heronian corpus, it is generally agreed
that the Geometrica, De mensuris, and Stereometrica are largely composites and may be a good deal later
than Hero, although it is debatable how much they reflect work of Hero and how much just the metrical
tradition. See Acerbi and Vitrac (2014, pp. 429–507). A strong case could be made that all pre-medieval
discussions of the areas of segments are uninfluenced by theMetrica.
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Hero and the tradition of the circle segment 453

Babylonian tablet, Susa I (Bruins and Rutten 1961, text III). All this will be prelude
to the main part of our banquet, the explanation of Hero’s peculiar remarks about the
Ancient method and its revision, the Revised method, as I shall call it. I shall give
a demonstration of a theorem about adjacent segments on a rectangle inscribed in a
circle that explains very well why the Ancient method works as an approximation
if π � 3. This proof, which involves adding and subtracting rectangles in a square,
will only require material no more advanced than Elements I and will be designed to
be accessible to Babylonian style manipulation. I shall then prove a general theorem,
based on the first, for any value of π . This will show why the Revised method Hero
cites is required, presumes that π ≈ 3 1/7, and works when it does work. This will
also trivially allow for a generalization of the method for any approximation of π ,
should anyone care. The last step in my argument, albeit much less satisfactory, will
be to explain why Hero incorrectly marks the limitations of the method in favor of
the second method he uses, inspired by Archimedes’ quadrature of the parabola, as
well as to make some observations about his method of subtraction. Perhaps today,
these methods have all become historical curiosities, but even curiosities can earn
our respect and a careful explanation why they work when they work. In addition,
these methods really do work. At the very least, we shall be able to trace an important
and complex thread in the metrical tradition from Babylon to Hero, to show early
mathematicians’ awareness of the methods’ limitations and of their validity. Hero’s
presentation has seemed amess, enough so that some have questioned whether the text
could originally have been presented as we have it. Hero cannot dispense with any of
the three methods he advocates for measuring the area, unless he wishes to introduce
a discussion of chord tables. He avoids doing this in the Metrica, perhaps for good
reasons. But first, let me raise my puzzles by walking us through Hero’s account.

2 Hero’s account of four methods and the dozen questions they raise

We can, for practical purposes, distinguish three sorts of metrical practices in ancient
texts. Some are simply geometrically based, that is, they are simply applications of a
geometrical principle with numbers attached to lengths, areas, etc. Any error comes
from outside the stipulated procedure.3 Taking the area of a triangle as a multiple of
half a side and the height from that side or as the square root of the multiple of half the
perimeter and the difference between each side and half the perimeter only involves
errors from the measurement of the respective lines or in chosen approximations of
square roots. Even taking the area of a circle as a function of the square of the diameter,

3 Acerbi (2021, pp. 2–22) distinguishes three “codes” of Greek mathematics, Demonstrative, Procedural,
andAlgorithmic. TheDemonstrativeCode is the familiar style of Euclid’sElements, the Procedural provides
a general procedure verbally, without actual numbers (often in 1st person plural for actions) though often
followed by an instance in the Algorithmic style, and the Algorithmic (often in the 2nd person imperative
for actions) just provides the procedure as a paradigmatic instance with actual numbers. Although some late
Babylonian texts are in Procedural form, the Egyptian and Babylonian texts that I shall consider are very
close to the algorithmic style of Greek mathematics (indeed almost certainly its source). In my discussion,
I shall speak of algorithms as paradigmatic procedures with actual numbers that the reader is to adapt, but
will use ‘procedure’ as a general term for procedures given in Procedural form and for algorithms. When
speaking of a text employing the Procedural Code, I shall speak, as here, of ‘procedural form’.
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454 H. Mendell

in effect times a given parameter, 3/4 or (8/9)
2, might be seen in this light, except that

we have no idea how the respective procedures in Babylon or Egypt were arrived at.
However, with the proof of Euclid, Elements xii 2, it is easily inferable that each circle
has the same ratio in power to its diameter. With Archimedes, Dimensio Circuli 1,
one can just take the area as the multiple of half the radius times the circumference,
however, that may be determined.

The second group requires the procedure be based in an approximating series, i.e.,
a progressive approximation. This is typically the case for square roots in older texts,
but is characteristic especially of Archimedean texts. Here, one has a procedure of
approximation, typically by approaching fromupper and/or lower bounds.An example
might be the anthyphairetic procedure for getting at the ratio of diagonal to side of
a square by building a series of pairs (1,1) → (3,2) · · · → (pm, qm) → (pm +
2qm, pm + qm). As Plato seems to hint in Republic VII, the square of the first number
will differ from double the square of the second, alternatingly being larger or smaller
by 1. On the other hand, the method that Hero uses for finding square roots4 that
seems to be based in Old Babylonian techniques,5 n → p1 such that p21 is near
n → p2 � 1/2

(
p1 + n

/
p1

) → · · · shoots in quickly on
√
n from above. Other

procedures involve closing in on a figure, typically curvilinear from the inside or
outside. Choosing 3 1/7 or 3 10/71 for the parameter for multiplying the diameter to get
the circumference of a circle is based in a progressive procedure of approximation,
whether or not a Roman surveyor choosing the first number had read his Archimedes
and whether or not the values for the square roots used by Archimedes would need to
be recalculated to find a more precise value.

The third group involves an approximation that is, we might say, loose. Typically,
one finds an average or close value, which may have some geometrical basis, but
is not, at least as conceived, associated with a progressive procedure honing in on
the actual figure. Typical are the Babylonian and Egyptian procedures for finding
the volume of truncated cones, based on cylinders whose end circles are calculated
from the averages of the lengths of the diameters or of the areas of the end circles
of the truncated cones. Unlike methods based on Eudoxan successive inscriptions or
Archimedean compression, there is no reason to expect that the approximations will sit
on one side or the other of the actual value, regardless of the desires of a tax collector
or a granary owner to maximize profit. In fact, unless the user has an independent
simple geometrical or progressive procedure for determining a corrected value, she
has no way of knowing whether the method sits on one side or oscillates on either side
for different values, as, in fact, is the case with the volumes of truncated cones. All
she can know is that it is near, in the way that an average might be near the deviations
from the average. Obviously, even when systematic, rounding loosens all measure.

Furthermore, in the context of the Greek metrical tradition, even a loose approxi-
mation may come with a proof. For example, it is possible that one could show that
a method works because it provides an area smaller than the actual area under the
curve being studied. It might still be a loose approximation because it is neither a

4 E.g., Metrica I 8. See Acerbi and Vitrac (2014, pp. 121–4, 127–8).
5 See Fowler and Robson (1998), who state that Babylonians never iterated the approximation. However,
P. Cairo (see footnote a in table under Fig. 5) and Greek mathematicians did so.
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Fig. 1 Segment in a circle with
h the height and b the base of the
segment, r the radius and d the
diameter of the circle, and, not
depicted, h2 the height of the
complementary segment

h

b

d

r

simple calculation of the area nor a member of a series that the mathematician or his
contemporaries recognize as leading towards the area of the figure studied. For we
might recognize that an approximation could be used in some series without it being
historically part of an approximation series that someone actually used or even might
have used. Hero provides an example of this in his presentation of the area of the
segment.

One ground for suspicion that an approximation method is loosely geometrical is
that the values leap on both sides of the true value, above and below. Of course, this
will not always be the case. The anthyphairetic methods for square roots shift on both
sides, but we also understand clearly why. In addition, it may well be the case that an
approximation is always below or above a true value without its being within a series
for making closer approximations. I shall argue that both the Ancient and the Revised
ancient approximations mentioned by Hero are loose in this sense, that each will fall
on both sides of a “true” value and that any mathematician who understood the way
in which the two methods worked would have understood this very clearly, whether
or not anyone actually did. Hero mentions four methods for measuring the area of a
segment of a circle. Here and throughout this paper, h is the height and b the base of
the segment, r the radius and d the diameter of the circle, and here, h2 is the height of
the complementary segment (Fig. 1).

Ancient method (in fact, at least late Babylonian and Demotic Egyptian, also
found later in China6): (b + h)/2 · h.
Revised Ancient method (post Archimedean): (b + h)/2 · h + (b/2)2/14.
Hero’s quasi-Archimedean method (for case b > 3 h), where one should note
that only the geometrical theorem is presented and not a procedure (see footnote
3): 4/3 b · h/2.

6 Nine Chapters I probs 35, 36. See Chemla and Shuchun (2004, pp. 141, 190–3, 781–82), where the two
examples are (with 1 mu � 240 bu): b � 30 bu, h � 15 bu (solution: 1 mu 97 1/2 bu, and b � 781/2 bu,
h � 137/9 bu (solution: 2 mu 155 56/81 bu). The ancient commentary attempts to explain the procedure
with a decomposition.
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456 H. Mendell

Hero’s Subtraction method for h > r or b < 2 h : h2 � (b/2)2/h →
areacomplement � (b + h2) · h2/2 + (b/2)2/14 → d � h + h2 → areacircle �
(d2 · 11)/14 → areacircle − areacomplement.
In addition, unstated by Hero, but which we might presume from his condi-
tions for using the quasi-Archimedean method, though wrongly as it turns out
(for the case where b < 4/3 h, i.e., b > 3h2): areacircle � (d2 · 11)/14 →
areacircle−4/3 b · h2/2.
After providing three preliminary chapters of lemmata for establishing the quasi-

Archimedean method, in Metrica I 30, Hero starts his main discussion with a “more
careless,” Ancient method for calculating the area of the segment, (b+h)/2 · h, which
he observes is equivalent to taking the circumference as three times the diameter (I
use “circular-arc” for the circumference of a circle and any part of it) (Fig. 2):

The ancients used to measure more carelessly the segment of a circle smaller
than a semicircle. For by adding the base and altitude of it and taking half of
these by the altitude they would declare the area of the segment of so much.
In addition, these seem to follow on those who suppose the perimeter of the
circle as triple the diameter.
For if we measure the semicircle according to this hypothesis, the area of the
semicircle will be in agreement with the mentioned method. For example, let
there be a semicircle whose diameter is AB and altitude GD, and let the diameter
be 12 units. Therefore, GD is 6 units. Accordingly, the circular-arc of the circle
will be 36 units. Therefore, that of the semicircle will be 18 units. Therefore,
since it was shown that the [rectangle enclosed] by the circular-arc and the [line]
from the center is double the area, after multiplying 18 by 6 it is required to
take the half. But they are 54 units. The same will be the case if you add 12 and
6, which become 18, taking half of which by those of the altitude. It becomes
similarly 54.

Fig. 2 Metrica I 30 Ancient
method

AB D

G
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Hero and the tradition of the circle segment 457

Hero’s argument is a little peculiar. We need to know that the example taken is
general and not just an odd instance where half the area of the circle, taking the
circumference as 3·diameter, equals (b + h/2 · h, with b equal to the diameter and h
the radius. In any case, one would quickly see that the value at the semicircle, is, with
d the diameter and r the radius, (d + d/2)/2 · d/2 � 1/2(3/4d2) � 1/2(1/2 · 3 d · r ),
half the Archimedean value for the area of a circle as 1/2 the rectangle formed by the
circumference of the circle rectified and the radius, with the circumference as 3 d, or,
as we would say, taking π as 3.

Why should one think that the method will work at all when the segment is not a
semicircle? Why not use some other procedure, that is also equivalent to taking π as
3, such as: (b/2 + h)/2 · b/2 or 3/2 h2? Or even as some student in the first or second
century CE got the area of the circle from the semicircle (d + h)2/3. Therefore, take
half of this: (b + h)2/6. The same student next (prob. 5) gives the Ancient rule for the
semicircle as (d + h)/2 · h.7 Therefore, if his teacher intended him to understand that
this otherwise overwrought procedure was to be generalized, we are back to the same
question. Why? Also, how will one know that the procedure is any good?

Question 1: Why this procedure and not the others?
Question 2: Is there a way of making sense of Hero’s remark that the method is
tied to taking π � 3 that is more robust than the observation that it seems so in
the case of the semicircle?
Question 3: Is there a way of justifying the procedure without having a ‘correct’
procedure with which to compare it that is historically plausible?
Question 4: How old is the method?

Hero next reports (I 31) a more precise and recent method:

Others who investigatedmore precisely add to thementioned area of the segment
the 14th from the [square] of half the base. These, in fact, appear as following
a different method according to which the circular-arc of the circle is triple the
diameter of the circle and a 7th part larger. For if we similarly suppose diameter
AB 14 units, altitude DG 7 units, the circular-arc of the semicircle will be 22
units. [Multiplied] by 7, this becomes 154, of which a half becomes 77. And
declare the area of the semicircle as so much.
The same [occurs] also if we do this: add 14 and 7, of which the half becomes
10 1/2. By 7 it becomes 73 1/2. In addition, the [square] from half of the base
is 49 units. Universally [that is, always taking] the 14th of these becomes 3 1/2.
Add these to 73 1/2. They become 77.

If Hero’s remark about the Ancient method is peculiar, his remark about the Revised
method is just as peculiar. The fact that the method yields the same result in the case
of the semicircle does not explain why the method is tied, except in this instance,
to an Archimedean value for π . Yet, there are two other questions that are just as
perplexing. Why add the 14th of the square of half the base? In addition, if this gives

7 P. Vind. 26740, prob. 4. See Bruins et al. (1974). They do not propose a date for the writing, but the
coauthors, Sijpesteijn andWorp (1974, p. 311), hazard first or second century CE for the Homeric quotation
on the papyrus. Since these are school exercises, it does not seem likely that they would be separated by
much time. Prob. 5 uses the Ancient method for a semicircle with a diameter of 10 schoenia.
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458 H. Mendell

a better approximation than adding the 14th of the square of the height, how does
the mathematician know this? Which of these four procedures is better and how does
anyone know this:

(b + h)/2 · h + (b/2)2/14

or

(b + h)/2 · h + h2/14?

or a simple adjustment by multiplying the new value of π divided by the old value
(see ps.-Hero, De mensuris 29, but indicated for segments larger than a semicircle),

22/21 · (b + h) · h/2

or just a version of the circle based on the semicircle in terms of base and height (see
ps.-Hero,Geometrica 20.4(S), but also indicated for segments larger than a semicircle)

b · h · 11/14?

