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Abstract
We discuss Einstein’s knowledge of projective geometry. We show that two pages of
Einstein’s Scratch Notebook from around 1912 with geometrical sketches can directly
be associated with similar sketches in manuscript pages dating from his Princeton
years. By this correspondence, we show that the sketches are all related to a common
theme, the discussion of involution in a projective geometry setting with particular
emphasis on the infinite point. We offer a conjecture as to the probable purpose of
these geometric considerations.

Keywords Projective geometry · History of physics · History of mathematics ·
Albert Einstein

1 Introduction

Assessment of Einstein’s mathematical knowledge and proficiency is crucial for a
historical understanding of his creativity as a physicist. The question of Einstein’s
knowledge of mathematics has therefore been discussed frequently in the historical
literature. Pyenson (1980) already looked closer at Einstein’s mathematics education,
concluding that he had an “excellent preparation for his future career” (p. 399). The
publication of the first volume of Einstein’sCollected Papers in 1987 then provided the
most important primary documents (Stachel 1987). Publication of the early correspon-
dence between Einstein and Mileva Marić not only provided details about Einstein’s
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undergraduate studies in Zurich but also revealed the close communication between
Einstein and his fellow student and later wife. The collaboration between the two gave
rise to a much-debated issue of Mileva Marić’s role in their collaboration based on
conjectures that she had provided the mathematics for Einstein’s discovery of spe-
cial relativity (Troemel-Ploetz 1990; Stachel 1996). Cahan (2000) and more recently
Bracco (2017) also look at Einstein’s early education but focus on his physics training.
The question plays a role for an assessment of Einstein’s heuristics as well as the role
of mathematics in Einstein’s physical theorizing (Zahar 1980; Norton 2000). Studies
of Einstein’s own calculations in the so-called Zurich Notebook from 1912 provided
insights into his learning process with respect to tensor calculus as well as into his
way of putting mathematical concepts to use in his attempts to find a relativistic field
theory of gravitation (Norton 1984; Renn and Sauer 1999; Janssen et al. 2007).

Einstein’s own published writings do discuss mathematical topics although rarely
ever with explicit references to specialized literature. In his collaboration, he often
relied onmathematicians to assist him in his physical theorizing. Awell-known exam-
ple is the 1913 Entwurf paper, presenting a precursor version of general relativity,
which was co-authored with his mathematician friend Marcel Grossmann (Einstein
and Grossmann 1913). The paper clearly declares their respective division of labor by
the fact that Einstein authored its physical part and Grossmann its mathematical part.
The final breakthrough to the fully covariant general theory, however, Einstein made
on his own in late 1915 in competition with the mathematician David Hilbert.

In this paper, we intend to shed more light on Einstein’s mathematical knowledge,
understanding and skills by looking at Einstein’s own research notes. We will discuss
some specific arguments in projective geometry that Einstein is documented to have
pondered in his deliberations.

In this project, we rely on the analysis of unpublished research notes and calcu-
lations, in particular his unpublished Princeton working sheets (Sauer 2019). It turns
out that Einstein very rarely used graphical sketches or geometric constructions in his
notes. This in itself is a noteworthy fact in light of his own statements about the non-
verbal character of his thinking (Hadamard 1945, Appendix II). There is the occasional
sketch of a coordinate system or reference frame. But in contrast to, for example, notes
by his friend Grossmann, he rarely prepared any more elaborate geometrical construc-
tions or the like. Instead, the vast majority of his private notes and calculations are
algebraic in nature. We did identify, however, some pages in the Einstein Archives
which document some rather specific arguments in the context of projective geometry.
We will discuss these pages in some detail and claim that the very same argument was
entertained by Einstein both in a research notebook dated to the years 1912–1915 and
in research notes which we have dated to the summer of 1938.

The outline of our paper is as follows. In Sect. 2, we recapitulate the basic facts about
Einstein’s studies and his academic training in mathematics, establishing that he was
probably well acquainted with basic concepts of projective geometry of the plane. In
Sect. 3, we then introduce our primary evidence, a double page in the ScratchNotebook
of his Prague and Zurich years as well as a few manuscript pages from his Princeton
working sheets.Wewill argue that these pages contain geometric constructions as well
as analytical calculations that all pertain to the notion of projective involutions. A brief
summary of our reconstruction of the double page of the notebook is given in Sect. 4. In
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Sect. 5, we discuss some relevant literature on projective geometry, both to the extent
that Einstein may have been familiar with it and with respect to discussions of specific
aspects of the reconstruction. In the following Sects. 6, 7, and 8, we will show in detail
how very similar considerations are underlying a number of sketches found in the
Princeton manuscripts. In Sect. 6, we discuss involutions on a line, Sect. 7 discusses
involutions on a conic. We show how Einstein constructs geometric representations
of involutions on a conic by starting from Pascal’s theorem and reducing the hexagon
to a quadrangle. In Sect. 8, we will give a reconstruction of a sketch and calculation
in which Einstein gives both an analytical treatment and a graphical representation
in terms of radical axis and involution by means of intersecting circles. We show
that the corresponding consideration of the Scratch Notebook is a special case of the
more general argument on the later manuscript page. For the sake of completeness,
we mention and briefly discuss some further pertinent sketches in Sect. 9, and Sect. 10
serves as a caveat by pointing out some alternative scenarios of interpretation. In Sect.
11, we finally address the question of the overall context of Einstein’s considerations
of involution. We formulate a conjecture as to the probable purpose of Einstein’s
considerations. We end in Sect. 12 with some concluding remarks.

2 Einstein’s studies in projective geometry

2.1 Early studies in Munich, Milano, and Aarau

Einstein attended primary school and spent the first years of secondary school in
Munich, first at a local Volksschule, then at the renowned Luitpold-Gymnasium.1 Dur-
ing those years, he also benefitted from private tutoring by the medical student Max
Talmey who exposed him to a variety of advanced texts in all fields. In his autobio-
graphical recollections, he recalled being fascinated by a magnetic compass and then
continued:

At the age of 12 I experienced a second wonder [...]: in a little book dealing with
Euclidean plane geometry.

The book which he also called the “holy geometry booklet” (ibid., p. 11) most likely
was the second part of Sickenberger’s (1888) Leitfaden der elementaren Mathematik,
dealing with Planimetrie. On Talmey’s advice, he probably also studied Spieker’s
(1890) Lehrbuch der ebenen Geometrie, see (Stachel 1987, p. lxi). One of his earliest
known writings is a comment in the margin of Heis and Eschweiler (1878), criticizing
a proof that the cylinder can be developed onto a plane (Stachel 1987, p. 3). He also
remembered that he was studying mathematics eagerly as a teenager:

At the age of 12–16 I familiarized myself with the elements of mathematics
together with the principles of differential and integral calculus (Einstein 1949,
p. 15).

1 For the curricula of Munich Volksschule and of Luitpold-Gymnasium, see (Stachel 1987, Appendixes A
and B).
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After Einstein had left Munich, he spent a year with his family in Milano engaging
in autodidactic studies in preparation for an entrance examination to be admitted as
a student at the Zurich Polytechnic. Failing this examination, he was nonetheless
encouraged and advised to finish his secondary schooling. Accordingly, he attended
then the final class at Aargau cantonal school from October 1895 to September 1896.
One of his teachers there was Heinrich Ganter who taught geometry following his
own textbook. It was co-authored with Ferdinand Rudio, professor at the Polytechnic
(Ganter and Rudio 1888), and treated plane geometry with an extensive discussion of
conic sections.2 Einstein’s school record from the Aargau cantonal school indicates
that he received the highest grades in algebra and geometry.3

One of the questions for hisMatura examinations in Aarau concerned the following
problem of conic sections in plane Euclidean geometry:

Consider a circle of radius r , centered on the origin of a rectangular coordinate
system. At each point along the x-axis, another circle is constructed, with center
at this point and diameter determined by the intersections of the perpendicular
to the x-axis with the original circle. The circles so constructed are enveloped
by an ellipse of semiaxes r and r

√
2. When the distance of the centers of the

circles from the origin exceeds a certain maximum value, the circles cease to
touch the envelope. Prove the last two statements and determine this maximum
value (Stachel 1987, Doc. 23, n. 5).