All of these are, after all, equivalent for the area of the semicircle. It is also not
difficult to come up with other possible revisions of the Ancient method.

Question 5: Without some way of comparing the values from some approxi-
mative algorithm to a true value, what is the basis for someone saying that the
Revised method is better than the Ancient method?
Question 6: Why does the Revised method add a part of the square of half the
base and not something else?
Question 7: Is there a way of making sense of Hero’s remark that the method is
tied to taking π � 3 1/7 that is more robust than the observation that it seems so
in the case of the semicircle?

Heuristically, my questions about Hero’s methods began with the next, eighth ques-
tion, which also will lead to the solution to the other questions. In Archimedes’
Measurement of the Circle, 3 1/7 is, of course, an upper bound for the ratio of the
circumference to the diameter, and hence for the ratio of the area of the circle to the
square from the radius. It should be obvious to even a casual reader of the text that our
version must be heavily redacted, rearranged, and abridged, but Knorr (1989, Part III)
goes into much detail about how little we know about the original text. He argues that
it is probable that Archimedes discussed the areas of sectors and segments in the book.
TheRevisedmethod is unlikely to be from that book. The reason is that we expect from
the way Archimedes presents the material that an upper bound will remain an upper
bound in its application. That is, in principle, if Archimedes, or anyone, had used 3 1/7
or the lower bound 3 10/71 in building a theory of the area of segments, wewould expect
the rule tomake it such that the area from the upper boundwould be consistently above
and that from the lower bound consistently below the true value for the area. This is
not the case with the Revised formula, as is clear from Fig. 3, although a Greek might
well have seen that the Ancient method is consistently below the true value. The reader
will have to wait to see why this is the case, but let us just pose it as a big question.
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Fig. 3 Comparison of Ancient and Revised methods to True area, along with three other algorithms (note
that Fig. 3 does not depict what happens at the extremes. As the height gets smaller, the Ancient method
provides values increasingly larger than the true. Indeed the inept method at the Geometrica 20.4(S) is
equal to the Revised method when h � b/25 and the height is 3 29/200, and the error − 17.38%. For
lower values, it will be better than the Revised method. On the other side, when the segment is the circle
(b � 0, h � 120), the Ancient method and the Revised method will give the same area for the circle, 7200,
for an error of 36.3%. The method no one used will have error of 27.2%; that in De mensuris 29, an error
of 33.3%; and that at Geometrica 20.4(S), 100%, as the area will be 0)

Question 8: Why does the application of the value for an upper bound for π in
a procedure for finding the area of a segment fluctuate on both sides of the true
value and what does this tell us, if anything, about the procedure?

Hero next (I 31) puts a limitation on the Revised method and introduces his quasi-
Archimedean method for dealing with the bad cases.

However, this method again also will not fit with every segment, but when the
base is not larger than triple the altitude, since, note well, if the base is 60 units
and the altitude 1, the figure enclosed [by 1 and 60 units] will be 60 units, which
is, in fact, larger than the segment. But the 14th of the [square] from half of the
base is larger than this. For it is 64 4 14′ [i.e. (60/2)2/14 � 64 4/14]. Thus, the
mentioned method will not fit with every segment, but, as was mentioned, when
the base is not larger than triple the altitude.
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460 H. Mendell

But if it is larger than triple, we will use the following method:
32. Every segment of a circle is larger than a third again of a triangle having the
same base as it and an equal height.

Here follows a careful proof that is straightforward if textually very problematic,8

which we need not here go through, but which uses the lemmata proved in I 27–29,
announced in 27 as being used for the measurement of the segment, but which are
only used for this theorem. Indeed, this is the only claim that is actually proved about
the area of the segment that can be applied to its measurement, although Hero gives
no applications of the theorem. Rather he concludes:

This method works when the base is larger than triple the altitude.
If, however, a segment is enclosed by a straight-line and a parabola and the base
of it is given and the altitude, that is the axis to the base, and we want to find the
area of this, by measuring the triangle having the same base as it and an equal
height and adding a third of it to it we will declare the area of the segment. For
Archimedes showed in the Method every segment enclosed by a straight-line
and section of a right-angled cone, that is of a parabola, is a third again a triangle
having the same base as it and an equal height.

It is very nice to see Hero’s views on the origin of themethod, whether or not it is his
own discovery or that of Archimedes,9 and to know that the parabolic segment with the

8 There are at least two lacunae in the proof of I 32, one in a part that seems garbled, at least to me. Let H be
the area equal to triangleABG inscribed in the semicircle and P the series of triangles on it approximating the
semicircle and X areas equal to these, as set up in the proof. Hero seems to argue: (1) 1/3 H < X; (2) hence,
H < 3P; (3) hence, H + X < 4X; (4) hence, by conversion (¢ναστρšψαντι), H + X >

[
lacuna: 4/3H

]
; (5)

but H � ABG, and H+X � ABG+P (polygon inscribed in the circle); (6) hence, ABG+P > a third-again
H. Step (2) should be just: H < 3X, as P is irrelevant to the next steps. As to the inference to step (5), if these
were equalities, we would expect: H � 3X; H + X � 4X, so that H + X:H � 4:3. But the corresponding
inference for the inequality from (3) and (4) is far from obvious! Why doesn’t he argue: 1/3 H < X; hence,
1/3 H+H < X+H?The lemma that follows the text does not help, as it, in effect, dividesH+X into 3/4 (H+X)
and 4/3 (H + X) and infers that H + X � 4/3(3/4(H + X)). However, one still needs to infer from H < 3X
that H < 3/4 (H + X), which, of course, is tantamount to the claim in question. Therefore, it is not trivial
to construct a coherent argument out of the text. We need a theorem, to be called ‘by conversion’, such as:
a+b < (n+1) · b → a+b : a > n+1 : n, although themost natural proofwould probably be something like:
a+b < (n+1) · b → a < n · b → a+n · a < n · a+n · b → (n+1) · a < n · (a+b) → a+b : a > n+1 : n;
or more briefly: a + b < (n + 1) · b → a < n · b → b : a > 1 : n → a + b : a > n + 1 : n—an inference
of step (4) back to step (3) in order to infer step (5)! All of this might lead one to suspect that more is amiss
than a small lacuna.
9 See Knorr (1978, pp. 228–33 and 1989, pp. 497–502) for a comparison of Hero’s proof of the quasi-
Archimedean method Metrica I 28, 29, 27, 32 with Archimedes’ geometric proof in Quadrature of the
Parabola 19, 21, 23, 24 (Heath 1921, p. 330, and Bruins 1964a, part 3, p. 264, had already noted the close
connection). Knorr proposes that the quasi-Archimedean method is due to Archimedes and that it is likely
to have been part of the Measurement of the Circle, and that it formed the basis for the quadrature of the
parabola, rather than the other way around (his most controversial claim). Thus, Hero’s reference to the
Method would then indicate Hero’s lack of understanding of the origins of the quasi-Archimedean method.
His principal argument is that there are much simpler proofs if one attends to the details of the proof in
Quad. of the Parab. On his view, Hero could not be the discoverer of the method, but would have seen
that it provides a useful lower bound. Although a scholion to Geom. 19 in Cod. Seraglio G.I. I f. 11r from
the twelfth century (according to Acerbi and Vitrac 2014, pp. 88, 98) attributes the theorem to Archimedes
(see Hero, Opera v. 5, p. 228–9), Knorr (1989, p. 509 n. 34) dismisses this evidence for his thesis. For
arguments against Knorr’s theses, see Acerbi and Vitrac (2014, p. 217 n. 265). The issue requires a more
detailed discussion.
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Fig. 4 Comparison of the Revised and quasi-Archimedean methods

same base and height is a lower bound for the area of the circleand that a segment of a
circle with a high ratio of base to height approximates a parabola, whose area he gives
in procedural form, but nowhere here is what we need, an argument that the quasi-
Archimedean method is better than the Revised method or that it is worse when the
base is less than triple the altitude. A comparison of the twomethodswill bring this out.
Hero chooses as an example for theweakness of the Revisedmethod an instancewhere
it is clear that the value is too high, larger than the rectangle enclosing the segment. In
addition, this is all in the add-on from the revision: (60+1)/2 · 1+64 2/7 � 99 9/14 >

60 · 1, in fact more than half-again larger than the rectangle enclosing the segment. He
does not need to appeal to a chord table to check the calculation. However, the ratio
of base to height where the Revised method goes awry must have some foundation. In
fact, the quasi-Archimedean method is better than the Revised method when the ratio
is large, but only when it is larger than about 6.4 times the height (Fig. 4).10

Question 9: What is the basis for Hero’s claim that the quasi-Archimedean
method is better when the ratio of base to height is larger than 3:1, and where
does his error come from? Where is he getting this value to compare his two
methods?

10 Bruins (1964a, part 3, p. 266) suggests that the error is that Hero should have said that half the base is
larger than three times the height. Even so, the Revised is still better here, while Bruins does not explain
how Hero is supposed to have determined any boundary between the methods.
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Finally (I 33), Hero presents a Subtractionmethod for measuring the segment larger
than a semicircle. The method is what we expect. From the base and height, find the
height of the complementary segment of the circle on the same base, then find its area
by the Revised method (and we may suppose by the quasi-Archimedean method if the
base is more than triple the height) and, having determined the diameter as the sum
the heights of the two segments, find the area of the circle, and finally subtract the
smaller segment from the area of the circle. That Hero is right that one needs to use
some alternative method is clear from Fig. 3, whether or not the ancients only used the
Ancient method for the case of segments smaller than a semicircle (it is mere irony
that Fig. 2 above, based on the manuscript, is larger than a semicircle).

Question 10: Why does Hero think it necessary to use the separate method for
the case where the segment is larger than a semicircle?

Furthermore, we expect that in the application of the Subtraction method, if the
ratio of the base to the diameter minus the height is greater than triple, that it will use
the quasi-Archimedean method. However, the example in the text involves a base and
height of 14 units, so that the complementary segment has a height of 3 1/2 units, so
that the base is 4 times the height.

Question 11:Why does his example for the Subtraction method use a case where
the base is 4-times the height and yet uses the Revised method and not the quasi-
Archimedean method?11

There is one final question, which probably cannot be resolved.

Question 12: Why does Hero present the three methods he recommends and the
onehedoes not recommend in themessyorder hedoes, that is, first lemmas for the
quasi-Archimedean method, then the Ancient method, then the Revised method,
then the quasi-Archimedean method with a proof, and finally the Subtraction
method for the case where the height is greater than the radius?

In the course of this paper, I shall attempt to answer all twelve questions, and I
think that we can arrive at satisfactory answers to most of them. All of these lie in dark
shadows in small corners of history, and some will remain there. Without an explicit
“And here’s how I did it!”wewill never knowhow theAncientmethodwas discovered.
My goal here will be to give it some footing. I do believe that the Revised method
will be completely explained, and that its explanation may shed light on the Ancient
method. But that explanation, I admit, could well be a hologram, a fake image. Other
questions, such as the source of Hero’s error will be more speculative. With this, let
us proceed.

11 See Knorr (1989, p. 500), and also Høyrup (1997, pp. 241–2), who uses this anomaly to suggest that
Hero originally placed the extensive discussion of the quasi-Archimedean method in the margin of the text,
but that a later copyist absorbed it into the main text.
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3 P. Cairo: the ancient method and themethod of subtraction
and division

Three problems in the third century Egyptian Demotic papyrus, P. Cairo J.E. 89140-
43 (Parker 1972, probs. 36–8), hence just P. Cairo, present the Ancient method for
the specialized cases of the areas of the segments on an equilateral triangle inscribed
in a circle and for the areas of the segments on a square inscribed in a circle. The
papyrus presumes already in problems 31, 32 that the parameter for π is 3, which
Hero supposed essential for the Ancient method. We shall see later that this is correct,
but it will not be completely evident here. Problem36 startswith the side of the triangle,
finds its height and then the height of the segment (1/3 the height of the triangle). It
next determines the area of a segment by the Ancient method and then calculates the
area of the entire circle by adding up the areas of the three segments and the triangle.
Next, it checks the result by determining the area of the circle from the diameter, the
sum of the height of the segment and the height of the triangle. Since there is some
rounding as the calculations proceed, numbers get fudged a little, but, even so, the
calculated areas do not match. Therefore, it recalculates the height of the segment
from a diameter determined by the circle’s area as the sum of the triangle and three
segments. Problem 37 does much the same for the case of the square, except that the
check value is stipulated at the start, and the procedure seems to push the numbers to
fit. Problem 38 repeats the work of 36, but in reverse. After determining the area of the
triangle, it calculates the area of the circle from the diameter, again the height of the
triangle plus the height of the segment, and then uses the Ancient method to determine
the area of a segment, in order to find the area of the circle as the sum of three segments
plus the area of the triangle and the circle. It then ends with the difference between
the two calculated areas of the circle.

In each calculation, there are three possible sorts of error, miscalculation (the one
clear instance possibly due to rounding issues), rounding (typically by dropping a
fraction), and choice of the values for square roots (by the standard method from
Babylon to Hero12). What is also important for us is that the author chose verifiable
problems, as it is typical of problems in the papyrus to verify solutions; so this is
probably an important part of its mathematical style. The checking is facilitated by
the fact that the inscribed figures are both regular polygons, so that one has merely to
multiply the area of the segment by the number of sides and add it to the area of the
polygon.

In what follows, it is easiest to give the calculations in the form of a table. The
numbers will be in quasi-Egyptian fractions, that is, a sequence, n′ m′, will mean
1/n + 1/m. The exceptions will be 1/2, 2/3, and 5/6. Since the author of the papyrus has
a penchant for base 60, I will also occasionally include sexagesimal values.13 There
is little point in giving full modern fractions, as they will not help in understanding

12 And found in a late papyrus P. BM 10520 prob. 62, unrelated to our text, but in Parker (1972).
13 However, I find it very difficult to endorse fully the view of Friberg (2005, p. 128), that all of the
calculations but one were done originally in sexagesimal and then converted. Many of the calculations are
simpler in sexagesimal, but they do not necessarily lead to the same rounding. Rather, as stated, the author
obviously has a penchant for base 60 fractions, although some calculations may have been made as Friberg
suggests.

123



464 H. Mendell

Fig. 5 P. Cairo, Problem 36. The
segment on an equilateral
triangle

12

10 3' 20' 120'

3
3'
10
' 6
0'
12
0'
18
0'

either the relations between the numbers or the ways in which errors work. Where
there is rounding or error, I will attempt to provide Egyptian numerals in the spirit of
the author, but with the admission that though the spirit may be strong, the mind might
not be (Fig. 5).

Prob. 36: with b � 12, the side of the equilateral triangle, to find the area of the
triangle, the segments, and the circle.

Index Procedure Calculated
amount

Corrected Sexagesimal

A b · b 144

B 1/2 b · 1/2 b 36

C A − B 108

D
√
C � htriangle 10 3′ 20′

120′
1560′
truncated?a

10;23,30

E D · 1/2 b � areatriangle 62 3′ 60′ 1,02;21

F 1/3 D � hsegment 3 3′ 10′ 60′
120′ 180′

3;27,50

G F + b 15 3′ 10′ 60′
120′ 180′

15;27,50

H G/2 7 2/3 20′
120′ 240′
360′

7;43,55

I H · F � areasegment �
(hsegment + b)/2 ·
hsegment

26 5/6 10′,
which is
too highb

26 2/3 10′ 90′
240′ 1800′
10368′

Text: 26;56
Corrected:
26;46,57,20,50

J 3 · I � area3 segments 80 2/3 10′
30′

80 3′ 90′ 300′
86400′

Text: 1,20;48
Corrected:
1,20;20,52,2,30
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Index Procedure Calculated
amount

Corrected Sexagesimal

K J + E � areacircle_sum 143 10′ 20′ 142 2/3 60′ 90′
300′ 86400′

Text: 2,31;11,30
Corrected:
2,22;41,52,02,30

L D + F � htriangle+
hsegment � dcircle

13 5/6 45′ 13;51,20

M 3 · L � circumference 41 1/2 15′ 41;34

N M/3 13 5/6 45′ 13;51,20

O M/4 10 3′ 20′
120′

10;23,30

P N · O � areacircle_direct 143 5/6 10′
30′

143 5/6 10′ 30′
90′ 240′
2700′

Text: 2,23;58
Corrected:
2,23;58,56,20

Q P − K areacircle_direct −
areacircle_sum

2/3 10′ 20′ 1 5′ 12′ 900′
14400′
86400′

Text: 0;49
Corrected:
1;17,4,17,30

aBy the method for finding square roots (for p2 near n,
√
n ≈ p + (n−p2)/(2p)), the amount

should be 10 + (108 − 100)/(2 · 10) � 10 2/5 � 10 3′ 15′, which is less precise and 120′
larger than our value (and whose square is also inconveniently larger than 108), so that one
needs a second go at the approximation. 10 2/5 − (1084/25 − 108)/(20 4/5) � 10 2/5 − 130′ �
10 3′ 20′ 60′ − (120′ − 1560′) � 10 3′ 20′ 120′ 1560′ � 1351/130. We may drop 1560′
as insignificant. A sexagesimal version of this will not be pretty, as 1/13 is not a nice number:
10;23,32,18,27,41,32,18,27,42
bThe multiplication of 6 terms by 6 terms will yield 36 terms, some of obviously small impact,
which may be ignored. Nonetheless, the error left will be about 8′ 40′. We can imagine some
of the error from rounding (still very high), but some must come from a calculating error. For
example, the sum of 21, 2, 3/20, 7/3, 2/9, 7/10, 7/60 reduces to 26+3′ +5′ +2/9+60′+ extra values
� 26 2/3 10′ 180′+ extra values or even 26 1/2 4′ 45′ (bumping 3/4 to 5/6?). The author could
have achieved a more reasonable result by truncating or rounding from the exact value: 26 2/3
10′ 90′ 240′ 1800′ 10368′. A very different source of the error might result if we accept the
thesis of Friberg (2005, op. cit.) that the original calculations were done in sexagesimal. For
example, the author truncates 26;46,57,20,50, mis-writes the number as 26;56, and translates
this into Egyptian fractions. Perhaps, but this is hardly a more satisfying story than someone
simply writing 5/6 for 2/3

To review, given the sides of the equilateral triangle, the text finds its height, htriangle,
to find its area, areatriangle. It next finds the height of the segment, hsegment, as 1/3
htriangle. It then uses the base of the segment (and side of the triangle) to find the area
of the segment according to the procedure: (hsegment + b)/2 · hsegment. Crucial to the
example is that the inscribed figure is a regular polygon, so that all the segments are
equal. Hence, it triples this and adds it to the area of the triangle to find the area of the
circle as 143 10′ 20′. Next, it finds the area of the circle directly. The diameter d is
htriangle + hsegment, and the circumference c is 3-times this. The area by Problem 35
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is c/3 · c/4 (in effect, (π · d)/π · (π · d)/4). Therefore, we have found the area of
the circle in two different ways and they do not match by 49/60, according to the text.
This is not a trivial difference, or so I shall argue. The discrepancy is reduced but not
eliminated by the error in the calculation of the segment (row I).

I will not pretend to be able to explain the calculation that follows, which Parker
reports to be in a fragmentary state14; however, the concluding line would appear to
be a lowering of the height to accommodate the lower area calculated by taking the
area from the sum (K 143 10′ 20′), as the height will be 1/4 the diameter, which is the
square root of the area + 1/3 the area (Probs. 32–3).15

R Revised
hsegment

3 3′ 15′ 35′
49′

3 3′ 15′ 35′ 49′ 196′
11760′

3;26,56,19,35,31
Corrected:
3;27,15

This reduction of the height might then lead to a reduction in the area of the segment
(now, 26 1/2 8′ 72′ 392′ 6174′ 172872′) and of the triangle (now, 62 14′ 98′) and who
knowswhat else.My point is simply that the author knows that it is important to pursue
the anomaly of the difference in value that the two methods of area measurement
produce. Someone comparing the two methods of calculation will inevitably wind up
with a problem, simply because, barring any other error, the direct calculation of the
circle should be about 0.9% larger than the calculation by summing the triangle and
segments. The author has got something like this right. The two values should not gel.
Error must be noted!

Let us now look at problem 37. This problem also involves finding the area of a
circle, but does not perform the check. Rather it starts with both the area and diameter
of the circle as given. Presumably, the student is welcome to perform the calculation
to see that the given value is correct, but it will be unnecessary. The problem employs
a square inscribed in a circle, so that there will be 4 segments whose height will be half
the difference of the side of the square and the common diameter of the square and
the circle. The circle is given as 675 square cubits and the diameter d � 30, obviously
the value we shall work with, with 675 the check at the end (Fig. 6).

14 The text starts with 1 5/6 45, which is either d − b or should be 13 5/6 45′ � d. It then subtracts 80 2/3
10′ 30′ 150′, which should be the area of the three segments with 150′ added (but why—it does make the
fraction more normal to us, 23/30 vs. 4/5), from some number, 82… (presumably 82 1/2 + …, the result
being 1 5/6…. But there is no calculated number that starts 82. It subtracts 1 1/2 from 4 1/2 (not in the extant
text) to get 3, and gets 4 5/6 before ending (for us) with the final number.
15 My analysis of the calculation is slightly different from Parker’s, who thinks that the fraction at the end
should be 39. If we convert to standard fractions, the area is: 143 3/20. 4/3 of this will be: 190 13/15, whose
square root is closest to 14 (an upper approximation), so that the approximation of the square root will be:

14− (142 − (190 + 13
/
15))

/
(2 · 14) � 13 49/60, and 1/4 · 13 49/60 � 3 109/240, which can be expanded

as above. This number is smaller than 3 3′ 15′ 35′ 39′; so I do not know how Parker came to his result, but
using a lower bound such as 13 1/2 for the first approximation would lead to a result such as he suggests.
However, none of this appears in the papyrus as Parker presents it.
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Fig. 6 P. Cairo, Problem 37.
Segment on a square

30

21 5' 60'

4 3' 20' 120'

Index Procedure Calculation Corrected Sexagesimal

A d · d 900

B A/2 450

C
√
B � bsegment �
side of the square

21 5′ 60′ 21 5′ 70′?a 21;13

D C2 450

E d − C � 2hsegment 8 2/3 10′ 60′ 8;47

F E/2 � hsegment 4 3′ 20′ 120′ 4;23,30

G F + C 25 1/2 10′ 20′
120′

25;36,30

H G/2 12 2/3 10′ 30′
240′

12;48,15

I H · F � (bsegment+
hsegment)/2 · hsegment
� areasegment

56 4′ The text
fudges
upwards
from 56 5′
60′ 90′
300′ 1920′

Text: 56;15
Corrected:
56;13,53,52,30

J 4 · I � area4 segments 225 224 5/6 20′
39′ 120′
720′ 7200′

Text: 225
Corrected:
3,44;55,35,30

K D + J 675 674 5/6 20′
39′ 120′
720′ 7200′

11,14;55,7,48,…

aSuppose the estimate is 21, then the approximationwill be 21+(450−441)/(2 · 21) � 21+9/42,
which reduces to 21 5′ 70′. The author then makes the result base sixty friendly. 21 5′ 70′ is
above the true value and is obviously, therefore, a closer approximation than 31 5′ 60′
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Fig. 7 P. Cairo, Problem 38. The
segment on an equilateral
triangle

The value of the area of the circle should be 675 given the diameter of 30, that is
3 · 30 � 90. We then multiply 1/3 · 90 by 1/4 · 90. However, there is some fudging
in K that might look minor, except that there was already fudging that increased the
size of the side of the square, which decreased the height. Since, in the procedure
(b + h)/2 · h, a slight decrease in h (caused by the increase in b) intuitively will have
more effect than a small increase in b, the author has to do a little work to make the
numbers work out. In fact, it will turn out that this is the one of two cases where, on
the assumption that π � 3, the rule that the area of the segment � (b+h)/2 · h works
perfectly, the other being the semicircle, that is, whether the author knows it or not,
the method of determining the area of the circle as the sum of the inscribed, regular
polygon and the segments, as determined by the Ancient method, should yield the
same result as finding the area directly from the circumference only in the case of the
square (the semicircle does not use the method). I suspect the author knows it. After
all, there is no comment here on the issue.

Problem 38 starts with the calculation of the area of circle. Here, the side of the
equilateral triangle and base of the segment b � 10 (Fig. 7).

Index Procedure Calculation Corrected Sexagesimal

A b/2 · b/2 25

B b · b 100

C B − A 75

D
√
C � htriangle 8 2/3 � 9 − (92

−75)/(2 · 9)
8;40

E D · b/2 � areatriangle 43 3′ 43;20

F D/3 � hsegment 2 5/6 30′ 45′ 2;53,20

G D + F � dcircle 11 1/2 30′ 45′ 11;33,20

H 3 · G � ccircle 34 2/3 34;40
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Index Procedure Calculation Corrected Sexagesimal

I H/3 11 1/2 30′ 45′ 11;33,20

J H/4 8 2/3 8;40

K I · J � areacircle_direct 100 15′ 90′ 100 9′ 27′ Text: 1,40;04,40
Corrected:
1,40;08,53,20

L F + b 12 5/6 30′ 45′ 12;53,20

M (F + b)/2 6 3′ 9′ 6;26,40

N M · F � areasegment 18 1/2 10′ 60′ 18 1/2 10′ 60′
1620′

Text: 18;37
Corrected:
18;37,02,13,20

O 3 · N � area3 segments 55 5/6 60′ 55 5/6 60′ 540′ Text: 55;51
Corrected:
55;51,06,40

P O + E � areacircle_sum 99 6′ 60′ 99 6′ 60′ 540′ Text: 1,39;11
Corrected:
1,39;11,06,40

Q K − P 5/6 18′ 180′ 5/6 9′ 54′ Text: 0;53,40
Corrected:
0;57,46,40

Again, aswe saw in the earlier version, the direct calculationwas slightly larger than
the calculation by summation. Therefore, the author here too notes the discrepancy
between the direct method and summation of the triangle and the segments as derived
by the Ancient method.

It is an important part of the P. Cairo treatise to check results. Here, there are
two methods of approach, one the direct method of taking 1/12 of the circumference
squared: 1/4 (3d) · 1/3 (3d). The other takes the area of a regular n-gon with sides
of length b and finds the height h of the segments. The area of the circle is then
n · ((b+h)/2 · h) + the area of the n-gon. For one case, the results are the same, albeit
with some noticeable fudging, while for the other there is a noticeable and noted error.
It must have been part of the pedagogy of the method to know this, while at the same
time, it is hard to know how many examples of such checking could be afforded to the
student. One suspects that these are nigh they.16 As to the Ancient method for finding
the area of the segment, well, it works perfectly on a semicircle, perfectly on a side of
a square, and fairly well on one figure in between, the equilateral triangle. Therefore,
it works fairly well. The difficulty for the method is that one cannot usually check
it out by subtracting a known figure from an enclosing circle. Should we assume, as
is plausible, that the reader took it for granted that the procedures for the circle and
inscribed polygon were accurate and the Ancient method an approximation, to be used

16 A seventeenth centuryBCE text fromSusa has values for the areas of pentagons, hexagons, and heptagons
(see Addendum II to Sect. 3). Therefore, it is possible that Egyptians also had more.
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with caution? Furthermore, does the author have any inkling why it works perfectly
in the case of the square but not in the case of the equilateral triangle?

A final issue lies behind the method of checking. Problem 36 seems to continue
the adjustment by setting up a new height of the segment. But it also suggests another
technique, which we can call Subtraction and Division. Take the area of the circle as
derived from the diameter and subtract the area of the triangle to get the three segments(
143 5/6 45′ 10′ 30′ − 62 3′ 60′ � 81 1/2 10′ 30′ 180′), and taking a third, we get
the area of the segment (27 6′ 30′ 90′ 540′), where the area of the segment � 1/n ·
(3/4 d2 − the area of the inscribed, regular n-gon). It is perfectly possible, but not
very likely that the author of P. Cairo did not see this as a trivial consequence of his
method of checking. It may well have figured, however, in Old Babylonian methods
for calculating segments on squares and other figures.