For an illustration of this problem, see Fig. 1. In his solution, which did not involve
any drawings, Einstein correctly derived the analytic expression for the enveloping
ellipse and the distance r/

√
2 of the center from the center of the ellipse of the smallest

osculating circle.4

2.2 ETH 1896 and 1897

After graduating fromAargau cantonal school, Einstein took his undergraduate studies
in Switzerland at Zurich’s Eidgenössische Polytechnische Schule (Federal Polytechnic
School, in 1911 renamed to Eidgenössische Technische Hochschule (Swiss Federal
Institute of Technology, ETH) from 1896 to 1900. He was one of eleven students ini-
tially enrolled in department VI A: the School for Mathematics and Science Teachers,
section of mathematics, physics, and astronomy.5

2 See (Stachel 1987, p.359), we thank Klaus Volkert for pointing out the reference to (Ganter and Rudio
1888).
3 See the Aargau cantonal school record and the final grades in (Stachel 1987, Docs. 10, 19). Incidentally,
the grading system at the school changed for the school year from the German system (1 is highest, 6 is
lowest) to the Swiss system (6 is highest, 1 is lowest), resulting in a change of his grades from 1 to 6 in
algebra and geometry (Stachel 1987, p.16), a feature that occasionally causes confusion about Einstein’s
mathematical skills as a student.
4 For more detailed discussion of Einstein’s Aarau Matura, see Hunziker (2005).
5 ‘Schule für Fachlehrer in mathematischer und naturwissenschaftlicher Richtung. Mathematisch-
physikalische Sektion” (Stachel 1987, p. 43), see also ETH Reglement (1899), Albert Einstein Archives,
Archival Number 74-593.
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Fig. 1 Illustration of a geometry problem presented to Einstein for his Matura examination

In his first year at the Polytechnic, Einstein took a class by OttoWilhelm Fiedler on
descriptive geometry, “Darstellende Geometrie”, and in the second year, in summer
1897 and winter 1897/98, he attended lectures on projective geometry, “Projektivische
Geometrie I” and “Projektivische Geometrie II,” respectively, also held by Fiedler. In
a letter toMilevaMarić, he wrote in 1898: “Fiedler lectures on projective geometry, he
is the same indelicate, rude man as before & in addition sometimes opaque, but always
witty& profound—in brief, amaster but, unfortunately, also a terrible schoolmaster”.6

Fiedler’s (1871) textbook on descriptive geometry already included many elements of
what later becameprojective geometry, and its third edition (Fiedler 1883, 1885, 1888)
had not only expanded to three volumes but its title programmatically expressed an
“organic connection” between descriptive geometry (“Darstellende Geometrie”) and
projective geometry (“Geometrie der Lage”).

As to the actual content of Fiedler’s lecture at the ETH in 1897, the first of these
lecture courses is documented by a transcript, written by Marcel Grossmann (1897).
Grossmann was a good friend and classmate of Einstein and obtained his diploma
together with Einstein in 1900. After this, he became assistant to Fiedler, obtained
his Ph. D. in 1902 under Fiedler’s supervision and was from 1907 on his successor
for “Descriptive Geometry” (“Darstellende Geometrie”) and “Projective Geometry”
(“Geometrie der Lage”) (Graf-Grossmann 2015, pp. 100–119). We know from Ein-
stein’s recollections (Einstein 1955, p. 147) and a letter toGrossmann that he frequently
borrowed Grossmann’s notes for test preparation, calling himself a “slovenly guy who
wouldn’t even have been able to pass his examinations without the help of Gross-

6 “Fiedler liest projektivische Geometrie, derselbe undelikate, rohe Mensch wie früher & dabei manchmal
undurchsichtig, doch immer geistvoll & tief—kurz ein Meister aber leider auch ein arger Schulmeister.”
(Stachel 1987, Doc. 39)
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mann’s notebooks.”7 In fact, in one of Grossmann’s lecture transcripts of infinitesimal
geometry (Grossmann 1898b, p. 105), there is a note not made by Grossmann that can
most probably be traced back to Einstein (Sauer 2015). It is safe to assume that Einstein
carefully studied Grossmann’s lecture notes on Fiedler’s projective geometry, too.

Topics of the first lecture course in projective geometry of summer 1897 (Gross-
mann 1897) included, among others, the cross ratio of four distinct points, homoge-
neous coordinates, duality, conics, collineations, harmonic relations, and imaginary
elements. Besides, Fiedler discussed involutions and Pascal’s theorem. As listed in
his Record and Grade Transcript, Einstein received grades 4.5 and 4 (of 6) in the two
courses of projective geometry, respectively.8 Einstein’s grades result in a final grade
of 4.25 of his final transcript (“Abgangszeugnis”) which was his worst one.9 Marcel
Grossmann received in the two courses of projective geometry grades of 5 and 5.5.10

It should be noted that prior to axiomatic foundations of the field which, to be
sure, were fully worked out at the latest with Veblen and Young (1910a, b), projective
geometry was not a clearly defined field, and many topics that today are seen as char-
acteristically projective were discussed in the nineteenth and early twentieth century
in other contexts as, say, descriptive geometry. This is the case, in particular, with
Fiedler’s understanding of geometry (Volkert 2020).

Thus, as a student of the Aargau cantonal school and the Zurich Polytechnic, Ein-
stein was exposed to an education in mathematics and physics of high standards,
including training in geometry in its various subfields. He was a good student with
excellent grades in mathematics and physics. His academic teacher Fiedler was instru-
mental in creating projective geometry as a field of academic study (Kitz 2015), and
we know that Einstein studied Fiedler’s and other lectures, at least, through the care-
fully worked out notes prepared by his fellow student and friend Marcel Grossmann,
who incidentally became Fielder’s successor at the ETH in 1907.

In order to assess to what extent Einstein retained an active command of the more
sophisticated mathematical tools and concepts that he was exposed to during his stud-
ies, we need to turn to his later writings. By its very nature, a particularly revealing
source are private research notes, in which he explored ideas for himself. Regarding
projective geometry, we will here look at some of those manuscript pages.

3 Evidence: the Scratch Notebook and the Princetonmanuscripts

Among Einstein’s early research notes which are extant there is a Scratch Notebook
with entries dated to the years 1910–1914.11 The double page of the Scratch Notebook
that we will reconstruct in this article is displayed in Fig. 2.

7 “ein Schlamper [...], der ohne Hilfe von Grossmanns Heften nicht einmal seine Examina hätte machen
können” (Kormos Buchwald et al. 2015, Doc. 226).
8 See Matrikel. Einstein, Albert (1900), Albert Einstein Archives, Archival Number 71-539, (Stachel 1987,
Doc. 28)
9 See Abgangszeugnis. Einstein, Albert (1900), Albert Einstein Archives, Archival Number 29-234.
10 See Abgangszeugnis. Grossmann, Marcel (1900), Albert Einstein Archives, Archival Number 70-755.
11 AEA 3-013, (Klein et al. 1993a, Appendix A). For more detailed discussion of various other entries in
this notebook, see (Renn et al. 1997), (Janssen 1999), (Sauer 2008), (Rowe 2011), (Buchwald et al. 2013).
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Fig. 2 Double page in Einstein’s Scratch Notebook with sketches on projective geometry. AEA 3-013
[pp. 49–50], (Klein et al. 1993a, p. 588). Reproduced with permission from the Albert Einstein Archives.
©The Hebrew University of Jerusalem, Israel. Digital image photographed by Ardon Bar Hama

At the top of the left-hand page, it displays a sketch drawnwith pencil and the words
“eau glyceriné” written in an unknown hand. In the middle of the right-hand page, it
shows sketches that carry letters H and M as well as the expression sin(ωt) · sin(ωt +
α).12 We conjecture that these entries are related to the discussion of problems related
to Brownian motion and to magnetism, respectively. They may reflect conversations
Einstein had with Jean Perrin and Paul Langevin, both of whom he met on a visit
to Paris to give a lecture on the law of photochemical equivalence to the Societé de
physique on March 27, 1913, see (Klein et al. 1993b, Doc. 437). We will not be
concerned with these entries on the double page but focus on the remaining entries.

The double page is preceded in the notebook by a sequence of pages that contain
calculations on gravitational lensing, dated to spring 1912. It is immediately followed
by a double page that also contains a calculation on gravitational lensing, which,
however, was written at a later date, probably in late 1915. For a detailed discussion
of the surrounding pages and calculations, see Sauer (2008); Sauer and Schütz (2019)
and references therein.

Interpreting the four x’s with an underbrace at the top of the right-hand page as an
independent sketch, we therefore find five sketches on this double page—three on the
left-hand side and two on the right-hand side—as well as five lines of calculations that
are related to projective geometry. It is our aim to account for these entries.

12 The multiplication dot could also be a plus sign or an equal sign. For another possible context of this
part of the page, see (Klein et al. 1993a, p. 359).

123



530 T. Sauer, T. Schütz

Our reconstruction of the double page in the ScratchNotebook is based on a striking
similarity that the sketches displayed there show with sketches that are found on three
of Einstein’s Working Sheets from his Princeton years.13 The pages in question carry
archival numbers AEA 62-785r, 62-787r, and 62-789 as well as 62-789r, see Fig. 3.
All four manuscript pages can unambiguously be dated to the period between June
and August 1938, since surrounding calculations and phrases directly link these pages
to correspondence between Einstein and Peter Bergmann from that time about their
paper on a Generalization of Kaluza’s Theory of Electricity (Einstein and Bergmann
1938) as well as a related Einstein manuscript.14 While the relative sequence of the
three sheets is unclear, it is very likely that entries on the recto 62-789r precede entries
on the verso 62-789.

The close connection between these sketches is in itself an intriguing fact. If the
similarity were to result from Einstein’s entertaining the very same idea, it would be
another instance of a long period of time between two characteristic trains of thought.
Similarly, the surrounding lensing calculations of the Scratch Notebook from 1912–
1915 were rediscovered, as it were, by Einstein in 1936 (Renn et al. 1997).

In addition to these pages, we will consider two more archival items that carry
related sketches. One is an undated manuscript page AEA 124-446, likely from the
early 1930’s.15 The other is AEA 6-250, a page from the Einstein-Bergmann corre-
spondence, dated to the end of June 1938.16

4 Summary of our reconstruction

Despite the apparently disparate character of the entries on the double page, we will
show that all five sketches as well as the five lines of calculations are related to
each other as a cluster of considerations revolving around the notion of involution
in a projective geometry setting. In summary, our reconstruction of the page is the
following.

In the first sketch, Einstein constructs an example of a hyperbolic involution on a
line bymeans of two consecutive perspectivities. The involution interchanges points B
and B ′ while points A and A′ are the two uniquely determined fixed points. In similar
sketches from the Princeton manuscripts, he also investigated the case where one of
the points of the involution moves to infinity.

The next sketch shows a construction of Pascal’s theorem for a hexagon inscribed
in a conic. The purpose of this construction appears to be to provide a basis for the
geometric construction of an involution in a conic bymeans of an inscribed quadrangle.
He obtains the third sketch on the page by letting two pairs of adjacent points of
the hexagon approach each other, so that the hexagon becomes a quadrangle. The
respective secants of the conic aremarked and become tangents on this transformation.

13 For a discussion of these working sheets, see Sauer (2019).
14 See Sauer and Schütz (2020). A detailed discussion will be given elsewhere.
15 The Einstein Archives date the letter by provenance to the time period in which Einstein stayed in his
summer house in Caputh, i.e., 1929–1933.
16 Again, Einstein’s letter AEA 6-250 is undated, but can be dated to between 21 and 30 June 1938 by
surrounding correspondence.
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Fig. 3 Manuscript pages AEA 62-785r, 62-787r, 62-789, 62-789r. Reproduced with permission from the
Albert Einstein Archives. ©The Hebrew University of Jerusalem, Israel. Digital image photographed by
Ardon Bar Hama
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In order to arrive at a hyperbolic involution, he alsomoves the point marked 1 along the
conic across the tangent point. The procedure amounts to the geometric construction
of a hyperbolic involution in the conic. The very same procedure of starting from an
inscribed hexagon to an inscribed quadrangle is found with more explicit notation on
manuscript page 62-787r. In addition to the case of a hyperbolic involution, Einstein
there also draws two additional situations which represent the cases of elliptic and
parabolic involution. On that page, he also considers the special case where two of
the opposite sides of the inscribed hexagon for Pascal’s theorem become parallel. The
Pascal line then becomes parallel to the sides and one of the three points on the Pascal
line moves to infinity.

At the top of the next page, Einstein again considers involution on a line. He draws
four collinear points and marks two of them which we interpret as indicating the two
invariant points. Underneath we find a sketch that he deleted which we, again, interpret
as a construction of hyperbolic involution on a line, this time, however, by means of
a complete quadrangle.

The remaining entries to be accounted for are five lines of calculation. We interpret
these as a special case of the general equation of involution for coordinates x1 and
x2, which are then postulated to be invariant points of the involution, yielding two
solutions x = 0 and x = a. A corresponding and much more explicit calculation
along these lines is found on manuscript page 62-785r. That calculation was explicitly
headed by the term “Involution.” It starts from the general equation of involution and
specifies to the case of one infinite point. In addition, the calculation on the manuscript
page is accompanied by several sketches that give geometric constructions of the
corresponding involution by means of the concept of a radical axis. Here again all
three cases of hyperbolic, elliptic and parabolic involution are being considered.

Our reconstruction heavily depends on the similarity of the corresponding entries
in the Princeton manuscript pages and the translatability between the notebook entries
and the Princeton manuscript pages. In Sects. 6, 7, and 8, we will provide a detailed
reconstruction of these connections. They are also visualized by some animations
which illustrate the processes of construction and transformation that are involved in
the reconstruction. These animations are provided as supplementary material to this
article.17

5 Projective geometry

Before entering into our detailed reconstruction, we briefly mention some of the avail-
able textbook literature on projective geometry, both by texts that were available to
Einstein and more modern treatises. We have not been able to identify any single
work which might have triggered, or would have been an obvious source for, Ein-
stein’s sketches.None of the geometric theorems andproperties that underlieEinstein’s
sketches are particularly specific to any single author, let alone original to Einstein.
As a consequence, similar sketches can be found in many places in the literature.

17 See the supplementary material to the online version of this article at https://doi.org/10.1007/s00407-
020-00270-z.
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Fig. 4 Hyperbolic involution with invariant points A and A′ that interchanges points B and B′. a Einstein’s
first sketch in the Scratch Notebook. Reproduced with permission from the Albert Einstein Archives. ©The
HebrewUniversity of Jerusalem, Israel. Digital image photographed by Ardon Bar Hama. bReconstruction
of Einstein’s sketch

Beginning with sources that would have been available to Einstein prior to 1938, we
mention again Fiedler’s textbook on Descriptive Geometry (Fiedler 1871) or (Fiedler
1883, 1885, 1888) and his Lectures, aswell asGrossmann’s Lectures.As noted before,
from an axiomatic standpoint, the field was presented byVeblen andYoung (1910a, b).
As to more specific discussions, that might have been directly relevant, we note that
Pascal’s theorem and especially its different versions are discussed by (Grassmann
1909, pp. 95-101).18 His visualizations of the different versions look very similar to
Einstein’s sketches on AEA 62-787r and in the Scratch Notebook. Enriques (1915) is
noteworthy for its statements about the radical axis and involutions on a line (Enriques
1915, pp. 124-128). Discussion with sketches similar to Einstein’s sketches can also
be found in older books from the beginning of the 20th century by, for example, (Emch
1905, pp. 13–14), (Hatton 1913, p. 101), (Askwith 1917, p. 82), or (Dowling 1917, p.
131).

In our reconstruction of Einstein’s geometric arguments, we will often refer to
Coxeter’s books onThe Real Projective Plane from194919 andonProjective Geometry
from 1964.20 But, again, the subject matter is treated in many different ways in many
different texts.

Finally, wewould like to point out that in a little bookwhich treats “themost famous
problems of mathematics”, we foundmany theorems with visualizations vaguely rem-
iniscent of Einstein’s sketches (Dörrie 1958, pp. 261–284). Although the book is from
1958, the first edition was published in 1932. This book may be of interest because of
Einstein’s predilection for amusing problems in mathematics as addressed in “Math-
ematische Mußestunden” by Hermann Schubert (1898), some of which are found
already in the Scratch Notebook, see also Rowe (2011).

18 The author isHermannErnstGraßmann (1857–1922), son ofHermannGüntherGraßmann (1809–1877),
known for his Ausdehnungslehre.
19 We used the second edition (Coxeter 1961).
20 We used the second edition (Coxeter 1987).
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Fig. 5 Involutionwith invariant pointsC and D that interchanges points A and B. aEinstein’s second sketch
on manuscript page AEA 124-446. Reproduced with permission from the Albert Einstein Archives. ©The
HebrewUniversity of Jerusalem, Israel. Digital image photographed by Ardon Bar Hama. bReconstruction
of Einstein’s sketch

6 Involution on a line

The sketches in Fig. 4 can be interpreted as a hyperbolic involution on a line that
interchanges points B and B ′, while points A and A′ remain invariant. Indeed, by
(Coxeter 1987, p. 47), two invariant points A and A′ of an involution are harmonic
conjugates with respect to any other pair of the involution. This holds in Fig. 4 by the
construction of the complete quadrangle (Coxeter 1987, p. 22).