4 A late Babylonian example on a 3–4–5 rectangle, with amazing
coincidences

The appearance of the Ancient method in P. Cairo establishes it outside the world of
Greek mathematics, but it would also be nice to establish it within the Middle Eastern
world and to establish it as a general method and not something for special cases of
segments on equilateral triangles and squares where it is not needed in any case.17 It is
also important because it is in this way that we shall better come to understand Hero’s
strange remarks about the method. Friberg (2005, p. 133), states, “In Babylonian
mathematics, the use of the rule is not documented.” Therefore, it is nice to report
there is a very nice example of the method on a tablet copied from a writing board in
the late fifth century BCE, from Uruk, W 23291-x problem 1,18 which employs the
Ancient method. Since this is not evident in the original publication, which interprets
the argument very differently, and because I make no claims to being a scholar of
this material, I will reproduce the translation of Friberg et al. (1990, p. 487) and will
give my interpretation on the right. The diagram of the tablet has a circle with four
numbers, the three areas and the length of the circumference of the semicircle, imitated
in Fig. 8a.My figure, Fig. 8b, produces the elements ofmy interpretation. Here, b is the
diameter of the circle and the cross-diameter of the inner figure; p the circular-arc of
the semicircle; hwill be the height of a segment on b, andw the width of two segments
together, so that w � 2 h. C will be a constant whose properties will be determined
later. Since it will be important for my interpretation where the sexagesimal place is,
I will freely use the semi-colon to mark the fractional part of a number. The inner
figure, called a ‘heart’, will turn out to be formed from two equal circular segments.

17 To put this in perspective, the survey of evidence in Friberg (2005, 133–136) suggests that there is only
indirect evidence for the Ancient method.
18 Published in Friberg et al. (1990, pp. 487–93). See also Friberg (2007, pp. 321–325). For the provenance
of the tablet and the Šangû-Ninurta family that produced and owned it, see Robson (2008, pp. 227–37).
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Fig. 8 W 23291-x, problem 1: a (as on tablet); b (precise version, with values added)

10 is my [??]

10? of the extension? of the heart is what? It will turn out that 10 � w

20 steps of 10 is 3,20 b � 20 (if 30 � p, then (30/3) · 2 � b, cf.
Friberg et al. 1990)

b · w � 3,20

Since 10 is 1/2 of [20], w/b � 10/20 � 1/2

(0;0)7 30, 1/2 of (0;)15 (w/b) · 1/4 � 1/2 · 0;15 � 0;07,30

to (0;)30 pair, then (0;)37 30 0;30 + 1/4 w/b � 0;37,30

3! 20 steps of (0;)37 30 is 2 05, (w · b) · (0; 30 + 1/4w/b) � 3, 20; ·0; 37, 30 �
2, 05;� areaheart

1 iku 25 šar, this is the area 1 iku 25 šar, this is the areaheart, where
1 iku � 100 šar

(0;)30 of the crescent-field, p � 30;

the area is what?

(0;)30 steps of (0;)30 is (0;)15, p2 � 30; · 30; � 15,00;

<steps of> 5 50 go is 1 27;30 C � 0;05,50, so that
15,00; · 0;05,50 � 1,27;30 šar

1 ubu 37 1/2 šar � 1 ubu 37 1/2 šar, where 1 ubu � 50 šar

this is 1 crescent-field

Steps of 2 I have gone

1,27;30 steps of 2 go, then 2,55, two fields � 2 · 1,27;30 � 2,55 šar

1 iku 1 ubu 25 šar,

these arc 2 crescent-fields
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Heap them, then

all of them, then 3 iku total area � 2,55 + 2,05 šar � 5,00 šar � 3 iku

Obviously, the interpretation derives from its coherence. First, it is important to
see that this is equivalent to the Ancient method. The algorithm on this interpretation
exemplifies the following procedure:

(w · b) · (1/2 + (w/b) · 1/4).

Since the heart is equal to 2 segments and w � 2h:

w · b · (1/2 + 1/4 w/b) � 2h · b · (1/2 + 1/4 · 2h/b) � 2 · (b + h)/2 · h

Conceptually, the method takes half w · b and adds on an extra amount, something
that we might expect in a Babylonian context, in effect the square on half the width.
But this leads us back to our initial questions about the method itself.

In their publication of the tablet, Friberg et al. (1990) provide a very different
analysis of the problem. Although I think it is wrong as a reconstruction, the math-
ematics underlying their reconstruction will prove to have some truly startling and
weird consequences which may prove very important for the history of the Ancient
method. They start with Old Babylonian constants for two figures: the grain, basically
taking two segments on a square inscribed in a circle and forming an oval from them;
and the ox-eye, taking two segments on an equilateral triangle inscribed in a circle
and, again, forming an oval (Fig. 9).19 The constants are numbers for the base, width
(double the height of the segment), and the area (presumably formed by a version
of Subtraction and Division), based on taking the arc of the segment as a unit, with
π � 3. The user can then multiply these constants by the size of the similar arcs on
other figures to determine the lengths or by their squares to determine the areas of
the larger or smaller similar figures. These constants appear in lists of many sorts of
constants or coefficients on several, mostly Old Babylonian tablets.20 The calculations
assume, again, the length of the arc, a, on the segment as 1;0 (keeping in mind that
1 is indeterminate in its value and can be any 1 · 60±n), with π � 3,

√
2 � 1;25

(i.e., 17/12),
√
3 � 1;45 (i.e., 7/4), with c the circumference, d the diameter, A the

area. Therefore, since agrain � cg/4, the three constants for the grain will be (with
cg � 4agrain, dg � cg/π � 4agrain/π � 1;20 · agrain):21

bg � 4 · agrain/π · √
2/2 � 1;20 · 0;42,30 · agrain � 0;56,40 · agrain � 0;56,40

wg � 4 · agrain/π − bg � (1;20 − 0;56,40) · agrain � 0;23,30 · agrain � 0;23,30

19 The first successful analysis of these figures is Vaiman (1963, pp. 75–76, 79–80). See also Robson (1999,
pp. 45–48).
20 See Robson (1999) for a comprehensive discussion of how constants work throughout Old Babylonian
mathematics and administration, her preferred term being ‘coefficients’. She discusses eightOldBabylonian
lists and four later lists.
21 See Friberg et al. (1990, p. 490) for an elegant geometrical derivation of the constants for the grain and
ox-eye.
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Fig. 9 The grain, the heart, and the ox-eye on their respective polygons and known lineal dimensions for
the base figures

Ag � 1/2 · (circle − square) � 1/2 (c2g/(4π ) − b2g)

� 1/2 ·
(
(4 · agrain)2/(4 π ) − (4 · agrain/π · √

2/2)2
)

�
(
2 · a2grain/π − 4 · a2grain/π2

)
� (0;40 − 0;26,40) · a2grain

� 0;13,20 · a2grain � 0;13,20

Again, since aox-eye � ce
/
3, the three constants for the ox-eye will be (with

ce � 3aox-eye, de � ce/π � 3/π · aox-eye � aox-eye, and the height of the inscribed
triangle, ht � 3/4de):

be � ht · 2√3/3 · aox-eye � 3/4 · 1;10 · aox-eye � 0;52,30 · aox-eye � 0;52,30

we � 1/2 de � 0;30 · aox-eye � 0;30

Ae � 2/3 (circle − triangle) � 2/3 (c2e/(4π ) − 1/2 be · ht)
� 2/3

(
(3 · aox-eye)2/(4π ) − 1/2 · (3/4de)2 · 2 √

3/3
)

� 3/2 · a2ox-eye/π − 9/(8π2) · √
3 · a2ox-eye � (1/2 − 7/32) · a2ox-eye

� 0;16,52,30 · a2ox-eye � 0;16,52,30

Friberg et al. then normalize these two sets of figures to a common value with the
base of the heart, bjoint � 20. Thismeans that we need tomultiply the remaining values
for the grain by bjoint

/
bg or its square for the area, and for the heart by bjoint

/
be or

its square for the area. Hence (I will give a general analysis later, but note that they
calculate these directly from the values for the circumferences by the algorithms above
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Fig. 10 Comparison of the grain,
the heart, and the ox-eye

and not from the constants in the tables that result from the algorithms) (Fig. 10):

wg-joint � 8;20

Ag-joint � 1,40

we-joint � 11;40

Ae-joint � 2,30

From these two areas, we can compute the area of the crescents composed from
the semicircle on their common base (the long diameter of the grain and ox-eye),
bjoint � 20, less half the figure (i.e., one circular segment):

Semicircle � 1/2 b2joint π/4 � 3/8 202 � 2, 30

Crescentgrain-joint � semicircle − 1/2Ag-joint � 2,30 − 1/2 1,40 � 1,40

Crescentox-eye-joint � semicircle − 1/2Ae-joint � 2,30 − 1/2 2,30 � 1,15

Now, the average of these, 1/2 · (
Crescentgrain-joint + Crescentox-eye-joint

) �
1/2 (1,40 + 1,15) � 1,27;30. Amazingly, this just happens to be the area of the cres-
cent outside the heart. Therefore, they hypothesize that the heart (double the segment
that is the semicircle less the crescent) is calculated as the mean between the grain and
the heart. If we normalize the constant for the grain and the heart, taking the arc of the
semicircle on the joint base, asemicircle � 1 (they take 1,0, but it really does not matter),
the factor for conversion will be (acrescent/p)2 � (1/30)2 � 0;022 � 0;00,04, since
the semi-circumference p � 30 and the base semi-circumference acrescent � 1:

Constantcrescent-grain-joint � 0;00,04 · 1,40 � 0;06,40

Constantcrescent-ox-eye-joint � 0;00,04 · 1,15 � 0;05.

However, the averageof these is 0;05,50, the very constant thatwefind in the text.On
their view, the Babylonians startedwith the crescent as cut off by a segment with height
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half the radius, a perfect crescent, and then construct the heart as a complementary
figure. Using these as a basis for the area of the heart, they then reconstruct the
calculation ofW23291-x prob. 1 as taking the mean of adjusted constants for the grain
and the ox-eye as a multiplier of the rectangle b · r � 20 · 10 � 3,20 � b · wheart,
where r is the height of the semicircle (i.e., the radius):

Ag-joint � 1,40 � Cg-joint · b · r � Cg-joint · 3;20, so that Cg-joint � 0;30

Ae-joint � 2,30 � Ce-joint · b · r � Ce-joint · 3;20, so that Ce-joint � 0;45.

Hence, the area of the heart will be calculated from the mean of Cg-joint and Ce-joint.
On their interpretation, the calculation proceeds as follows (with diff � Ce-joint −

Cg-joint):

b · r (since r is half of b, the diameter of the circle) → 1/2 diff → Cg-joint + 1/2 diff

→ b · r · (Cg-joint + 1/2 diff)

20 · 10 � 3,20 → 1/2 0;15 � 0;07;30 → 0;30 + 0;07,30 � 0;37,30

→ 3,20 · 0;37,30 � 2,05

It is utterly amazing that these numbers should work out so well, which commends
the interpretation, even if Friberg et al. have to done much hunting to find them; for
many variants on how the calculations are accomplished (such as taking 1/

√
3 instead

of 1/3 · √
3, or taking (

√
3)2 as 49/16, or working directly from the given constants for

the grain and ox-eye) would have led to very different results. But there are several
problems with it. In effect, the calculation amounts to finding b · r · Ch-joint, where
the heart constant Ch-joint � Cg-joint + 1/2 di f f . First, do we expect Ch-joint to be
calculated out, rather than simply given? Nor are we warned what these constants
are nor that they come from constants for other figures. Where do these numbers
come from? Why is diff given and not Ce-joint? They are numbers truly out of the
blue. In fact, they are not standard constants at all, since the constants are supposed
to be based on the length of the arc of the heart taken as 1, and not, as here, the
rectangle enclosing the heart, namely bjoint · r � bjoint · wheart, or some such thing.
In fact, Friberg et al. rightly set the basis of the constant for the crescent to be the
semi-circumference, where the arc is 30 times (or 0;30) the base value, 1;00, and
the area of the crescentheart � 0;05,50, but if this were also the basis for grain and
ox-eye constants used to calculate the area of the heart, they are different from the
actual constants we find in Old Babylonian texts and would need themselves to be
calculated from the procedures used for calculating the grain and ox-eye constants,
just as Friberg et al. do. And yet, if the basis were the semi-circumference, we would
expect the calculation to be something like 302 · 0;08,20 � 2,05, where 0;08,20 is
the average of 0;06,20 (grain) and 0;10 (ox-eye) for the semi-circumference � 1;00.
Finally, line 4 in their translation, “Since 10 is 1/2 of [20],” seems not to be part of their
algorithm. Something is deeply amiss in all this. Yet, they have found a tantalizing
coincidence. In fact, as amazing as this is, something even more amazing and zany
lurks in the background, as this coincidence can be explained, but only, so far as I can
tell, by two other, much weirder coincidences.
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Let us look more carefully at the geometry behind the heart. Let us suppose that
the base/diameter of the heart is a side of a figure inscribed in a circle, as are the grain
and ox-eye. We can imagine a segment on the base of an isosceles triangle with base
equal to height, or a segment on the side of an isosceles triangle with side to base
to height of 5:6:4,22 but most plausibly the heart is the double of the segment on the
long side of the 3–4–5 (width, length, diameter) rectangle inscribed in a circle (or just
the 3–4–5 triangle), the “favorite rational rectangle” of Babylonian mathematicians.23

Although the arc on the width is very close to the side of a regular, inscribed decagon
(see Sect. 5), and the length is close to the side of a regular, inscribed heptagon, neither
seems to be relevant to Babylonian mathematics.24 Therefore, there really is no arc
known to our Uruk mathematician that he can use as the basis for the heart, as there
is in the case of the grain and the ox-eye. Indeed, although the value for the crescent
is based on a known arc, the semicircle, we expect, on the analogy of the grain and
ox-eye, the constants for the heart to be based on the arc of the segment on the long
side of the 3–4–5 rectangle, and a value for either arc may not be part of Babylonian
mathematics.25