Einstein’s notation supports this interpretation. He apparently described the invo-
lution by the product of two perspectivities. Let us therefore note that Einstein marked
points P1 and P2 each by a thick dot. Considering the perspectivity with center P1,
point B goes to β, A′ goes to α′, and B ′ goes to β ′, while the point A remains invariant.
Carrying out the second perspectivity with center P2 takes β to B ′, α′ back to A′, and
β ′ to B, while A again remains invariant.21 The product of the two perspectivities,
thus, interchanges the points B and B ′ and lets the points A and A′ invariant. Einstein
concluded: “B and B ′ interchanged”, which he wrote directly underneath the sketch.22

6.1 Transition tomanuscript Page AEA 124-446

Before discussing related sketches in the Princeton manuscripts, we observe that a
sketch very similar to the first sketch in the Scratch Notebook can also be found
on manuscript page AEA 124-446, see Fig. 5. To show the relation between the two
sketches,we start fromFig. 4,move pointβ up such that point A vanishes at infinity and
reappears to meet the base line g on the right-hand side of the complete quadrangle.23

Changing the notation, i.e., B → A, etc., leads us to Fig. 5. Einstein’s notation suggests
that in contrast to Fig. 4 he now carried out the perspectivity with center P2 before the
perspectivity with center P1. By the first perspectivity, the point A goes to A′, C goes

21 Einstein chose the notation of points α′, β, and β ′ corresponding to points A, B, and B′. The point α is
missing in Einstein’s sketch, since A is an invariant point.
22 Einstein wrote “B und B′ vert.” The abbreviation “vert.” probably stands for the word “vertauscht”
(“interchanged”).
23 The relations between the sketches discussed here and in the following are visualized in the video
sequence “Notebook1.mp4”.
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Fig. 6 Sketches similar to the first sketch in the Scratch Notebook on manuscript pages AEA 62-789 and
its reverse side 62-789r. a Einstein’s first sketch on manuscript page AEA 62-789. It is crossed out; b
Einstein’s fourth sketch on manuscript page AEA 62-789r. Reproduced with permission from the Albert
Einstein Archives. ©The Hebrew University of Jerusalem, Israel. Digital image photographed by Ardon
Bar Hama

to C ′, B goes to B ′ and D remains invariant while Einstein wrote down D′ anyhow.24
By the second perspectivity with center P1, A′ goes to B which is also denoted by A′′,
B ′ goes to A which is also denoted by B ′′, C ′ goes back to C which is also denoted
by C ′′, and D′ remains invariant which is also denoted by D′′. The product of the
two perspectivities thus interchanges the points A and B, while the two points C and
D remain invariant, in full equivalence to the situation in the Scratch Notebook. The
notation here is even more directly indicating the procedure described above.

6.2 Similar sketches onmanuscript pages AEA 62-789 and 62-789r

Two similar sketches appear on manuscript page AEA 62-789 as well as on its reverse
side AEA 62-789r, see Fig. 6.

However, Einstein here did not letter any points or lines and it is not as clear as
before whether Einstein drew these sketches in the context of hyperbolic involutions.
Indeed, both figures are very generic sketches in projective geometry, which allow for
many different contexts as, for example, the discussion of the complete quadrangle
and the harmonic relation of four points on a line, see (Coxeter 1987, p. 22).25 We will
discuss another context in Sect. 6.3, namely the construction of two invariant points
and one pair of an involution.

The very same manuscript pages 62-789 and 62-789r, however, also show sketches
that, again, can be related to the figures of the Scratch Notebook, see Fig. 7. Assuming
the situation and notation of Fig. 5, we can ask what happens when line h is turned
around a bit to become parallel to the base line g. Einstein apparently investigated
this situation in the first and fifth sketch on AEA 62-789r (Fig. 7). In this case, the
fourth harmonic point D goes to the point at infinity. Since the harmonic relation

24 The notation D is barely readable.
25 In Fig. 6b, the line for the fourth harmonic point is missing that connects, in terms of Fig. 5, the points
B′ and A′. Next to this sketch, Einstein drew Fig. 7b, which contains a marked point on the left margin
on the horizontal dashed line. This point might belong to the sketch in Fig. 6b, which then approximately
marks the position of the fourth harmonic point.
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Fig. 7 Sketches on AEA 62-789, where the fourth harmonic point meets line g in the point at infinity.
a Einstein’s first sketch on manuscript page AEA 62-789r; b Einstein’s fifth sketch on manuscript page
AEA 62-789r. Reproduced with permission from the Albert Einstein Archives. ©The Hebrew University
of Jerusalem, Israel. Digital image photographed by Ardon Bar Hama

Fig. 8 The construction of an involution on a line. a Einstein’s fifth sketch in the Scratch Notebook. It is
crossed out. Reproduced with permission from the Albert Einstein Archives. ©The Hebrew University of
Jerusalem, Israel. Digital image photographed by Ardon Bar Hama. b Reconstruction of Einstein’s sketch.
He did not draw the gray objects

between the points A, C , B, and D still holds, the point C becomes the midpoint of
the segment AB, see (Coxeter 1961, p. 119) or (Kaplansky 1969, p. 109). Einstein
drew this situation in Fig. 7a, where the points A and B are the same as in Fig. 5 and
the line connecting P1 and P2 yielding the point C is missing.26

Einstein not only drew this situation for the points A and B, but also for two points
lying further out (see the dashed lines). In Fig. 7b, he moved the dashed horizontal
line underneath the solid horizontal line such that α now lies underneath A and B.27

In this situation, he marked the two additional points lying further out by A′ and B ′.28
In addition to Figs. 6 and 7, the page contains twomore sketches probably written in

the context of projective geometry, although we have found no convincing reconstruc-
tion for them. One of these sketches has striking similarities to a sketch appearing in
Grossmann’s lecture notes on “Projektivische Geometrie: Geometrie der Lage” held
by Fiedler (Grossmann 1897, p. 41).

26 Einstein denoted points P1 and P2 in Fig. 5b as β and α in Fig. 7a, respectively.
27 He first accidentally drew point α incorrectly and crossed it out in Fig. 7b.
28 He did not draw the line connecting β and A′. As mentioned above, he also marked a point on the left
margin on the horizontal dashed line. We argue that this point might belong to Fig. 6b. However, it also is
approximately the intersection between the line A′β and the dashed horizontal line. Einstein did not draw
Fig. 7b accurately, since the distance between A′ and A is not equal to the distance between B and B′.
Furthermore, the two horizontal lines are not parallel. Due to this inaccuracy, the line through β and A′
would actually not pass through Einstein’s marked point.
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6.3 Another sketch in the Scratch notebook

Let us return to the ScratchNotebook. Einstein’s fifth sketch in the ScratchNotebook is
shown in Fig. 8a.Wewill use the notation of our reconstruction in Fig. 8b. Considering
the complete quadrangle with vertices A, B, C , D and diagonal points D1, D2, D3,
opposite sides of the quadrangle29 meet a line g in pairs of an involution, see (Enriques
1915, pp. 122,123) or (Dörrie 1958, p. 269).30 This implies that SAB and SC D is a pair
of the involution. Einstein denoted them by A and A∗ but overwrote the notation of the
second point afterwards. Another pair of the involution are the points SAD and SBC ,
which were denoted as C and C∗ by Einstein. The second point was then overwritten
as well. The third pair SAC and SB D was not marked by Einstein. Since Einstein drew
the line through A and C , the intersection SAC is indicated, while he did not draw the
line through D and B, which would give the intersection SB D . Note that Einstein in
his sketch did not use the letter B, but did use A and C .

It is neither clear why Einstein changed the notation of the two points on the right
nor why he crossed out the entire sketch. The initial notation, however, suggests that
he again considered the construction of an involution on a line.

By these considerations, we can get an alternative interpretation of Fig. 4. Let us
consider the complete quadrangle with vertices β, P1, β ′, P2 and diagonal points α′,
B, and B ′. In contrast to the situation of Fig. 8, the line g then passes through two
diagonal points B and B ′, which is why we can interpret this sketch as the construction
of an involution on the line g with the pair A and A′ and the invariant points B and
B ′. This interpretation does not explain Einstein’s comment that the points B and
B ′ are interchanged nor does it explain the notation chosen by Einstein nor why he
bolded points P1 and P2. However, it is possible that Einstein considered it this way
in the process of drawing Fig. 8a. By moving the point P2 in Fig. 4b slightly to the
upper right, we get Fig. 8.31 As we will see in the next section, it stands to reason that
Einstein considered such a transition on the manuscript page AEA 62-789 as well.

6.4 Similarities to manuscript page AEA 62-789

If we turn over page 62-789r to look at 62-789, we find two sketches next to each
other at the top of manuscript page. These again can be connected to the sketches in
Figs. 4a and 8a in the Scratch Notebook. They are shown in Figs. 9 and 10.32

By introducing notation as in Fig. 9b and considering the complete quadrangle with
vertices A, B, C , D and diagonal points D1, D2, D3, the points D2 and D3 can be
interpreted as invariant points of an involution on the line g, while points SB D and
SAC are corresponding points.

29 Opposite sides of the quadrangle are sides that meet each other in a diagonal point and not in a vertex.
30 This theorem can also be found in Grossmann’s own lecture notes from 1907 (Grossmann 1907, p. 18.2).

31 The relations between the sketches discussed here and in the following are visualized in the video
sequence “Notebook3.mp4”.
32 We already know Fig. 10a from Fig. 6a.
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Fig. 9 The first sketch on manuscript page AEA 62-789, interpreted as the construction of a pair and two
invariant points of an involution on a line. a Einstein’s first sketch on manuscript page AEA 62-789. It is
crossed out. Reproduced with permission from the Albert Einstein Archives. ©The Hebrew University of
Jerusalem, Israel. Digital image photographed by Ardon Bar Hama. b Reconstruction of Einstein’s sketch

Fig. 10 The second sketch on manuscript page AEA 62-789, interpreted as the construction two pairs of
an involution on a line, see also Figure 8. a Einstein’s second sketch on manuscript page AEA 62-789. It is
crossed out. Reproduced with permission from the Albert Einstein Archives. ©The Hebrew University of
Jerusalem, Israel. Digital image photographed by Ardon Bar Hama. b Reconstruction of Einstein’s sketch.
He did not draw the gray lines

If we move the point B to the upper right, we directly get Fig. 10, where the line
g does not pass through any diagonal point anymore. Thus, the points SAB , SC D and
SAD , SBC are corresponding points, respectively. Equivalently to Fig. 8, Einstein drew
one more line whose intersection with g determines one point of the third pair (line
AC).

We conclude that all sketches from Figs. 4, 5, 6, 7, 8, 9 and 10 can be interpreted
in some way or other as constructions involving involutions on a line.

We also note that just as we find Figs. 4a and 8a next to each other on a double page
of the Scratch Notebook, two very similar sketches appear right next to each other at
the top of manuscript page AEA 62-789.

7 Pascal’s theorem and involution on a conic

Surprisingly, we find a similar correspondence between sketches in the Scratch Note-
book and manuscript page 62-787. These sketches deal with projective geometry on
conics.

Einstein’s Scratch Notebook shows a second sketch, which is shown in Fig. 11
together with our reconstruction. As the only numbered point he denoted point C by
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Fig. 11 Pascal’s theorem. Opposite sides of a hexagon inscribed in a conic meet in three collinear points.
a Einstein’s second sketch in the Scratch Notebook. Reproduced with permission from the Albert Einstein
Archives. ©The Hebrew University of Jerusalem, Israel. Digital image photographed by Ardon Bar Hama.
b Reconstruction of Einstein’s sketch

Fig. 12 Pascal’s theorem for a quadrangle. a Einstein’s third sketch in the Scratch Notebook. Reproduced
with permission from the Albert Einstein Archives. ©The Hebrew University of Jerusalem, Israel. Digi-
tal image photographed by Ardon Bar Hama. b Reconstruction of Einstein’s third sketch in the Scratch
Notebook

1. He also drew point S3 as a thick dot and marked lines E D and AB. The sketch
visualizes Pascal’s theorem which states that opposite sides of a hexagon ABC DE F
inscribed in a conic33 meet each other in three collinear points S1, S2, and S3 (Coxeter
1961, p. 103). The line passing through these points is called Pascal line.

The sketch just underneath shows a quadrangle inscribed in a conic, see Fig. 12.
Again, by our reconstruction, point C was numbered 1 by Einstein. By (Grassmann
1909, p. 99), in this situation the tangents in A and D as well as the opposite sides
AF , DC and AC , DF meet each other in three collinear points S1, S2, S3.

Steiner’s theorem enables us to define projectivities on conics (Coxeter 1961, p.
105), which again allows us to interpret Einstein’s sketches as investigations of projec-
tivities and involutions. Figure 11b can be interpreted as the projectivity AEC � DB F .
In this particular case, the Pascal line becomes the axis of the projectivity.34

When moving toward each other points A and B as well as E and D, respectively,
the secants AB and E D in Fig. 11 become tangents which meet in S3. This procedure
was indicated by Einstein by marking these two lines as well as point S3. When
furthermore moving point C along the conic such that it comes to lie between points

33 The opposite sides of a hexagon ABC DE F are BC and E F , C D and AF as well as AB and DE .
34 Knowing the axis of the projectivity, any other pair of the projectivity can be constructed (Coxeter 1961,
p. 106). We generally define the axis of the projectivity ABC � A′ B′C ′ as the Pascal line of the hexagon
AB′C A′ BC ′ inscribed in a conic.
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F and E = D, we obtain Einstein’s sketch in Fig. 12.Moving pointC into this position
was also indicated by Einstein since it is the only point numbered in both Figs. 11a
and 12a.35

The projectivity AEC�DB F fromFig. 11 then becomes ADC�D AF . Thismeans
that the projectivity interchanges points A and D and thus is an involution (Coxeter
1987, p. 45). By knowing another pair C , F of the involution, it is fully determined
(Coxeter 1987, p. 45). As we see in Fig. 12, the Pascal line furthermore crosses the
conic in two points which are the invariant points of the involution,36 which therefore
is a hyperbolic one.

Beneath the third sketch, Einstein wrote: “At the same time construction of the
center.”37 Any secant through the center of the involution determines a pair of the
involution as the two intersections with the conic (Coxeter 1961, pp. 108–109).38

Since Fig. 12 can be interpreted as the involution ADC � D AF , the intersection of
the lines AD and C F determines the center of the involution. This might be the idea
of Einstein’s additional comment, since he did not draw these lines.

7.1 Similarities to manuscript page AEA 62-787r

The manuscript page AEA 62-787r contains sketches that are astonishingly similar
to the second and third sketch in the Scratch Notebook that we have just discussed.
Moreover, this page illustrates the ideas from the previous section by a more precise
notation as well as by additional sketches.

Let us start with the sketch on the right hand side of the manuscript page, see
Fig. 13a. It shows Pascal’s theorem, just as in Fig. 11, but Einstein here combined two
different situation into this sketch. The first situation is shown in Fig. 13b. Einstein
numbered points on the conic from 1 to 6, while we denoted them by A to F . The
sketch therefore is an identical repeat of illustrating Pascal’s theorem as in Fig. 11.
Einstein then replaced point F by F ′ such that the opposite lines AF ′ and C D become
parallel.39 They then meet in the point at infinity S2. By Pascal’s theorem, the Pascal
line which connects S1 and S3 needs to pass through the point at infinity S2 as well,
which is why it becomes parallel to these opposite sides.

By these considerations, we can explain most of the lines drawn by Einstein. How-
ever, Einstein also drew the line segments AD, B E , and C F inside the conic.40 These
segments indicate that Einstein considered the projectivity AEC � DB F . In this case,

35 The transition is also visualized in the video sequence “Notebook2.mp4”.
36 This becomes clear by the construction of corresponding points using the Pascal line (Coxeter 1961,
p. 106). A hyperbolic involution has two invariant points, while an elliptic involution has no real invariant
points. A so-called parabolic involution has only one invariant point.
37 “Zugleich Konstruktion des Zentrums.”
38 We note that drawing two tangents through the center of the involution thus determines the two invariant
points, which are also the intersections between Pascal line and conic. In the case that the center of the
involution lies inside the conic, the Pascal line is an exterior line and the involution is elliptic without any
real invariant points. In Fig. 12, the center of the involution is an exterior point.
39 The transition from the point F to F ′ is visualized in the video sequence “62787rPoint6.mp4”.
40 Although it appears in Fig. 13a and 13b as if the three lines meet each other in one common point, this
is in general not the case.
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Fig. 13 Pascal’s theorem. a Einstein’s sketch on the right hand side of manuscript page AEA 62-787r.
Reproduced with permission from the Albert Einstein Archives. ©The Hebrew University of Jerusalem,
Israel. Digital image photographed by Ardon Bar Hama. b Reconstruction of Einstein’s sketch ignoring
point 6′; c Reconstruction of Einstein’s sketch ignoring point 6

Fig. 14 Elliptic involution on a conic. a Einstein’s sketch in the bottom left corner of manuscript page
AEA 62-787r, which was not drawn accurately. Reproduced with permission from the Albert Einstein
Archives. ©The Hebrew University of Jerusalem, Israel. Digital image photographed by Ardon Bar Hama.
b Reconstruction of Einstein’s sketch. He did not draw the gray line E F

he connected the corresponding points by a line segment. Considering this projectivity,
the axis of the projectivity becomes the Pascal line, which is drawn by Einstein.