22 At Metrica I 18, Hero will use 5 of these triangles (double 3:4:5 right triangles) to approximate the
inscribed, regular pentagon, so that the segment on the base would be checkable by Subtraction andDivision
(see Sect. 5), but this triangle is from the center and is not inscribed in the circle, so that there is no trivial
relation between the segments here and those on the approximate pentagon. The approximation may well
be Old Babylonian, for which see Addendum II at the end of this section.
23 See Robson (1999, p. 44) quoting Friberg. To see that this could be a 3–4–5 rectangle, the height of
the segment is h � 1/2 w � 5, with b � 20. Therefore, if the segment is on a rectangle, the diameter
will be (b/2)2/h + h � (20/2)2/5 + 5 � 25, and, by the Pythagorean rule, the width of the rectangle will
then be 15. BM 85194 Rs. I 33–43, probs. 20, 21, consists of two problems, one finding the base of the
segment from the height and circumference and the other the height from the circumference and base. See
Neugebauer (1935, pp. 169–160), also Høyrup (2002, pp. 272–275) and Friberg (2007, pp. 43–46). One
calculation in each problem is wrong, but with correct numbers. If we think of an inscribed rectangle with
sides b1, b2, and heights of the segments on each as h1 and h2, with the diameter d implicitly a third of the
circumference c, then the procedure of prob. 20 may very naturally be read in this way, to find b1: c � 60,
h1 � 2 → d(� c

/
3) � 20 → h21 � 4(corrected: 2 · h1 � 4) → b2 � d − 2 · h1 � 20 − 4 � 16 →

d2 � 6,40 → b22 � 4,16 → d2 − b22 � 2,24 → b1 �
√
d2 − b22 � 12. Prob. 21 is in reverse, to find

h1: c � 60, b1 � 12 → d
(� c

/
3
) � 20 → d2 � 6,40 → b21 � 2,24 → d2 − b21 � 6,40 − 2,24 �

4,16 → b2 �
√
d2−b21 � 16 → h21 � d − b1 � 20 − 16 � 4 → h1 � √

4 � 2 (last 2 steps corrected:

2 · h1 � d − b1 � 20− 16 � 4 → h1 � 1/2 2 · h1 � 2). The base of the segment or chord could be seen
as the short side 12 of a 12–16–20 rectangle, with the height of the segment equal to 2.
24 See Addendum II at the end of this section. If the reconstruction is correct, we find a very different value
for the heptagon.
25 We can derive constants based on the arc on the heart, aheart � 1, and the ratio of the circumference to
this arc, here f , from Aheart � 125, and b � 20, along with the known equivalences for the basic figure,
dh-basic � ch-basic/3, bh-basic � 4/5 dh-basic � 4/15 ch-basic, the small side of the rectangle sh-basic �
3/5 dh-basic � 3/15 ch-basic. Let f · aheart � ch-basic, so that dh-basic � 1/3 f · aheart, and m be the amount
that is multiplied by bh-basic to get b � 20 · aheart. We then have two equations: Ah � m2 · Ah-basic, and
b � m · bh-basic. The first may be expanded as: 125 a2heart � m2 · (2/ f · circle − 1/2 3−4−5 rectangle

) �
m2 ·

(
2/ f · ( f · aheart)2/12 − 1/2 · 3/15 · 4/15 · ( f · aheart)2

)
� m2 · ( f /6 − 2/75 f 2) · a2heart. The

second equation is: 20 aheart � m · 4/15 ch-basic � 4/15 m · f · aheart. It follows that m � 22, and
f � 75/22. I could find no intuitive way of reconstructing a derivation of f from the grain and ox-eye or
in any other way; moreover, the denominator of f is unfriendly so that a Babylonian would find f very
distasteful, 3;24,32,43,38,10,54,32,…, although it would be needed to determine all the constants for the
heart. I do not see a plausible analysis along these lines.
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It is possible, however, that some sort of calculation such as Friberg et al. propose,
amazing as it is, justified a different procedure. To see this, I shall, for brevity, provide
algebraicized reductions. Following Friberg et al., I shall use the base b to construct a
factor by which to multiply the constant, first setting π � 3, and then

√
2 � 17/12 and√

3 � 7/4. The four basic values for the grain and ox-eye, may be calculated, the width,
the base, and the area by the Subtraction and Division method (Asd), also, but not part
of the known texts, by the Ancient method (Aam), where Aam � (b+w/2) · w/2. The
diameter of the circle for the grain, dg-basic � 4/π , and for the ox-eye, de-basic � 3/π .
The value, b � 20, proves irrelevant to our concerns:

bg-basic � dg-basic/
√
2 � 2

√
2/π

wg-basic � dg-basic − bg-basic � 2 · (2 − √
2)/π

Asdg-basic � 1/2 (circle − square) � 1/2 (d2g-basic · π/4 − b2g-basic) � 2(π − 2)/π2

Aamg-basic � (bg-basic + wg-basic/2) · wg-basic/2

� 1/2 2 · (2 − √
2)/π · (2√2/π + 1/2 2 · (2 − √

2)/π)

� 2/π2

be-basic � ht · 2/√3 � (3/4 de-basic) · 2/√3 � 3
√
3/(2π)

we-basic � 2 · (1/4 de-basic) � 3/(2π )

Asde-basic � 2/3 (circle − triangle) � 2/3 (d2e-basic · π/4 − 1/2 · 3/4 de-basic · be-basic)
� 2/3 (9/π2 · π/4 − 3/8 · 3/π · 3√3/(2π))

� 3 (4π − 3
√
3)/(8π2)

Aame-basic � (be-basic + we-basic/2) · we-basic/2 � 9 (1 + 2
√
3)/(16 π2).

For the widths, one will multiply the basic value by these factors, where bjoint � b:

bjoint/bg � b · π/(2
√
2) � (b · π · √

2)/4

bjoint/be � b · 2π/(3
√
3) � (2b · π · √

3)/9.

For the areas, one will use the squares of these values:

(bjoint/bg)
2 � (b2 · π2)/8

(bjoint/be)
2 � (4b2 · π2)/27

From these, the widths and areas by both Subtraction and Division (Asd) and by
the Ancient method (Aam) may be calculated:

wg-joint � 2 · (2 − √
2) · (b · π · √

2)/4 � b · (√2 − 1) � 5/12 b � 0;25 · b
Asdg-joint � 2 · (π − 2)/π2 · (b2 · π2)/8 � 1/4 b2(π − 2) � 1/4 b2 � 0;15 · b2
Aamg-joint � 2/π2 · (b2 · π2)/8 � 0;15 · b2
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we-joint � 3/(2π) · (2b · π
√
3/9) � √

3/3 · b � 7/12 · b � 0;35 · b
Asde-joint � 3 (4π − 3

√
3)/(8π2) · (4b2 · π2)/27

� b2 · (4π − 3
√
3)/18� 1/18 b2(12 − 3

√
3) � 3/8 b2 � 0;22,30 · b2

Aame-joint � 9 (1 + 2
√
3)/(16π2) · (4b2 · π2)/27

� 1/2 we-joint(b + 1/2 we-joint)

� 1/2 b2 · (1 + 2
√
3) � 3/8 b2 � 0;22,30 · b2

wheart � b/2 � 0;30 · b
wheart-average � (wg-joint + wg-joint)/2 � (5/12 b + b · 7/12) � b/2 � 0;30 · b
Aaveheart � (Asdg-joint + Asde-joint)/2 � 5/16 · b2 � 0;18,45 · b2
Aamheart � 1/2 wh (b + 1/2 wh) � 5/16 · b2 � 0;18,45 · b2.

There are three remarkable coincidences here, all a function of taking π � 3,
√
2 �

17/12, and
√
3 � 7/4. We have these five equivalences:

Asdg-joint � Aamg-joint.

From our Egyptian text, we should not be surprised that Subtraction and Divide and
the Ancient method turn out equal if π � 3.

wheart � wheart-average.

This is just peculiar. There is nothing in the area of the heart being the mean of the
areas of the grain and ox-eye that would suggest that the heart’s width should also be
the mean of their widths.

And now for something amazing,

Asde-joint � Aame-joint � 0;22,30 · b2.

Surprise!Well, I was surprised. This is precisely what we do not expect. The important
observation of the Egyptian text implied that Subtraction and Division and the Ancient
method here yield different results. Given π � 3, these two area calculations are equal
iff

√
3 � 7/4!

Next, we see that

Aamheart � 1/2
(
Aamg-joint + Aame-joint

)
.

This is just as astonishing and results solely from the taking
√
3 � 7/4!

Once we see this, we should also be astonished that the width of the heart is the
average of widths of the ox-eye and the grain and that its area is also the mean between
the areas of the ox-eye and the grain. Again, since the Ancient method is a parabolic
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curve, with b fixed, it is not possible for values given wh + e and wh−e to have as their
average the value for wh:

1/2 (1/2 (wh + e) (b + 1/2 (wh + e)

+ 1/2 (wh − e) (b + 1/2(wh − e)) − 1/2wh (b + 1/2wh) � e2/4.

The weird effect can only be a result of the approximation taken for
√
2 and

√
3 and

never their inverses or squares. Once we have these four coincidences, the fifth will
trivially follow, that the mean of the areas of the ox-eye and grain will be the same
as the area of the procedure, that is, as I have suggested, by the Ancient method, the
oddity with which we began:

Aaveheart � Aamheart.

I have no deeper explanation for these flabbergasting coincidences. But, for every
case where a Babylonian mathematician is known to have found the area of a segment
on a circle, the accurate Subtraction andDivisionmethod or an educated guess based on
it turns out to be equivalent to the Ancient method. IF the Babylonian mathematicians
delayed evaluating

√
3 and

√
2, that would be a very good confirmation, indeed, of

both methods. Yet, since they are based on (
√
2)2 � 2 and (

√
3)2 � 3, the Babylonian

values of the constants for the areas of the grain and the ox-eye suggest that they
actually did. Of course, we do not know whether anyone actually followed this line of
thought, but if they had, the Ancient method would have been confirmed in this weird
way.

One might now ask why the Egyptian did not get this result as well. He starts with
the side of the triangle as 12 and, using the procedure for square roots, takes the height
of the triangle as

√
108 � 10 3′ 20′ 120′ � 10 47/120. Since

√
108 � 6

√
3, he might

have chosen instead the less accurate 6 · 7/4 � 10 1/2. Even so, he would not have
gotten the same result for the two methods (the Ancient method would yield 27 1/8,
and the Subtraction and Division method 28). He would have had likewise to have
delayed taking the approximation for

√
3 to the very end, a process that is hard to see

in his practice.
In any case, whether or not the analysis of Friberg et al. is a plausible account of

Babylonian practice (I confess that I am unfit to judge), it seems much more likely that
W23291-X prob. 1 employs the Ancient method and that what Friberg et al. attribute to
Babylonian mathematicians would be at most background to their use of the Ancient
method. We have also established in passing that there are three inscribed figures on
which they built their accounts of segments, the equilateral triangle, the square, and
the 3–4–5 rectangle, and that the Ancient method oddly ‘works’ for all three. Our next
consideration will concern segments on an inscribed rectangle.

4.1 Addenda

I. As an addendum to this discussion, it might be useful to look at the gar-
bled calculation of the segment on an equilateral triangle in the old Babylonian
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‘recombination’ tablet,26 BM 85194, Rs. III 1–8, prob. 29, which stumped Neuge-
bauer (1935, pp. 188–190) and Friberg (2005, p. 133), although I will only slightly
improve on Neugebauer’s analysis. The text assumes the arc of the segment, p � 1,0,
and the length of the base of the segment, b � 50. From this, we can infer that the
angle is about 120°, so that it is reasonable to presume that the example is the segment
on an equilateral triangle, although, taking

√
3 � 7/4, the base should be 52,50, but

with Neugebauer’s
√
3 � 5/3, b � 50.27 Now the procedure, which on the surface

makes no sense, is: A � (p−b) · b− (p−b)2, where the subtraction is miscalculated
as 8,20 − 1,40 � 7,30 (we expect 6,40). The first thing to notice is that for diameter
d, p � d, and that the copyist missed this. Therefore, the procedure should probably
be d � p → A � (d − b) · b − (d−b)2. But, although, d − b seems to make no
geometrical sense, it can, in fact, be taken (with the height of the segment hs � 1/4 d):

d − b � 1/6 d � 2/3 · hs,

so that the procedure is now:

A � (2/3 · hs) · b − (2/3 · hs)2 � 10 · 50 − 1,40 � 6,40,

which is equivalent to:

(2/3 hs) (b − (2/3 hs)).

However, if, as happens elsewhere in BM 85192 (see footnote 23), the values are
correct, but not the calculation, then the procedure might be:

A � (2/3 · hs) · b − 1/2 (2/3 · hs)2 � 10 · 50 − 50 � 7,30,

and equivalent to:

(2/3 hs) · (b − 1/3 hs).

By Subtraction and Division, Asd � 1/3 (3/4 d2 − 1/2 b(3/4 d)) � 1/4 d2 − 1/8 (b ·
d) � 15,00 − 6,15 � 8,45, and by the Ancient method, Aam � (b + hs)/2 · hs �
65 · 15/2 � 8,07;30.28 The value in BM 85194 is low but not way off. If this analysis
is at all right, the mathematician who invented the procedure, whatever it was, seems
to have been playing with some combination of the height and base of the segment. In
any case, the constants for the grain and ox-eye show that the algorithm in BM 85194
was not among the best available in old Babylonian mathematics.