As in the ScratchNotebook, Einsteinmarked the point S3.Moreover, he also bolded
lines E D and AB. In order to get Fig. 13b starting from Fig. 11b, we only need to
move some points along the conic without the need of changing the orientation.41

As in the discussion of the second and third sketch in the Scratch Notebook, we can
now let the points A, B and E , D approach each other. These two lines then become
tangents meeting in the marked point S3. By slightly rearranging the points on the
conic, we then get the situation in Fig. 14, which is another sketch on manuscript

41 The transitions between the sketches in the notebook and on AEA 62-787r are shown in the video
sequence “NotebookToMS.mp4”.
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Fig. 15 Hyperbolic involution on a conic. a Einstein’s top left sketch on manuscript page AEA 62-787r.
Reproduced with permission from the Albert Einstein Archives. ©The Hebrew University of Jerusalem,
Israel. Digital image photographed by Ardon Bar Hama. b Reconstruction of Einstein’s sketch

page 62-787r. We see that Einstein also marked point S3 in this sketch indicating the
transition just described.42

In contrast to the discussion of the Scratch Notebook (Figs. 11 and 12), we have not
moved point C yet. As a result, we do not get a hyperbolic involution, but an elliptic
involution ADC � D AF . The Pascal line that goes through S2 and S3 is an exterior
line without intersections with the conic such that no invariant point exists.43 We note
that Einstein’s sketch is not accurate as the intersection S1 of E F and BC would meet
on the right side of the conic in Einstein’s sketch, while the Pascal line meets the line
BC rather on the left side of the conic (the piece that had been torn off).44

We can now proceed by moving point C such that it comes to lie between E = D
and F . By changing the orientation, we then get the situation in Fig. 15, also found
on 62-787r. This sketch can be interpreted as a hyperbolic involution ADC � D AF ,
since the Pascal line intersects the conic in two points.45 We only need to rotate this
sketch by 90o in order to get Fig. 12 from the Scratch Notebook.

On manuscript page AEA 62-787r, Einstein even went one step further and drew
a triangle inscribed in the conic, see Fig. 16. By Grassmann (1909), pp. 100–101,
the sides of the triangle meet the tangents through the respective opposite vertices in
three collinear points. For instance, the tangent in A meets the side FC in P , while
the tangent in D meets the side AF in S2. A very similar sketch can be found in
Grossmann’s lecture notes on “Geometrische Theorie der Invarianten I” held by Carl

42 The transitions between the sketches on manuscript page AEA 62-787r are visualized in the video
sequence “MS62787r.mp4”.
43 The center of the involution lies inside the conic as the intersection point of the lines C F and AD, but
was not drawn by Einstein.
44 In our reconstruction in Fig. 14b, the lines E F , BC , and S2S3 are almost parallel.
45 The center of the involution is an exterior point, which was not drawn by Einstein.
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Fig. 16 Parabolic involution on a conic. a Einstein’s sketch in the middle of manuscript page AEA 62-787r.
Reproduced with permission from the Albert Einstein Archives. ©The Hebrew University of Jerusalem,
Israel. Digital image photographed by Ardon Bar Hama. b Reconstruction of Einstein’s sketch. The gray
objects were drawn by Einstein, but have no meaning in terms of involutions

Fig. 17 Einstein’s sketch probably related to the calculation on hyperbolic involutions. a Einstein’s fourth
sketch in the Scratch Notebook. Reproduced with permission from the Albert Einstein Archives. ©The
Hebrew University of Jerusalem, Israel. Digital image photographed by Ardon Bar Hama. b Einstein’s
sketch with our suggested notation

Friedrich Geiser and attended by Einstein in 1898 (Grossmann 1898a, p. 49), (Stachel
1987, 366).46

We get to this figure by moving the points D = E and C toward each other in
Fig. 15. In this case, the points C , D, E , and S1 fall together, see Fig. 16. Thus, the
Pascal line passing through the points Si becomes a tangent, leading to the situation
where only one invariant point exists. Since the center of the involution as intersection
of the sides C F and AD falls together also with these points, every secant through the
center of the involution passes through the point C = D = E . Thus, every point on
the conic is a corresponding point to C = D = E (parabolic involution). In the strict
sense, this is not an involution anymore since it is not a one-to-one-correspondence
(Coxeter 1961, p. 52). Nevertheless, we could describe the involution by AC F �C AC .

8 Projective geometry calculation in the Scratch notebook

The fourth sketch of the double page in the Scratch Notebook, i.e., the sketch at the top
of the right-hand side, is shown in Fig. 17a. Beneath we find a short calculation and the
sketch from Fig. 8a that we interpreted as the construction of pairs of an involution on
a line. It is a priori not clear whether Fig. 17a is related at all to Einstein’s calculation,
since it is a very generic sketch. But as we will show, imposing the notation from

46 A sketch very similar to Fig. 16 can also be found in Grossmann’s own lecture notes from 1907 (Gross-
mann 1907, p. 20.1).
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Fig. 17b enables us to connect the sketch directly with the calculation, while at the
same time the drawn brace gets a meaning as correlating the two invariant points of
an involution.

We assume that the points in Fig. 17b lie on one line and the coordinates of the points
O , X1, A, and X2 be 0, x1, a, and x2, respectively.47 A pair x1, x2 of an involution on
this line can be described analytically by

r x1x2 + s(x1 + x2) + t = 0, (1)

with real numbers r , s, and t which completely describe the involution, see (Coxeter
1987, pp. 118,151) or (Faulkner 1960, p. 36). Imposing the assumption that both O
and A are invariant points, we get t = 0 as well as s = −a when setting r = 2.
Interpreting X1 and X2 as a pair of this involution, the relation

2x1x2 − a(x1 + x2) = 0 (2)

holds, which can be recast to read

x1
a − x1

: x2
a − x2

= −1. (3)

Considering the cross ratio

(O A, X1X2) = x2 − a

x2
: x1 − a

x1
(4)

of the points O , A, X1, and X2 (Kaplansky 1969, p. 107), Eq. (3) implies that O
and A are harmonic conjugates to X1 and X2. This result is no surprise since the two
invariant points of a hyperbolic involution are harmonic conjugates to any other pair
of the involution (Coxeter 1987, p. 47).

Einstein worked the calculation the other way around. Starting from Eq. (3) he
derived Eq. (2). He then implicitly set x = x1 = x2 and got

x2 − ax = 0. (5)

He concluded

x = 0 and x = a. (6)

We summarize that Einstein started with the harmonic relation of four points with
the coordinates 0, a, x1, and x2 and recast this equation in order to get the equation
of a hyperbolic involution. He then determined the two invariant points by setting
x = x1 = x2. He finished his calculation with a word that reads “Doppelv.” or

47 In the projective plane, for instance, we could choose O = (0 : 0 : 1), X1 = (x1 : 0 : 1), A = (a : 0 : 1),
and X2 = (x2 : 0 : 1), all lying on the line x2 = 0.

123



Einstein on involutions in projective geometry 545

“Doppelp.”, which could either stand for cross ratio48 or double point49. The latter
describes invariant points as in (Grassmann 1909, p. 111), (Enriques 1915, p. 68) or
(Coxeter 1961, p. 32). As we know from Grossmann’s lecture notes, Fiedler used this
term in his lecture attended by Einstein as well (Grossmann 1897, p. 71).50 Both cases
fit to the context presented here as Einstein started with the cross ratio at the beginning
and determined the invariant points of the involution at the end.

8.1 Similarities to themanuscript page AEA 62-785

On manuscript page AEA 62-785, Einstein made calculations on involutions using
Eq. (1) as well. Just as we found the construction of pairs of an involution right next to
Einstein’s calculation in the Scratch Notebook (see Fig. 8), Einstein constructed pairs
of an involution on AEA 62-785, too. As we will see, he also constructed invariant
pairs explicitly, analogous to the interpretation of Fig. 4 in Sect. 6.3.

Einstein started with the equation of involution51

axy + b(x + y) + c = 0 (7)

with real numbers a �= 0, b, and c.52 Einstein then investigated the corresponding
point of the point at infinity. Letting x be the point at infinity, we have

y = −b

a
(8)

for the corresponding point y. We can either see this by introducing homogeneous
coordinates in the projective plane or, as Einstein apparently did, by setting x = ∞
after dividing Eq. (7) by x .53 By (Coxeter 1961, pp. 121,122), this point y is called
the center of the involution. Einstein indicated that this point should be the origin.54

Setting y = 0 yields b = 0, as written down by Einstein.
For any pair x1, y1 of the involution, it thus is

x1y1 + c̃ = 0 (9)

with c̃ = c/a. Einstein simply wrote down

xy + c = 0, (10)

48 From the German term Doppelverhältnis.
49 From the German term Doppelpunkt.
50 We will refer to this passage again when discussing the real and imaginary cases in Eq. (8.1).
51 Cp. equation (1).
52 This time, we also allow the coordinates to be infinite corresponding to the point at infinity. For instance,
such a point could have the homogeneous coordinates (1 : 0 : 0) lying on the same line x2 = 0 as the points
from Eq. (47), while x3 = 0 could be the line at infinity.
53 The point (x1 : x2 : x3) in the projective plane has affine coordinates (x1/x2, x2/x3) for x3 �= 0. In the
case x3 = 0, Einstein apparently considered the affine coordinates to become infinite.
54 Einstein wrote: “Reeller Punkt. Als Anfang genommen.”
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Fig. 18 Construction of pairs x1, y1 and x2, y2 of a hyperbolic involution on a line as well as construction
of the invariant points. a Einstein’s first sketch on AEA 62-785r. Reproduced with permission from the
Albert Einstein Archives. ©The Hebrew University of Jerusalem, Israel. Digital image photographed by
Ardon Bar Hama. b Reconstruction of Einstein’s sketch. Einstein did not draw the gray circles

implicitly changing the meaning of c. By the conditions imposed by Einstein, Eq. (10)
describes the constant of the involution, saying that the product x · y of any pair x ,
y is constant. In other words: The distance between the center of the involution and
x times the distance between the center of the involution and y is constant (Coxeter
1961, p. 122).55

Einstein concluded that setting x = y gives two roots that can either be real or
imaginary.56 We will see in Figs. 18 and 19 that Einstein investigated both cases by
drawing sketches.

Underneath a horizontal line, Einstein wrote down

a : b : c =
∣

∣

∣

∣

x1 + y1 1
x2 + y2 1

∣

∣

∣

∣

:
∣

∣

∣

∣

1 x1y1
1 x2y2

∣

∣

∣

∣

:
∣

∣

∣

∣

x1y1 x1 + y1
x2y2 x2 + y2

∣

∣

∣

∣

. (11)

As we already saw, an involution is determined by any two pairs x1, y1 and x2, y2
(Coxeter 1987, p. 45). It can easily be shown that in this case, the real numbers a, b,
and c can be written as shown in Eq. (11) when reading the colons not as divisions
or homogeneous coordinates but simply as a symbol for separation of corresponding
terms (Blaschke 1954, p. 74).

As in Eq. (8), Einstein now considered y to be the corresponding point to the point
at infinity (x = ∞) yielding

y = −b

a
= −

∣

∣

∣

∣

1 x1x1
1 x2y2

∣

∣

∣

∣

∣

∣

∣

∣

x1 + y1 1
x2 + y2 1

∣

∣

∣

∣

= + x2y2 − x1y1
x2 + y2 − x1 + y1

. (12)

As before, setting y = 0 directly yields the constant of the involution.
On the same manuscript page, Einstein drew three sketches while one of these

sketches obviously was not finished and crossed out. The first sketch is shown in
Fig. 18a.

55 Einstein chose the center of the involution to be the origin of the line.
56 He wrote: “Für x = y zwei Wurzeln. Können reel[l] oder imaginär sein”.
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Fig. 19 Construction of a pair x1, y1 of an elliptic and parabolic involution on a line. a Einstein’s second
sketch on AEA 62-785r. Reproduced with permission from the Albert Einstein Archives. ©The Hebrew
University of Jerusalem, Israel. Digital image photographed by Ardon Bar Hama. b Elliptic involution with
no real invariant points; c Parabolic involution with one invariant point

Interpreting the line r in Fig. 18b as the radical axis of the two circles defined by
their intersections R1 and R2, it is

Ox1 · Oy1 = Ox2 · Oy2. (13)

This implies that any circle through R1 and R2 determines a pair xi , yi of the involution
on line g with center O by the intersections of this circle with g corresponding to
Eq. (10). The two gray circles in Fig. 18b are the only circles that pass through R1 and
R2 and only touch line g. These two circles determine the two invariant points S1 and
S2 of the (hyperbolic) involution, which were marked by Einstein. By Eq. (10), the
distances between the invariant points and the center, respectively, are equal. Einstein
indicated this by drawing a half-circle through the two invariant points with center O .

We summarize that Einstein constructed two pairs x1, y1 and x2, y2 of an involution
with center O as well as two real invariant points, clearly connected to the calculation
above. As Einstein indicated in his calculation, the two invariant points could also be
imaginary, leading to an elliptic involution. This case was considered by Einstein in
Fig. 19a, titled “In the imaginary case”57 by Einstein himself.

When moving up line g in Fig. 18b such that it comes to lie between points R1 and
R2, we arrive at the situation in Fig. 19a, where Einstein did not draw the right circle
anymore.58 Clearly, no circle through R1 and R2 exists that only touches line g, since
all circles passing through R1 and R2 need to cross the line g twice. Einstein did not
draw point R2. However, by his notation x1, O , and y1 it becomes clear that the pair
x1, y1 is separated by the center O corresponding to an involution where line g passes
between R1 and R2.59 In this case, the involution is elliptic, where no real invariant
points exist. As we learn fromGrossmann’s lecture notes on Projective Geometry held
by Fiedler and attended by Einstein, the difference between hyperbolic and elliptic

57 “Im imaginären Falle”.
58 The transitions are visualized in the video sequence “62785r.mp4”.
59 In analogy to Fig. 18a and the calculation, we argue that x1, y1 indeed is a pair of the involution and O
is the center.
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involutions was taught by Fiedler as we find it on this manuscript page (Grossmann
1897, p. 71):

[...] but those can be either real, then they are double points of the considered hyperbolic involution,

or they are imaginary, such that the involution is elliptic.60

Corresponding sketches can also be found in the lecture notes of Grossmann’s own
lecture (Grossmann 1907, pp. 17.2 and 18.1).61

As we see in Fig. 19a, Einstein drew more lines as accounted for by our interpre-
tation. Some of these lines are shown in Fig. 19c. Here, the center of the involution
falls together with the point R1. We get to this situation when moving up line g in
Fig. 19b. Thus, each circle that passes through R1 and R2 passes through the center of
the involution, which is why every point on the line g is a corresponding point to O .
In particular, the circle drawn in Fig. 19c determines the only invariant point of this
so-called parabolic involution, such that x1 and x2 fall together.

Instead of drawing another circle through R1 and R2 in order to determine a second
pair of the involution, we can also alter line g. See for example line g2 that passes
through the center O , too. Point y2 now corresponds to O as well as to any other point
on the line.62 It is likely that Einstein first wanted to draw the case of the parabolic
involution in a third sketch, but then added it to the second sketch after crossing out
the third sketch.63

We summarize that Einstein investigated hyperbolic, elliptic, and parabolic invo-
lutions on lines both algebraically and geometrically. The same involutions on conics
instead of lines were investigated on manuscript page AEA 62-787r as we saw in
Sect. (7.1).

9 Further sketches on AEA 124-446 and AEA 62-789

The first sketch on manuscript page AEA 124-446 has similarities to the third sketch
on manuscript page AEA 62-789. Both sketches are shown in Fig. 20. As it was the
case in Sect. (6.2), these are very generic sketches that appear in different contexts as
perspectivities, cross ratios (Enriques 1915, p. 106), involutions (Coxeter 1987, p. 62),
imaginary elements (Dowling 1917, p. 139), or self-conjugate points (Coxeter 1987,
p. 61).

On AEA 124-446, Einstein wrote down

AC

BC
: AD

B D
= BC

AC
: B D

AD
(14)

60 “[...] diese können aber entw. reell sein, dann sind es die Doppelpunkte der betr. hyperbolischen Invo-
lution, od. sie sind imaginär, so ist jene Involution elliptisch.” In this passage, the term Doppelpunkt was
used as it might be the case in the Scratch Notebook, see equation (49).
61 See also footnotes (30 and 46).
62 Einstein did not draw point R2. This might be the reason why he considered another line g2 instead of
drawing a second circle in order to investigate parabolic involutions. We note that the involution on g is not
the same involution as on g2.
63 Another interpretation of this sketch is given in Sect. 10, where the point at infinity is an invariant point.
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Fig. 20 Similar sketches on projective geometry on manuscript pages AEA 124-446 and AEA 62-789r
as well as in Grossmann’s lecture notes. a Einstein’s first sketch on the manuscript page AEA 124-446;
b Einstein’s third sketch on manuscript page AEA 62-789; c Sketch from Grossmann’s lectures notes on
“Darstellende Geometrie I”, original located at ETH. a and b are reproduced with permission from the
Albert Einstein Archives. ©The Hebrew University of Jerusalem, Israel. Digital image photographed by
Ardon Bar Hama

and concluded

AC2

BC2 : AD2

B D2 = 1. (15)

We also find the expression

sin γ1

sin γ2
: sin δ1

sin δ2
, (16)

which is equal to the expressions in Eq. (14). Einstein canceled certain quantities as
well as added some squares in retrospect. The relations above can easily be proven
as in (Enriques 1915, pp. 105-110) in the context of cross ratios. By Grossmann’s
lecture notes, we know that Einstein already learned these relations in the winter
semester 1896/97 when attending Fiedler’s lecture “Darstellende Geometrie I”, see
(Grossmann 1896-97, p. 38) and (Stachel 1987, p. 363). The corresponding sketch
is shown in Fig. 20c. The sketch on AEA 62-789 in Fig. 20b is very similar to these
sketches, however, we do not find any related calculation on this manuscript page.