II. Bruins and Rutten (1961), Text III (Tablet I), from Susa, late seventeenth century
BCE, includes a long list of constants, including constants for the area of the pentagon

26 For the classification, see Friberg (2005, pp. 92–94).
27 Neugebauer (1935, pp. 189) takes

√
3 � 5

/
3, so that b � 2 · √

3
/

3 · (3/4 d) � 50. How the base

comes to be 50 is not part of my analysis.
28 The difference between the Ancient method and that in the problem, for what it is worth, is obviously:
hs · (13hs − 3b)

/
18.
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(line 26): 1,40, for the area of the hexagon (line 27), 2,37,30, and for the area of the
heptagon (line 28), 3,41.29 These are unique among the many lists of constants, so
that it is very difficult to know how well disseminated they were. Bruins and Rutten
plausibly reconstruct the calculations underlying the constants, but it is important to
keep in mind that these are reconstructions (as is so much in my paper). The basic
idea is that the values are based in taking these figures as inscribed in a circle and
taking the arc on a side as 1, in conformity with other figures, such as the grain and
ox-eye. Text II consists of two diagrams decomposing a hexagon and heptagon into
triangles formed by the radii and sides for the purpose of finding their areas, so that it
is natural to assume that this is how the constants were determined. Then, most of the
rest follows (with cn the circumference enclosing the n-gon, rn its radius, bn its side,
sn its half side, hn the height of the triangle from the center):

c5 � 5 a5 → r5 � c5/(2π ) · 5/6 � 0;50

→ s5, h5, r5 are sides of a 3 − 4 − 5 triangle

→ s5 � 0;30, h5 � 0;40 → Areatriangle−5 � s5 · h50;20
→ Area5 � 5 · 0;20 � 1;40

c6 � 6 a6 → r6 � c6/(2π ) � 6/6 � 1

→ b6 � 1 (equilateral triangle) → s6 � 0;30 → h6 � 1/2
√
3

→ h6 � 7/8 ≈ 0;52,30 → Areatriangle−6s6 · h6 � 0;26,15

→ Area6 � 6 · 0;26,15 � 2;37,30

c7 � 7 a7 → r7 � c7/(2π ) � 7/6 · 1;10
→ b7 � 1 (the arc and side almost co-inside? ) → s7 � 0;30

→ h27 � r27 − s27 � 1;21,40 − 0;15 � 1;06,40 � 1 + 0;202

→ h7 ≈ 1 + 0;202/(2 · 1) � 1;03,20 or h7 ≈ 1 + 0;202/(2 · 1;10) � 1 + 1/21

→ Areatriangle-7 ≈ h7 · s7 � 0;31,40 or Areatriangle-7 ≈ 0;30 + 1/42 � 11/21

→ Area7 ≈ 7 · 0;31,40 � 3;41,40 or Area7 ≈ 7 · (
11/21

) � 11/3 � 3;40

→ Area7 ≈ 3;41.

IF this analysis of Bruins and Rutten is correct, then there is nothing to prevent
a mathematician in Susa from determining the area of the segment or of a double
segment by Subtraction and Division on any of these, as in the case of the grain and
ox-eye:

Areacircle-5 � c25/(4π ) � 52/12 � 2;05

→ Area of 5 segments5 � 2;05 − 1;40 � 0;2

→ Areasegment-5 � 0;25/5 � 0;05 → Areaoval-5 � 0;10

29 The first discussion of this is Bruins (1951, 18–20), followed Bruins and Rutten (1961, pp. 23–30, 32–3),
who publish an old Babylonian, Susa tablet (text II) with a diagram for the area of a hexagon on one side,
whose algorithm is easy to reconstruct from the numbers given, and a heptagon on the other, which is not
re-constructible, as well as this tablet (Text III, Tablet I). See also Vaiman (1963, pp. 76, 82–83) and Robson
(1999, pp. 48–50). For the provenance of Tablet I (text III), see also Robson (1999, pp. 19–21).
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Areacircle-6 � c26/(4π ) � 62/12 � 3

→ Area of 6 segments6 � 3 − 2;37,30 � 0;22,30

→ Areasegment-6 � 0;22,30/6 � 0;03,45 → Areaoval-6 � 0;07,30

Areacircle-7 � c27/(4π ) � 72/12 � 4;05

→ Area of 7 segments7 � 4;05 − 3;41 � 0;24

→ Areasegment-7 � 0;24/7 � 0;03,25,43 → Areaoval-7 � 0;06,51,26

Perhaps these numbers will show up one day on a Babylonian tablet.

5 How to derive the ancient method and the revisedmethod: why
they work

The oddity of the Ancient method is that it adds on to 1/2 b · h half the square of h
(Fig. 11). Now we can imagine a dirty way of thinking about this, which is probably
howmost people try to explain it.30 We look at the segment with an inscribed triangle.
Its area will be 1/2 b · h. Clearly, it is too small. Therefore, we need to approximate
with a figure that is larger. Obviously, the rectangle b · h is way too large. Therefore,
let us take an average, the trapezoid with height h, base b, and upper side also equal to
h, clearly (b + h)/2 · h. We could consider some other approximation, 3/2 b2, or even
3 h2, but these would not come out of thinking about the figure in this simple way.
Such mean taking is typically Babylonian. This might even be right. If this is how the
method was conceived, one might well be wary of it, as the author of P. Cairo shows,
or espouse it because one has been seduced by the coincidences associated with W
23291-x.

However, there is nothing in this method that bears any obvious relation to taking
π � 3. The feature that Hero observes would just be a fortuitous accident, and he
would be wrong. That too is possible. What would he know of intuitions in another
culture, centuries earlier?

I would like to suggest a more precise mean taking. While I cannot be certain
that anyone in the Babylonian world ever thought like this, I think we can be fairly
certain that the reviser did and that this is what Hero did not quite understand or
at least did not quite represent accurately. Let us return to the figure of the rectangle
inscribed in the circle. Every segment is on such a rectangle and is adjacent to two equal
segments. Let us call the equal segments ‘complements’ and the unequal segments
‘adjacent segments’ (with segmenti being the area of segmenti). My first observation
is something that is so obvious that it is hard to imagine others not noticing it. Indeed,
if the scribe of BM 85194, probs. 20-1, did not get it, the author of the problem he

30 For example, Friberg (2005, p. 133) thinks it has to do with a trapezoid rule. Had its Babylonian
provenance not been so tentative, I suspect that more people would have used this sort of diagram to explain
the algorithm.
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Fig. 11 A common way to
understand the Ancient method

Fig. 12 Adjacent segments on a
rectangle inscribed in a circle
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copied certainly did (see footnote 23).31 Let h1, b1 and h2, b2 be the heights and bases
of adjacent segments on a rectangle inscribed in a circle of diameter d (Fig. 12).

Observation 1 : h1 � 1/2 (d − b2) and h2 � 1/2 (d−b1)

Or d � 2h1 + b2 and d � 2h2 + b1
Or b1 � d−2h2 and b2 � d − 2h1.

The second observation is something that is basic to Old Babylonian treatments
of Subtraction methods for obtaining constants for the calculations of the areas of
irregular figures such as the grain and ox-eye. For this observation, however, it is
necessary to assume that π � 3.

Observation 2: the area of the circle is equal to the area of the rectangle and
twice the areas of a pair of adjacent segments. That is,

3/4 d2 � b1 · b2 + 2 (segment1 + segment2)

Or: 2 (segment1 + segment2) � 3/4 d2 − b1 · b2.
31 Friberg (2007, pp. 43–45) provides an example,MS 3049, prob. 1, of finding the height from the chord by
taking the base/chord of the segment from the height and the diameter, by taking 2 ·

√
(d/2)2 − (d/2 − h)2.

This does not require Observation 1 below.
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In what follows, I shall not use standard labels in the diagrams. The lengths of lines
will be indicated, and rectangles will be labeled with capital letters.

Theorem 1 On the assumption that π � 3, that is that the area of a circle is 3/4 the
square of the diameter, if a rectangle is inscribed in the circle, the sum of the areas
of any two adjacent segments on the rectangle is half the sum of the base and height
times the height of each (Fig. 13).

Let there be a circle with a rectangle inscribed in it, with segment1 having base of
length b1 and height of length h1 and segment2 having base of length b2 and height
of length h2. Then,

segment1 + segment2 � 1/2 (b1 + h1) · h1 + 1/2 (b2 + h2) · h2.

Derivation: Let there be a circle with a rectangle inscribed in it, with the horizontal
length longer than the vertical width, and let the rectangle be divided into quadrants,
and let the circle be inscribed in a square, where the lines dividing the rectangle into
quadrants are extended so as also to divide the square into quadrants. For convenience,
let a common diameter of the circle and of the rectangle be drawn. Mark the rectangle
in gray.

Since, assuming that π � 3, the area of the circle � 3/4 d2, color in the three
quadrants of the square in dark gray, with the area shared with the rectangle being
medium gray, leaving the remaining quadrant of the rectangle in light gray. This will
encompass three of the four quadrants of the circumscribing rectangle. Extend all
lines in these three quadrants to the circumscribing rectangle. We can thus say that
3/4 of the circumscribing square is equal to the circle, so that 3/4 of the square less
the inscribed rectangle is also equal to the four segments on the rectangle. In other
words, the dark/medium gray area less the medium/light gray area is equal to the four
segments. Having removed the medium gray area, the dark gray area less the light
gray area is equal to the four segments.

Fig. 13 Theorem 1
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Of course, all of the quadrants of the rectangle are equal. Therefore, I have divided
up the upper left quadrant of the square into nine sections. We need to show that the
light gray area is equal to no more than triple some selection of portions from the dark
gray region of the upper left quadrant. Sections FK are equal to 1/4 the rectangle and
so to the light gray area. Hence,

3 (AB C DE GH) − FK � 4 segments on the rectangle.

Since the rectangle is oblong, the heights of the adjacent segments are unequal. Let
us examine how I have divided up the square. First, there are the lines of the bases
of the segments, so that the horizontal lengths of DG, EH, FK are b2/2 and those of
A, B, C � h1, while the heights of AB, DE, GH are h2 and those of C, F, K are
b1/2. However, I have also added two lines dividing AB, DE, GH, so that the heights
of A, D, G are h1, and those of B, E, H are h2−h1. Similarly, I have divided DG, EH,
FG, so that the horizontal lengths of G, H, K are h2 and those of D, E, F, b2−h2. In
all this, what is important is the following:

A is a square with side h1,

GH is a square with side h2.

Hence, EHFK is a complement square of A

and CF is a complement square of GH.

Since the diameter will cut the squares, we can also apply Euclid, El. I 43, that the
complement rectangles will be equal. K � ABED, and DG � BC.

Additionally, it follows that

CF is the square of b1/2

and EHFK is the square of b2/2.

Hence, by the Pythagorean rule, EHFK + CF � the square on d/2

� 1/4 the square on the diameter � the square of the quadrant.

Thus, ABCDEFGHK � EHFK + CF

It clearly follows that F � ABDG

We also saw that K � ABED

Hence FK � 2 ABD + E + G.

Now, I divide up the other two quadrants outside the rectangle in the same way.
Hence, the areas of the three square quadrants after the inscribed rectangle is taken
out will equal: 3 ABCDEGH.

Hence,

4segments � 2 (segment1 + segment2)

� 3 ABCDEGH − (2 ABD + E + G)

� ABD + 3C + 2E + 2G + 3H

� A + GH + 2C + B + C + D + 2E + G + 2H
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� A + GH + 2C + DEGH + BC + E + H (but we saw BC � DG)

� A + GH + 2C + DEGH + DEGH

� A + GH + 2C + 2DEGH

� h21 + h22 + 2h1 · b1/2 + 2h2 · b2/2
� h21 + h22 + h1 · b1 + h2 · b2

Hence, since each of segment1 and segment2 equals the area of its opposite segment,

segment1 + segment2 � 1/2 (h21 + h1 · b1) + 1/2 (h22 + h2 · b2)
� 1/2 (h1 + b1) · h1 + 1/2 (h2 + b2) · h2

If the heights are equal, that is, the rectangle is a square, then we do not need the
horizontal line, but the proof is otherwise the same, with B, E, H eliminated. Q.E.D.

The proof for π � 22
/
7 or for any value of π (including a true value) now treats

this as a lemma, namely:

Lemma Given a rectangle inscribed in a circle, with sides b1 and b2 and h1 and h2 the
heights of the segments on them, with d the diameter of the circle,

3/4 d2 − b1 · b2 � (h1 + b1) · h1 + (h2 + b2) · h2

It then follows straightforwardly that:

Theorem 2 For whatever π is taken to be:

4 segments � π · d2/4 − b1 · b2
� π · d2/4 − 3/4 d2 + (h1 + b1) · h1 + (h2 + b2) · h2
� (π − 3) · (d/2)2 + (h1 + b1) · h1 + (h2 + b2) · h2
� (π − 3) · ((b1/2)2 + (b1/2)

2) + (h1 + b1) · h1 + (h2 + b2) · h2
(since (d/2)2 � (b1/2)

2 + (b1/2)
2).

Hence, segment1 + segment2
� (h1 + b1)/2 · h1 + (b1/2)2 · (π − 3)/2 + (h2 + b2)/2 · h2 + (b2/2)2 · (π − 3)/2,

Q.E.D.

Obviously, if the reviser of the Ancient method understood something of this and
took π to be approximately 3 1/7 (or something equivalent), then

Corollary to Theorem 2

segment1 + segment2
≈ (h1 + b1)/2 · h1 + (b1/2)

2 · (22/7 − 3)/2 + (h2 + b2)/2 · h2 + (b2/2)
2 · (22/7 − 3)/2

≈ (h1 + b1)/2 · h1 + (b1/2)
2/14 + (h2 + b2)/2 · h2 + (b2/2)

2/14
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The approximation of the segmentwill then bequite reasonably the average, namely,
what we in fact find:

segment ≈ (h + b)/2 · h + (b/2)2/14.

Indeed, just as it would be surprising if no users of theAncientmethodwere completely
unaware of Theorem 1, it is even harder to imagine that the reviser did not grasp
something of this corollary, even without Theorem 2. For, again, how otherwise would
he have realized that he needed to take half the square of the base, instead of the height?

Most important, Theorem 1 captures why the rule is essentially tied to taking π � 3
and why it is exact for only two cases: where the segment is on a semicircle, and there
is no inscribed rectangle; and where the figure is a square, and all four segments are
equal. It also shows that in every pair of adjacent segments, segment1 and segment2,
that are not are on a square, if we could check the area for each segment, again on the
assumption that π � 3:

if (b1 + h1) · h1 > segment1, then (b2 + h2) · h2 < segment2

Once one realizes this, one sees immediately that Fig. 3 is deeply flawed. Of course,
that graph does not represent the fluctuation of the Ancient method around the true,
as it is always less than the true value. However, what it should show is the fluctuation
about the true value on the assumption that π � 3. One may well suspect that what is
going on there in the fluctuation of the Ancient value is a fluctuation, not with respect
to a true value, but about a norm for π � 3. This is far enough from a true value for
π that the Ancient method does not ever result in values above the True area of the
segment. Therefore, in the case of the Revised method too, 22/7 is close enough to
the actual value of π that pairs of adjacent segments can fluctuate on both sides of the
actual, respective values.