We also found a sketch on the reverse side of the letter AEA 6-250. It is remarkable
that on this page, an equation is written down that is equivalent to an equation on
AEA 62-789r which contains sketches on projective geometry as well, see Sect. (6.2).

10 Alternative interpretation

We already saw that the center of an involution has a special meaning as it determines
pairs of the involution. By our interpretation, Einstein did not draw the center when
considering Pascal’s theorem and its derivatives (except for Fig. 16, where it falls
together with a vertex). We can entertain different interpretations such that the center
of the involution can be identified explicitly. In that case, however, certain lines drawn
by Einstein become meaningless.
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Einstein’s sketches in Figs. 12b and 15b, for instance, could also be interpreted as
an involution that interchanges points A, C and D, F , namely AC D � C AF .64 In this
case, the point S1 becomes the center of the involution since the secants F D and AC
passing through S1 determine two pairs of the involution. As S1 is an interior point,
the involution is an elliptic one. In this case, Einstein did not draw the Pascal line65

and, furthermore, the intersection S3 of the tangents becomes meaningless.
Similarly, we could consider the involution ADC � C F A instead of ADC � D AF

in Fig. 14b. In this case, the intersection S1 is the center of the involution. This point
might have been drawn by Einstein in the section where the paper had been torn off.
However, the construction via the line passing through S1 and S2 would have been
unusual, since he did not draw the line E F . The axis of the involution then crosses
the conic twice, which is why the involution is hyperbolic. As before, in this case, the
intersection S3 of the tangents in A and D would be meaningless.

We can also interpret Einstein’s sketch in Fig. 16 such that the center of the
involution can be identified explicitly. Instead of looking at the parabolic involution
AC F � C AC , we could consider the involution F AD � D AF that interchanges the
points F and D and let the point A invariant. The center of the involution P then is
the intersection of the tangent in A with the secant DF , which leads us to a hyper-
bolic involution. This interpretation, however, does not give a meaning to the line
P S2, either. Moreover, the intersection S3 of the tangents in A and C would again be
meaningless.

10.1 Manuscript page AEA 62-785r

In Sect. (8.1), we argued that Einstein considered hyperbolic, elliptic and parabolic
involutions on lines that correspond to both the calculations on the same page and con-
siderations on the manuscript page AEA 62-787r. However, for the sketch in Fig. 19a
(see also Fig. 21a) another plausible interpretation is possible.

We argued that Einstein implicitly assumed the point R2 being on the circle such
that the radical axis passes through the given circle. Then, we argued that the lines in
Fig. 19c show the parabolic involution. Instead of this, we can argue also as follows: A
radical axis can also be defined when the two circles do not meet each other. Assuming
that the second circle is above the circle drawn in Fig. 21a, the top horizontal line could
be the radical axis (see the line r in Fig. 21b). Let O ′ be the center of the involution on
g1, x1 and y1 is one corresponding pair. By rotating g1 to g2 around x1, the point O ′
goes to infinity. As O ′ is the corresponding point to the point at infinity, it becomes an
invariant point. In this case, x1 becomes the second invariant point on the line g2. This
interpretation, however, does not fit to Einstein’s calculation where he set the center
of the involution as origin (real point). However, it would provide an interpretation for
the third horizontal line in Fig. 21a.

64 In the sections above, we considered the involution that interchanges points A, D and C , F .
65 The axis of the involution then is the Pascal line of the hexagon AADCC F and, thus, the line passing
through the intersections of AD with C F , AF with DC , and the tangents in A and C .
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Fig. 21 Alternative Interpretation for Einstein’s second sketch on AEA 62-785r. a Einstein’s second sketch
on AEA 62-785r. Reproduced with permission from the Albert Einstein Archives. ©The HebrewUniversity
of Jerusalem, Israel. Digital image photographed by Ardon Bar Hama. b Alternative Interpretation where
the point at infinity is an invariant point

11 A conjecture on the purpose of Einstein’s ideas about projective
involutions

Given any one of the sketches individually, it might be well possible that Einstein
would simply have been doodling. But the network of relations between the sketches
and calculations, both in the Scratch Notebook and in the Princeton manuscripts, and
the relations between the notebook and the manuscripts pages, and the fact that all
of these sketches and calculations could be connected to the notion of an involution
strongly suggest that Einstein was doing the constructions and calculations with a
certain purpose in mind. But what could that purpose have been?

It might be tempting to associate any explicit considerations of projective geometry
on Einstein’s part with projective relativity of some form or other. Perhaps Einstein
may have had in mind to interpret four-dimensional spacetime as some projected
version of five-dimensional spacetime. Such associationwould be all themore justified
by the fact that the relevant manuscript pages 62-785, 62-787, 62-789 all can be
linked unambiguously to the Einstein-Bergmann correspondence around their five-
dimensional generalization of Kaluza–Klein theory. However, we have not been able
to establish any convincing link along these lines.

Instead, we would like to express a different conjecture about the heuristics of
Einstein’s projective geometry sketches and calculations, as we have reconstructed
them. We find equations that we can link to the correspondence between Einstein
and Bergmann from summer 1938 on the three manuscript pages AEA 62-785r, 62-
787r, and 62-789r. As it was stated in the follow-up of Einstein and Bergmann’s
publication, Einstein tried to find particle-like solutions within the framework of his
five-dimensional approach during that time (Einstein et al. 1941).66 We conjecture that
in order to find these particle-like solutions, Einstein and Bergmann assumed a special
parametrization of the five-dimensional metric, expressing periodicity with respect

66 See also Van Dongen (2010) and Sauer and Schütz (2020). For further information about Einstein’s
five-dimensional approach, see Van Dongen (2002).
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to the fifth coordinate, stationarity with respect to the (time-like) fourth coordinate
and spatial (three-dimensional) spherical symmetry. Crucially, the spherical symmetry
resulted in a dependence of the coefficients of themetric in terms of a radial coordinate
r . Interpretation in terms of physical particles required regularity at the origin r = 0
and a certain fall-off at (spatial) infinity r → ∞. In order to satisfy the requirements,
they considered power series expansions of the various coefficient functions. In this
context, Einstein and Bergmann explicitly considered the mathematical problem to
be that of an “expansion around the infinite point” (Einstein to Bergmann, Friday,
i.e., probably 15 July 1938, AEA 6-242 and Bergmann to Einstein, 16 July 1938,
AEA 6-264).67

We therefore conjecture that the context of Einstein’s considerations of involution
in projective geometry is motivated by the wish to gain a better understanding of
properties of a power series expansion around infinity. Typically, an expansion around
infinity is done by a transformation z → 1/z and expanding around 0. This mapping
is a special case of the general involution Eqs. (1) or (7). Mapping the coordinates in
such a way that the infinite point is mapped to a finite coordinate and by an involution,
i.e., by a map that can be iterated to be inverted again would allow to investigate
properties of the series expansion around infinity. The purpose of the considerations
on involutions therefore may have been to consider a more sophisticated version of an
expansion around infinity or to gain a geometric understanding of such amapping. This
conjecture will have to be tested against a more detailed reconstruction of Einstein’s
attempts to construct particle solutions in the Einstein–Bergmann framework.

It is intriguing to note that the consideration of projective involutions in the Scratch
Notebook appears sandwiched in calculations of the magnification factor of grav-
itational lenses where Einstein had also found a diverging expression on the page
immediately preceding it. However, while the sketches and calculations on the Prince-
ton manuscripts all indicate clearly Einstein’s interest in the infinite point, the infinite
point does not appear explicitly in constructions of the Scratch Notebook.

12 Concluding remarks

Our analysis shows, we believe, that Einstein maintained an active command of basic
notions of projective geometry throughout his life even though this field ofmathematics
did not play a prominent role in his physical theories. It is remarkable that very similar
constructions and calculations dealing with involutions in projective geometry can be
found that were written down some quarter century apart. If our conjecture is right, the
constructions reveal a creativity on Einstein’s part in working out solutions to unified
field theory that have never made its way to published work. It will be interesting to
further reconstruct the ideas documented in his research notes and working sheets.
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