Each method works for both segments when the deviation is not large, which nor-
mally it is not. We can see why, when the ratio of the base to the height is large,
the error of one of the segments should also be large. For the adjacent segments will
diverge in size, so that they will also diverge from the mean. All this is clear in Fig. 14,
which compares the values for the Ancient and Revised methods with ‘true’ values
for π � 3 and π � 3 1/7, respectively, and Fig. 15, which shows the values for the
adjacent segments based on the Revised method and their mean area. We see clearly
the intersection with the true values at the semicircles (radius � 60 points) and at
the square (h ≈ 17.57 points, b ≈ 84.85, and b : h ≈ 4.83).32 It happens that the
inaccuracy comes about when the segment is the smaller, since there are two points
of accuracy, the limiting case of the segment on the semicircle and the segment on the
square. However, without a deeper means of checking, it is hard to see how one could
know. The author of P. Cairo has a means, but not the means to exploit it extensively.

32 For the ‘true’ value of the area of the segment, I used, in Mathematica™: pival r∧2 ArcCos[(r −
h)/r ]/Pi− Sqrt[2 h r − h2](r − h), where pival is whatever value of π was appropriate and Pi the built-in
value ofπ. However, when the valueπ is distant from the true value, as in taking π � 3, and the angle of the
sector is small, the value of the arc/circumference becomes distorted, so that it does not seem meaningful
to construct a curve. In Fig. 14, I do not include small values of h, where h : r < 1:12).
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Fig. 14 Comparison of the Ancient and Revised methods to True area based on r � 60 and π � 3 or
π � 3 1

/
7

The Revised method obviously has a terminus post quem, Archimedes’ publication
of the Dimensio Circuli, but I have only a guess at who and when. Did the discoverer
know of a Babylonian antecedent, or was he relying on Egyptian treatises, or had
the Ancient method already become a part of the Greek metrical tradition? And if
so, was the vehicle of transmission treatises like P. Cairo? These are nice matters for
speculation, but not presently answerable.33

It is evident from Theorem 2 that we may now state the Revision of the Ancient
method as a generalized approximation of a segment:

segment ≈ (h + s) · h + (b/2)2 · (π − 3)/2

The same issues will apply. When the segment is that on an inscribed square the
rule will be accurate for that value of π , but in any case,

if (b1 + h1) · h1 + (b1/2)
2 · (π − 3)/2 > segment1, then (b2 + h2) · h2

+ (b2/2)
2 · (π − 3)/2 < segment2

33 See Knorr (1982) for an argument that transmission into Greek mathematics from Babylon was via
Egypt.
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Fig. 15 Comparison of the areas of adjacent segments for r � 60 points and π � 3 1/7

I have no idea whether anyone would be interested in this modern approximation
of the area of a segment, but, if π ≈ 3 1/7 is good enough, then the Revised method is
probably good enough.

It should also be clear what is strange and unfortunate about Hero’s description of
both methods. Of course, he is correct in explaining that in the limiting case of the
semicircle, as he could have added for the case of the square, eachmethod is essentially
tied to its presumed value for the ratio of circumference to diameter. But this is because
there is a more fundamental theorem that Hero does not prove, that establishes both
methods, but only accurately establishes the areas of adjacent segments together and
not individually. His comments, therefore, that the application of the methods to the
semicircle justifies and explains each are misleading and peculiar, but comprehensible
once we understand the underlying theorem. On the other hand, it would seem that
Hero does not know the underlying theorem, and we shall see that there is some further
evidence for this.
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6 Hero’s method, the quasi-Archimedean area as 4/3 · b · h/2:
a puzzle remains

Unless one has an independent way of checking the areas, e.g., by regular polygons,
there really is no way of knowing that the Revised Version is ever inadequate, although
one can guess that it must be, simply because 31/7 is an upper bound. This is partly
why I think it unlikely that the Revised method was part of the Dimensio Circuli and
was probably introduced somewhat later than Archimedes. Does it become irrelevant
with the introduction of trigonometry, when one really can use a Subtraction method
to get the area of a segment? Obviously not! Indeed, it is perfectly consistent with the
utility of the method that it be introduced by someone like Hipparchus. But the only
requirement is that it is well established by the time that Columella is giving advice
to farmers in the mid first century CE.

We saw that Hero’s assertion that the Revised method does not work well when
the base is more than triple the height is problematic. It would have been natural to
presume that Hero uses trigonometry and subtraction to check the Revised method,
except that it would require that he made an error of calculation. And this is a problem.
Why does he think the Revised method is worse than it actually is? In addition, why,
as Knorr and Høyrup observe (see footnote 11), does he then use the Revised method
to illustrate the Subtraction method, in an example where the base is 14 units and the
height is calculated to be 3 1/2 units, that is where the base is four times the height? In
fact, the situation appears even worse than they suggest. The ratio of the base of the
segment on a square to the height is 1:1/2 (

√
2 − 1) ≈ 1:1/2 (17/12 − 1) ≈ 4 4/5 : 1,

which is much larger than either the example Hero uses or 3:1. Yet, this is where the
Ancient and Revised methods actually are most accurate, in fact geometrically based,
and, as we have seen, demonstrably so. For this, one would not even have to rely on
a trigonometric chord table. One can see this simply by the Subtraction and Division
method suggested by P. Cairo. Hero’s remarks are indeed mysterious.

Nor will it be an adequate response that Hero did not like the fact that the Revised
method gives values higher than the true for ratios even where the height is larger than
the height of the segment on the square. First, the ratio is much larger than 3:1, and
secondly 31/7, which he knows gives a high value, is the value that he is using for
circle calculation.

In my discussion, I have avoided the thorny issues of the unity of the 7 chapters
I 27–33, on the segment in the Metrica. I am not good at judgments of taste and I
do not see why, for example, what others see as a messy organization might not be
exactly what the author wanted, why the author of the discussion might not set up
the preliminaries for a theorem he is keen to present before the full discussion of the
segment and then, with these out of the way, proceed to present two traditional ways
of finding the area, the Ancient and the Revision, proudly give the theorem (whatever
may be his contribution to it), which is far from technically trivial, and then conclude
with the Subtraction method. He might well have thought the lemmata a distraction
from the tight discussion of I 30–33.
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The only other oddity is that he gives nometrical example of the quasi-Archimedean
method, but this is hardly uncommon in the Metrica.34 The only real oddity, then, is
the issue that Knorr and Høyrup raise, and which we see is much, much worse. The
Revisedmethod is better than the quasi-Archimedeanmethod for ratios where the base
is less than about 6.4 times the height, he ignores his own rule, and the best application
of the method is ruled out by his restriction. Is there a better case for suggesting that
there is an error in the text? Either Hero really blew it, or he meant to or did say
something else, such as that the half base must not be greater than three times the
height (see footnote 10). That, at least, would be in the ball park of correct and would
not go against any examples. Given that he repeats the error four times in the course
of I 31–32, emendation is out of the question. But faulty memory might not be. Or
perhaps there is some other reason entirely for what he says.

It is natural to want to save an author from a blunder. The quasi-Archimedean
method appears nowhere else in Hero’s corpus.35 Why not think of it as an intrusion?
This is not so easy, given that it really does work better than the Revised method for a
high ratio of the base to height and given the difficulty of the proof, as well as the pride
with which the author announces it. It cannot be a general substitute for the Revised
method, but something is needed for the high ratios. Therefore, the only problem is
the ratio, three times, rather than slightly more than six times.

More to the point, however, assuming Hero understood that the correct ratio is six
times, as we can see from Fig. 14, the drop in error is very fast after the ratio for
the square, but not severe. We can make up a table of simple calculations of the sort
Hero might have presented, or used, comparing the Revised method and the quasi-
Archimedean with ratios from twice to nine times, along with the extreme example
fromMetrica I 31.

(* in
Hero)

Height Base Revised method Quasi-Archimedean method Method
with
chords

Ratio Calculation Result Calculation Result Resulta

(h + b)/2 · h + (b/2)2/14 4/3 b · h/2

2x* 7 14 (7 + 14)/2 · 7 + 72/14 77 2/3 · 7 · 14 65 1/3 77;00

3x 7 21 (7 + 21)/2 · 7
+(101/2)2/14

105 7/8
2/3 · 7 · 21 98 106;18

4x* 3 1/2 14 (3 1/2 + 14)/2 · 3 1/2

+72/14
34 1/8

2/3 · 31/2 · 14 32 2/3 34;17

4x*b 4 16 (4 + 16)/2 · 4 + 82/14 44 4/7
2/3 · 4 · 16 42 2/3 44;47

34 See Acerbi and Vitrac (2014, pp. 58–59, 411–427). Cf. Metrica II 10, III 11–18, 23, II 10, III 11–18,
23, which do not give metrical examples.
35 SeeHøyrup (1997, p. 242). So far as I can tell, none of the fourmethods for finding the area of the segment
are used in theMetrica outside I 30–33, although III 18, to divide a circle into thirds with two straight lines,
could easily have used something of these methods. The scholion to Geom. 19 in Cod. Seraglio G.I. I f. 11r

(Hero, Opera v. 5, p. 228–9, see footnote 9) illustrates the quasi-Archimedean method with b � 40 and
h � 10: triangle inscribed in the segment � 200 → 1/3 · 200 � 66 2/3 → segment ≈ 200 + 66 2/3 �
266 2/3. Of course, the scholiast is reading and commenting on the entire manuscript, which includes the
Metrica.
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(* in
Hero)

Height Base Revised method Quasi-Archimedean method Method
with
chords

Ratio Calculation Result Calculation Result Resulta

5x 7 35 (7 + 35)/2 · 7
+(171/2)2/14

168 7/8
2/3 · 7 · 35 163 1/3 168;38

6x*c 3 1/3 20 (3 1/3 + 20)/2 · 3 1/3

+102/14
46 2/63

2/3 · 7 · 42 44 4/9 45;29

7x 4 28 (4 + 28)/2 · 4 + 142/14 78 2/3 · 4 · 28 74 2/3 76;03

8x 3 1/2 28 (31/2 + 28)/2 · 3 1/2

+142/14
69 1/8

2/3 · 31/2 · 28 65 1/3 66;22

9x 7 63 (7 + 63)/2 · 7
+(311/2)2/14

315 7/8
2/3 · 7 · 63 294 298;00

10x 7 70 (7 + 70)/2 · 7 + 352/14 357 2/3 · 3 1/2 · 24 326 2/3 331;13

60x* 1 60 (1 + 60)/2 · 1 + 302/14 94 11/14
2/3 · 1 · 60 40 40;03

aUsing a sexagesimal, unlimited precision calculator that I have written in Visual Basic™ for Excel™, that, inter
alia, interpolates from Ptolemy’s chord tables, after finding the radius, I took the arc-chord (b · 60/r ), divided the
angle by 360, and multiplied this by 3;8,34,37 (an approximation of 3 1/7) and the square of the radius to get the
area of the section. I then subtracted (r − h) · b/2 to get the area of the segment, all calculated with the precision,
except for π , kept to 1 or 2 places. This paltry attempt at authenticity is probably unnecessary, since we do not
know what Hero’s chord table would have looked like anyway, while the difference between the values obtained
and values obtained in more conventional ways is trivial
bGeometrica 24.51 (ms. S), without a given procedure as part of the calculation of the area of a segment larger
than a semicircle, b � 16, h � 16 by subtraction. This is one of two examples (three passages) outside theMetrica
that use ratios of b : h > 3:1, both within a subtraction argument. Columella,De re rustica V 2.9 uses these values
for his sole example but rounds down, taking 64/14 as “ea efficit IV paulo amplius,” whence, he actually gets 44
as the area
cGeometrica 20.8-11 (ms. S andmss. AC differ in 8–9, the area of the smaller segment is in 11), This is a calculation
of a larger segment by subtraction, with b � 20 and h � 30. See also De mens. 32, which merely instructs us,
in procedural form, to follow the procedure and does not provide values. These are two of three instances outside
the Metrica of values b : h > 3:1. See Acerbi and Vitrac (2014, p. 225 n. 289) for a survey of occurrences of the
Revised method, values used and variations

I have no idea whether Hero would have gone through the labor of testing the two
loosemethods against a geometrical test in a randomway. The books on Straight Lines
in a Circle referred to in I 22, 24 should have been a substantial treatise that discussed
the lengths of chords. It is hard to imagine that an Alexandrian mathematician would
not be in a position to make such a test. But that does not mean he actually did.36 It
would certainly be an onerous task.

Given that the goal of handbooks such as the Geometrica and the Metrica is to
provide useful and handymethods for calculation, it is easy to seewhy certain complex
methods are not going to be recommended, even if they were available. Nonetheless,
it is natural that Hero will recommend methods that are easy. His quasi-Archimedean
method is easier to use than the Revised method and is reasonably accurate when the
ratio of b:h is high. He also knows that the Revised method gets very bad eventually.
All this is clear. “What is good enough?” is a different question. But how he knows

36 SeeAcerbi andVitrac (2014, pp. 29–30, 205n. 227),who think it likely that the treatisewas a development
of a chord table.
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when it goes bad or if its going bad is even the reason for the recommendation to
switch at the 3:1 ratio or at any ratio is the unanswered question.

With this, let me make one last attempt a good story. But it is no more than a good
story.

There is an obvious way inwhichHeromight have checked the Revisedmethod, the
one we have already inferred from P. Cairo, by Subtraction and Division. InMetrica I
17–25, he establishes procedures for deriving the areas of regular polygons from their
sides, from triangle up to the dodecagon, except for the trivial square. All he needed
to do was to do was something that would have taken a few extra moments, to have
derived the height of a segment and the area of the segment by the Revised method,
and then to have found the area of the circumscribing circle and to subtract the area
that he has just found, and to divide by the number of sides of the polygon.Then, if
things did not turn out right, he might also have checked the ratio of the side of the
segment to the height. Here is a problem. The ratio of the side of every regular polygon
inscribed in a circle to the height of the segment on it is larger than 3:1. Almost every
one of these calculations will involve discrepancies due to the values for square roots
chosen and for the value of π , that are built into the nature of the Revised method
itself, except for the segment on the square.

Except for the case of the triangle, Hero provides all the numbers and ratios for
every odd-numbered polygon adequate to do both calculations. That is, the calculations
provide enough to get ratios between the side, the diameter, and the altitude of the
triangle on the side whose vertex is the center of the triangle. That is not the case for the
even numbered polygons, where the length of the diameter and radius are not used in
the calculation. Of course, it would be easy to apply the Heronian procedure to derive
square roots for these, even when they involve two applications of the procedure (e.g.,√
(5/2 +

√
5/2) ≈ √

(5/2 + 9/8) ≈ 61/32). For our purposes, however, the odd-numbered
polygons will be enough, except that we will also need some construction of the
triangle and square. For the equilateral triangle (I 17), Hero actually avoids finding
the height by determining the area as the square root of 3/16 of the square of the square
(δυναμoδÚναμις) of the side, but 7/4 is well enough established as a value for

√
3

and 17/12 for
√
2. In each case, the problem is to find the area of the figure with a side

of 10. Therefore, I will give the ratios, what they represent, and then the results of
calculation (Fig. 16).

Equilateral triangle: we saw the same example in P. Cairo and may ignore the
oddities of the Babylonian ox-heart, so that we expect a discrepancy. Let the side, s,
be 10. Then, htriangle � √

(s2− (s/2)2) ≈ √
(102 − 52) � 5

√
3 ≈ 5 · 7/4 ≈ 8 3/4. As

before, hsegment � 1/3 htriangle ≈ 2 11/12. Finally, d � 20
√
3/3 � 11 2/3. The area of

the triangle fromMetrica I 17 is: 43 1/3.
Square: we expect the values to be close. Let the side, s, be 10. Hence, d � s

√
2 �

10
√
2 ≈ 10 · 17/12 � 14 1/6, and hsegment � 1/2 (d−s) ≈ 2 1/12. The area of the

square obviously is: 100.
Pentagon (Metrica I 18): Hero treats the square root of 5 as 9:4, which conveniently

results from dividendo on the ratios of a 3:4:5 right triangle, here the right triangle
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Fig. 16 General diagram for
segments on regular n-gons,
where n is odd

formed by the altitude from the center,37 so that hypotenuse+altitude:altitude ≈ √
5 :

1 ≈ 9:4 → hypotenuse:altitude ≈ 5:4 (see also the procedure for the dodecagon,
Metrica I 23). Hence, a 3–4–5 triangle is involved in a metrical approximation of a
pentagon. The ratios in the text then are radius:height:side ≈ 5:4:6. Therefore, if the
side s is 10, htriangle ≈ 10/6 · 4 � 6 2/3 and d � 10/6 · 5 · 2 � 16 2/3, i.e., r ≈ 8 1/3.
Hence, hsegment � r − htriangle ≈ 1 2/3. The area of this pentagon is calculated in
Metrica I 18 as 166 2/3, although he points out that one can get a more precise result
with more precise values for numbers, n2 and m2, such that n2 is closer to 5m2 than
81 to 5 · 16, his way of describing the approximation.

Hexagon (Metrica I 19): It is probably unnecessary to include a hexagon, espe-
cially, as Hero builds the calculation of the area on the area of the equilateral triangle.
Nonetheless, as it involves no more than

√
3 ≈ 7/4, it is not egregious to include it.

For, if we let s � 10, d � 20, and htriangle ≈ 8 3/4. Hence, hsegment ≈ 1 1/4. The area
calculated will be: 259.

Heptagon (Metrica I 20): the ratio of the radius: side ≈ 8 : 7 and of the side:
heighttriangle ≈ 42 : 43, so that diameter:radius:side:heighttriangle will be 96:48:42:43.
Let the side be 10, so the adjustment will be 5/21. Hence, d ≈ 22 6/7, while the
radius ≈ 11 3/7 and heighttriangle ≈ 10 5/21, so that hsegment ≈ 1 4/21. Hero calculates
the area as 358 1/3.

Nonagon and hendecagon (Metrica I 22 and 24): both passages refer to books On
straight-lines in a circle, which may have constructed a table of chords, but certainly
explored metrical values. The diagram takes a diameter and a line from the other end
point of the side/chord to the diameter. This triangle will be similar to and double a
triangle from the center where one side is the radius and the other the height.

Nonagon: d : s � 3:1 and htriangle : s ≈ 1/2 · 17:6 ≈ 17:12. Let s � 10. Then,
d ≈ 30; r ≈ 15; htriangle ≈ 14 1/6. Therefore, hsegment ≈ 5/6. The area is: 637 1/2.

37 Hero shows in a lemma to I 18 that (with ρ a right angle) if a right triangle has an angle 2/5 · ρ, with a
the adjacent leg to the angle (and opposite the 3/5 · ρ angle) and h the hypotenuse, the square on h + a is
5-times the square on a. Since the angle of the right triangle from the center, i.e., half the triangle from the
center, is 1/2 · (4/5 · ρ), the square on the radius/hypotenuse of the circle/triangle + the altitude is 5 times
the square on the altitude.
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Hendecagon: d : s � 25:7 and 2htriangle : s ≈ 24:7, so that htriangle : s ≈ 12:7. Let
s � 10. Then, d ≈ 35 5/7; r � 17 6/7; htriangle ≈ 17 1/7. Therefore, hsegment ≈ 5/7.
The area is: 942 6/7.

With this, we may now construct a table with the different values for the segments
(the second numbers for the circle area and difference/n take d2 without using the
approximated square root):

n-gon Ratio
b:h

Circle area n-gon
area

Difference/n Revised
method

Quasi-Arch Modern

3-gon 3 3/7 106 17/18,

104 16/21

43 1/3 21 11/54,

20 10/21

20 1255/2016 19 4/9 20.47

4-gon 4 4/5 157 347/504,

157 1/7

100 14 851/2016,

14 2/7

14 751/2016 13 8/9 14.27

5-gon 6 218 16/63 166 2/3 10 20/63 11 32/63 11 1/9 11.06

6-gon 8 314 2/7 259 9 3/14 8 183/224 8 1/3 9.06

7-gon 8 2/5 410 170/343 358 1/3 7 3254/7203 8 197/441 7 59/63 7.69

9-gon 12 707 1/7 637 1/2 7 31/42 6 151/504 5 5/9 5.91

11-gon 14 1002 64/343 942 6/7 5 135/343 5 30/49 4 16/21 4.81

If you have a penchant for a good story, I am not sure that the one I am about to give
will satisfy you. I certainly do not put much store in its likelihood, but it has, at least
for me, a feel of verisimilitude, and that may be what is wrong with it. It is curious that
every regular polygon has a base/side to height ratio greater than three times, while the
pentagon and up have ratios greater than or equal to six times. These are also all the
segments that can be tested without resorting to Hipparchus’ theory of chords, other
than, of course the limit case of the semicircle. There is no getting around the fact that
the square works fairly well, as we expect. But we also expect some error in the case of
the equilateral triangle, and it is there on either calculation. Do not look at the column
on the right—I put it there for completeness. In fact, do not look yet at the column
next to it with Hero’s own method. I do not know why the values for the hendecagon’s
are so in sync, but all the polygons are all a little problematic when compared with
each other. In our table, the quasi-Archimedean, against Hero’s theorem, even comes
out larger than that by Subtraction and Division, which should lead one to think the
approximations very inadequate, as Hero noted in his account of the pentagon. Let
us suppose that he got results something like this. Having assumed that the method
of Subtraction and Division is completely reliable if the approximations are good,
Hero might have thought that the only really reliable values in the application of the
Revised method are those near the case that he could see was proven, namely the
semicircle. If this is right, by not having our theorem on adjacent segments, Hero has
missed understanding why the Revised method works—and why it does not. He then
condemns all non-trivial applications which he can check, namely where the ratio is
that of the height on a regular polygon, or where the ratio of base to height is larger
than 3:1. Finally, he found his own alternative that seemed to work even better (well,
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not quite if you now look at the second column from the right). But it was his method.
Therefore, this is a good story. Is it true? Maybe! Maybe not?

7 Very brief remarks on the Subtractionmethod: another puzzle
remains

I do not know what would count for Hero as inadequate values for the area, nor how
he would check. The obvious way for someone in his time would be to do the tedious
work of using a geometrically based method, such as Subtraction and Division. It is
evident that the Ancient method and the Revision also work well when the segment
is larger than a semicircle, just not when it is much larger, speaking very roughly,
when the height is 3/2 the radius or about 7/8 the base, that is the complement of the
segment on the side of the equilateral triangle, the error is only about 2% for the
Revised method. A graph (Fig. 17) might, then, be useful comparing the difference in
values between the Revised method and the Subtraction method. As before, it might
be interesting to have them compared to an actual value as well.

The chart reveals two things that are unexpected, and perhaps amusing. TheRevised
method is fairly effective so long as the height is less than about 3/2 the radius. Perhaps

Fig. 17 Comparison of the Subtraction method with the Revised method and the True area
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this is too inaccurate for some people. But it is certainly comparable, for example, to
taking π � 3, or some other calculations to be found in the Heronian tradition, or even
some other methods for finding the area of a segment larger than semicircle.38 What
is truly surprising, however, is how good the Subtraction method is, regardless of the
inaccuracies of the calculation of the complement segment. Quite the contrary, when
the height is more than 5/6 the diameter, and you are making the worst estimate of the
area of the complementary segment, you need not worry at all. Your error is still going
to be less than 0.1%. Therefore, Hero was right to ignore his restriction in applying
the Revised method in using it for the Subtraction method. If the base is 60 units and
the height 900 units, go right ahead and derive the complement’s height as 1 unit. Take
the area as 125 2/7 and calculate the area of the circle (9012 · 11/14) as 637844 9/14
and tell us that the area is 637719 5/14, because your handy sexagesimal calculator and
chord table will come up with 637811;16. Then, you will see why. The complement
is so small that any bad but reasonable calculation will make for an accurate estimate
of the segment.

But is it at all likely that anyone in antiquity investigated these issues of accuracy
with any depth and beyond looking at extreme cases, such as Hero does in theMetrica?
It is more likely that these issues of accuracy are guided more by intuition and the
knowledge that the Subtraction method should work exactly as well as the Revised
method (and apparently even better) while these other methods fall apart quite visibly
at extremes. We thus come back to the same issue. When someone speaks of error,
sometimes they are beingmethodical, but not always.Often they are justwaving hands.

8 Conclusions: some questions answered

I began with twelve questions, and somemore came up along the way. To some extent,
my puzzles are a small part of the history of mathematics. They constitute a corner
in the world of mensuration, not the loftiest corner in the pantheon of past historical
interest. Yet, there is an important path that I have traced from Babylon to some
mathematician in the late Hellenistic age who found an interesting property, which
was then lost, as people applied the results, amuch better way ofmeasuring something.

I have shown why the Ancient method works and in a deeper way that it really is
essentially connected to taking π � 3. This also led to a better way of understanding
the procedure, I think, than has been done before. Problems remain. Did anyone
in the Babylonian world see the property that serves as a solid foundation for the
procedure? At least, it is plausible that the author of P. Cairo knew that the segment
of the square was unproblematic, while the segment on the equilateral triangle was,

38 Besides occurrences of the Ancient method in the Stereometrica (see Acerbi and Vitrac 2014, p. 223, n.
286), I noted in Sect. 1 Geometrica 20.4(S): (b, h) → b · h → b · h · 11 → b · h · 11/14 → A, with an
error from 0 to 9.1% for the small range 2:1 > b:h ≥ 1:1, but any lower is noticeably bad;De mensuris 29 :
(b, h) → (b+h) → (b+h) · h → (b+h) · h/2 → 1/21(b+h) · h/2 → (b+h) · h/2+1/21(b+h) · h/2 → A,
an error of about 0–5.0% for 2:1 > b:h > 2:3. The error for the Revised method with b : h � 2:3 is 8.5%.
The angle in the circle for this segment is about 286˚. See Fig. 3. Both are much worse than the method
of Subtraction. My point here is not that anyone is paying attention, but rather that preferences one way or
another are probably based on intuitions about extreme cases and suspicions. But could anyone doing any
serious checking miss how bad the method of Geometrica 10.4(S) is?
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a crucial consequence of the property. In addition, I have established the procedure
as Babylonian and showed that a weird coincidence of numbers could have led a
Babylonianmathematician tomiss completelywhat was problematic in P. Cairo and so
to think themethod confirmed, although I leave it to others to determinemore precisely
the method’s provenance in that world. With much more confidence, I think I have
established the basis for the Revised method. Indeed, the Revision allowed us to find a
nice generalization: for any preferred value of π , the sum of the areas of two adjacent
segments is (b1+h1)/2 · h1+(b1/2)2 · (π−3)/2+(b2+h2)/2 · h2+(b2/2)2 · (π−3)/2,
so that the area of a segment is approximately (b + h)/2 · h + (b/2)2 · (π − 3)/2.
Since the values for the areas of two segments will sum up to a common value that is
correct, each will fluctuate around a ‘true’ value but will be completely accurate for
two cases, the trivial semicircle and the segment on a square. This is why the Revised
version uses a value of π that is above the true value but fluctuates on both sides of
the True area.

The question of Hero’s quasi-Archimedean method and his claim that it needs to be
used when b:h > 3 : 1 remains the mystery it was when I began. Perhaps there is yet
more mystery. He uses illicit values for the bases and heights on the way to calculating
the complementary segments, but lo and behold, it turns out to be completely justified,
even in the crazy case where, it turns out, the errors in the calculation are superfluous.
The real mystery is why he rules out one of the two cases where the Revised rule is
perfectly accurate, the segment on the square. Here, we can only speculate that there
is a major textual error, that Hero made a big blunder, had faulty memory, thought his
quasi-Archimedean method was adequate and easier, or the always to be considered,
some other good story. I suggested one, but is it merely a good story? Life is messy;
texts are messy; history is messier.39
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